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Summary 

 

Planktonic photosynthetic organisms of the class Mamiellophyceae include the smallest eukaryotes 

(<2 µm), are globally distributed and form the basis of coastal marine ecosystems. Eight complete 

fully annotated 13 to 22 Mb genomes from three genera, Ostreococcus, Bathycoccus and 

Micromonas, are available from previously isolated clonal cultured strains and provide an ideal 

resource to explore the scope and challenges of analysing Single Cell Amplified Genomes (SAGs) 

isolated from a natural environment. We assembled data from 12 SAGs sampled during the Tara 

Oceans expedition to gain biological insights about their in-situ ecology, which might be lost by 

isolation and strain culture. Although the assembled nuclear genomes were incomplete, they were 

large enough to infer the mating types of four Ostreococcus SAGs. The systematic occurrence of 

sequences from the mitochondria and chloroplast, representing less than 3% of the total cell’s DNA, 

intimates that SAGs provide suitable substrates for detection of non-target sequences, such as those 

of virions. Analysis of the non-Mamiellophyceae assemblies, following filtering out cross-

contaminations during the sequencing process, revealed two novel 1.6 and 1.8 kb circular DNA 

viruses, and the presence of specific Bacterial and Oomycete sequences suggests that these organisms 

might co-occur with the Mamiellales. 

 
1. Introduction 
 



Planktonic photosynthetic eukaryotes of the class Mamiellophyceae (Chlorophyta) include 

the smallest eukaryotes, with bacterial-sized cells of less than 2 µm diameter. 

Environmental surveys based on the sequence of the highly conserved 18S ribosomal gene 

(18S) eukaryotic barcode (1) revealed their worldwide distribution (2)(3)(4)(5). Their 

ubiquity, high abundance and turnover suggest they sustain the marine ecosystems in 

many coastal areas (6)(7). Many flagellate species in this class were described last century 

before the advent of molecular biology techniques and their first application to these 

picoalgae (8); Monomastix 1912 (9), Micromonas pusilla 1951 (10), and Mamiella gilva 1964 (11), 

followed by Crustomastix and Dolichomastix 2005 (12). A non-flagellate member was 

described 1990 as Bathycoccus prasinos (13) and the non-scaled coccoid Ostreococcus tauri  

was described in 1995 (14). A thorough phylogenetic analysis of the nuclear and plastid 

encoded rDNA operon led Marin and Melkonian to define the class Mamiellophyceae, 

divided into three orders Mamiellales, Dolichomastigales and Monomastigales (15). While 

twenty-two species are presently described in AlgaeBase (16), recent environmental 

sequencing suggests that many more species have not been yet isolated (5)(17) so that the 

number of species within this class remains an open question. The relative ease of culture of 

strains of the picoalgae Bathycoccus, Micromonas, and Ostreococcus in Keller’s and related 

media (18) fostered their development as new models for cell biology (19)(20) and 

environmental studies (21)(22). Complete and annotated nuclear genomes have been 

obtained for eight species to date: O. tauri RCC4221 (23), O. lucimarinus (24), O. sp. RCC809, 

O. mediterraneus (25), Micromonas pusilla and M. commoda (26), B. prasinos RCC1105 (27), and 

O. tauri RCC1115 (28). 

Despite the progress enabled by lab experiments and sequence analyses, the sexual life 

cycles of these haploid picoalgae, as well as their interactions with bacteria (29) and viruses 

(30) in situ remain enigmatic. Single amplified genomes (SAGs) assemblies, produced by 

multiple displacement amplification (MDA) after extraction from sorted single cells have 

been previously reported to contain foreign DNA (31)(32). They may be viewed 

conceptually as metagenomes, provided they preserve a molecular signature of the 

ecological context of the cell. SAGs of cells directly sampled from the environment may not 

only foster knowledge on diversity in microorganisms (33)(34), but also open opportunities 

for the identification of all kinds of novel biological associations, from predation to 

parasitism (31)(35).  



Here, we investigated 12 Mamiellales’ SAGs sampled in the Indian Ocean during the Tara 

Oceans expedition (36) to explore the biological insights this data provides within an 

ecogenomic framework. Therefore, we analysed the taxonomic affiliations of the assembled 

sequence data to discuss the power and challenges of using SAGs to retrieve in-situ 

ecological information (1) from the target sequence data, e.g. Mamiellales sequences, about 

the mating type of the cells and (2) from the non-target sequences identified. 

 

2. Material and Methods 
 

Data 
 
Single-cells were collected during the Tara Oceans expedition (37) from surface waters in 

the Indian Ocean at station 39, 41 and 46 (38) and cryopreserved using glycine betaine. Flow 

cytometric cell sorting, single cell lysis and whole genome amplification by Multiple 

Displacement Amplification (MDA) (39) were performed at the Bigelow Single Cell 

Genomics facility (Boothbay, Maine USA), as previously described (40)(41)(42–44)(41–

43)(40–42). The resulting SAGs were screened using universal eukaryotic 18S rDNA PCR 

primers (45). The 12 SAGs we analysed here were selected for sequencing based on the 18S 

identities and were sequenced using Illumina HiSeq technology at the Genoscope (33). All 

SAGs were multiplexed, SAG1 to 6 and SAG7 to 12 were sequenced on two different runs. 

The raw Illumina data was processed as previously described (36): adapters and primers 

used during library construction were removed from the whole reads and both ends were 

trimmed for low quality nucleotides (quality value < 20). The longest sequence without 

adapters and with fewest low quality bases was kept. Sequences between the second 

unknown nucleotide (N) and the end of the read were also trimmed. Reads shorter than 30 

nucleotides after trimming were discarded. These trimming steps were achieved using 

fastx_clean, an internal software based on the FASTX library. The reads and their mates that 

mapped onto run quality control sequences (Enterobacteria phage PhiX174 genome, 

NC_001422.1) were removed using SOAP aligner. The total number of paired-end reads 

from the processed raw reads ranged between 19 and 36 millions with an average of 26 

million reads per SAG.  

 

SAG assembly and taxonomic affiliation of contigs 
 



Individual pair-end read files were assembled using SPAdes v3.9.0 (46) and the final 

assembly statistics were generated with Quast v4.6.3 (47). Contigs smaller than 400 bp were 

discarded from downstream analysis. Genome completeness was assessed with BUSCO 

v3.0.2 using the 303 eukaryotic single copy orthologs dataset (48) and compared to the 

values obtained on the available closely related sequenced genomes (Table 1). 

The SAG assemblies were screened for contigs containing the 18S using a blastn homology 

search using a custom database of 18S extracted from GenBank complemented with 18S 

genes of Mamiellales extracted from the genome sequence (supplemental table 1). Contigs 

with a 18S hit were analysed with RNAmmer v1.2 

(http://www.cbs.dtu.dk/services/RNAmmer/) and the predicted 18S sequences were 

aligned with Mamiellales 18SrDNA sequences using MAFFTv7.305b (49). Alignments were 

trimmed with trimAI v1.2 (-automated1 method) (50) and maximum likelihood 

phylogenetic trees were built under GTR model using RAxML v. 8.2.9 (51) and plotted with 

FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/).  

Taxonomic affiliations to separate non-target contigs (foreign DNA) from target 

(Mamiellophyceae) were performed as follows. Each contig was aligned against GenBank 

using DIAMOND (blastx option e-value 1e-5 maximum aligned sequences 100) and the 10 

best hits for each contig were kept. The taxonomic affiliation of each contig was retrieved 

using a custom perl script that fetched the GenBank accession number from the DIAMOND 

output, and retrieved the taxonomical nodes from the GenBank taxonomy database for each 

hit (script available upon request). Manual inspection of taxonomic affiliation of contigs 

containing several open reading frames led to the correction of the taxonomic affiliation for 

a few contigs affiliated to Archaea on the base of the best blast hit, while most open reading 

frames along the contig had a best hit against Bacterial sequences. As the complete genome 

and organellar sequences of Ostreococcus, Bathycoccus, and Micromonas species are present in 

GenBank, contigs were considered as target if at least one of the 10 best hits belonged to a 

Mamiellophyceae.  We considered following high order taxonomic ranks: Archaea, Bacteria, 

Fungi, Mamiellophyceae, Metazoa, Oomycetes, Other (when several taxa were mixed in 

uneven proportions within the 10 best hits), Other protists, Plants (Streptophyta), 

Unassigned contigs and Virus. To estimate the number of reads recruited to each taxonomic 

rank in each SAG assembly, we aligned the reads against each assembly with BWA (52) and 

extracted the read coverage of each contig estimated from the SAMtools mpileup and depth 

suite (53).  

http://www.cbs.dtu.dk/services/RNAmmer/
http://tree.bio.ed.ac.uk/software/figtree/


The sum of contig lengths affiliated to a given group was plotted with ggplots in the R 

environment (54). 

Cross-contamination filtering 

To remove contigs derived from cross-contamination during the sequencing step, all SAG 

assemblies from the same Illumina run were compared against all with blastn (e-value cut-

off 1e-5). This led to the inclusion of one SAG from a MAST lineage (TOSGAG23-1, 

GenBank accession ERX1271190) that was multiplexed with SAGs 7-12. Each contig was 

flagged as candidate contaminant if its alignment length with a contig from another SAG 

was equal or higher than 95% of the length of its best hit, with a nucleotide identity higher 

than 99.5%. The number of reads recruited to each candidate contig was used to define the 

source of the contamination:  the SAG containing the contig with the highest read coverage 

was defined as the source SAG, and the corresponding contigs from the other SAGs were 

considered as contaminants and discarded.  

Annotation of non-target contigs 

Because the virus contigs detected in SAGs 8 and 12 had best hits with circular viruses, the 

contigs were first circularized with the Geneious program v10.0.5 (55), and open reading 

frames (ORF) were predicted with Glimmer (56).  

The conserved motifs of the viral replicase gene (57)(58) were manually searched by 

inspection of the predicted amino acids sequence located in the N-terminal endonuclease 

domain and in the C-terminal superfamily 3 helicase domain using MAFFT v7.305b (--

localpair –maxiterate 1000). The best blastp hits to these ORFs were complemented with 

sequences retrieved from GenBank and the Ocean Atlas genes database (59) (supplemental 

table 2). Multiple sequence alignments were performed with MAFFT v7.305b (--localpair --

maxiterate 1000) (60), and trimmed with trimAI v1.2 (-automated1 method) (50). For each 

alignment, protein evolution models were selected using ProtTest v3.4.2 (61) with the 

Akaike Information Criterion (AIC) (LG+I+G for ORF1 and RTREV+I+G+F for ORF2). 

Phylogenies were built by the maximum likelihood method implemented in RAxML v. 8.2.9 

(51), and plotted in FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/). 

 

Screening assemblies for information about mating type 

In Ostreococcus species, population genomics analyses have revealed two anciently diverged 

500 kb genomic regions with supressed recombination, which are candidate mating type 

regions (28). As in many bipolar mating type systems, orthologous genes on this mating 

http://tree.bio.ed.ac.uk/software/figtree/


type locus (MT) cluster phylogenetically by mating type, not by species (28). This is as 

expected if the origin of mating types predates speciation within this genus, as previously 

observed in the Volvox genus (62). We took advantage of this deep divergence between 23 

orthologous genes families of the two mating types, gametologs (63), to screen the SAG 

assemblies for homologous sequences. Briefly, orthologous gene families were obtained 

following an ‘all-against-all’ protein sequence similarity search, performed with blastp 

(maximum e-value 1e-4) and gene families were delineated using OrthoFinder (version 

2.1.2) (64). The dataset consisted of 23 genes in the eight sequenced Mamiellophyceae 

genomes (28) and contains gene families consisting exclusively of gametologs in the 8 

sequenced Mamiellales genomes : O. tauri RCC4221 (23), O. tauri RCC1115 (28), B. prasinos 

RCC1105 (27), M. commoda RCC299, M. pusillla CCMP1545 (26), O. lucimarinus (65) and O. 

spp RCC809, O. mediterraneus RCC2590 (25). Protein coding sequences of these genes in the 

Ostreococcus SAG assemblies were extracted manually from the tblastn nucleotide 

alignments. 

 

Biogeographic occurrence of Mamiellales SAG-associated sequences 

The non-targeted bacterial sequences (supplemental table 3) were searched against 957 

manually curated partial assemblies (metagenome-assembled genomes MAG) 

reconstructed from 93 TARA Oceans metagenomes (66), including those stations from the 

North Indian Ocean the Mamiellophyceae where the SAGs were isolated. A match against a 

MAG was defined as an alignment of 90% of the length of SAG-associated bacterial contig 

with a nucleotide identity higher than 98%. Nucleotide identity and total alignment length 

for each SAG associated bacterial contig were computed from blastn alignments (67). 

The geographic occurrences and distribution of the non-target virus sequences was 

obtained by searching for homologous sequences to the two predicted protein-coding 

genes, a capsid and a replicase, in the OCEAN GENE ATLAS (59) using blastp (e-value 1e-

5). Amino-acid sequences for each hit were downloaded from the database (supplemental 

table 2). This atlas contains a gene catalogue from 243 metagenomes and 441 

metatranscriptomes from the Tara Oceans expedition, as well as the metagenomes from the 

Global Ocean Sequencing (GOS) expedition (68).  

 

3. Results 

 

Completeness of Target Assemblies 



Phylogenetic analysis of 18S data retrieved from the de novo assembly was consistent with 

prior taxonomic affiliations. Ostreococcus SAG 18S sequences retrieved from the de novo 

assembly clustered with O. spp RCC809. However, while SAG9, 10, 11 sequences were 100% 

identical to RCC809 (and RCC143), the 18S sequence of SAG11 had one difference to 

RCC809. The 18S of the Bathycoccus SAGs were 100% identical to the 18S sequence from the 

Bathycoccus prasinos RCC1105 reference genome and the 18S found in Micromonas SAGs 

were 100% identical to the recently described M. bravo species (69) (Figure 1). We could not 

retrieve the 18S rDNA sequence from the assemblies in SAG4 and SAG6-7. 

The SAG target assemblies recruit the overwhelming majority of reads, from a minimum of 

82% of reads in SAG8 to 99.96% in SAG9 (Table 2). Target assemblies are fragmented and 

summed up to a maximum of 4.2 Mb (SAG2), corresponding to a maximum of one fourth of 

the expected genome size (SAG2, Bathycoccus, SAG10, Ostreococcus). This modest genome 

representation is also reflected by the BUSCO analysis, with a maximum of 28.7 % of 

represented genes (SAG9), to 1% in SAG6, where the target sequences are overwhelmingly 

represented by the chloroplast and mitochondrial sequences (Table 2). As a comparison, the 

same BUSCO analyses of the available O. tauri, B. prasinos and M. commoda genomes gave 

86%, 84 and 89% respectively, suggesting that BUSCO analysis gives a conservative 

estimation of genome completeness in the Mamiellales. The relatively low target nuclear 

genome recoveries are in line with previous studies, which showed that the combination of 

sequences obtained from several SAGs may increase target genome recovery from 20 to 

70% (70). 

There was a large variation in the proportion of reads recruited to the mitochondrial (0.05 to 

26%) and chloroplast (0.01 to 73%) genomes. Importantly, the assembly lengths were 

always large enough (> 20 kb, Table 1) to annotate several complete protein-encoding 

genes. This sequence data is sufficient for the unambiguous identification of contigs from 

both the mitochondrial and plastid genomes. However, because the percentage of recruited 

reads also depends on the copy number of the chloroplast and mitochondria genomes 

within a cell, we first estimated the nuclear to plastid or to mitochondria ratios in 

Ostreococcus from available data. In O. tauri, this relative copy number can be inferred from 

the ratio of the nuclear (28)  versus organellar genome coverage (71) obtained from the same 

Illumina run of a haploid culture. Mitochondrial genome copy number was estimated to 

range between 2 and 5, chloroplast copy number ranged between 3 and 7, using the 

available Illumina datasets obtained from 13 independent O. tauri cultures (supplemental 



table 4). The organellar genomes represent less than 0.5% of the nuclear genome sizes in 

Mamiellophyceae (Table 1), but may reach 3.5% with the maximum organellar genome 

copy number.  

If the proportion of reads reflects the proportion of DNA in the sampled cell, the percent of 

reads recruited to the organellar genomes may thus be expected to range from 0.01 to 3.5%. 

This is the case in all Bathycoccus SAGs and two Ostreococcus SAGs (Table 2).  

The complete mitochondrial (mtDNA) or chloroplastic (cpDNA) genomes could not be 

assembled from individual SAG data (Geneious inbuilt assembler with minimum contig 

overlap 100 bp and a minimum overlap Identity 90%). However, running the assembler on 

all contigs affiliated to cpDNA or mtDNA within each genera led to large (>30kb) 

assemblies of 3 mtDNA and 2 cpDNA. Manual assembly guided by the synteny with the 

available reference genomes (Table 1) led to 2 complete assemblies, and 3 partial assemblies, 

summarized in Table 3. To compare the mitochondrial genome assembly obtained for 

Bathycoccus SAGs with the available reference mitochondrial genome of Bathycoccus prasinos 

RCC1105 (27), the amino-acid identity was calculated along a concatenation of 6 

orthologous genes outside the inverted repeat region (nad5, nad4, coc3, cox2, atp6 and 

nad1) as previously described (1). Intraspecific diversity within Mamiellophyceae 

organelles is yet unknown for most species, but in O. tauri intraspecific amino-acid 

divergence is below 0.1% (72). The amino-acid identity over the 1789 aa long alignment was 

81%, supporting the previously published conclusion based on the analysis of the combined 

nuclear genome assembly from SAG1-4, that the Bathycoccus sequenced belong to a novel, 

yet uncultured, Bathycoccus species (33). 

 

Mating type inference in Ostreococcus SAGs 

 

Contigs from the target fraction in the SAGs assemblies were searched for genes located 

within the candidate MT- and MT+ gene families defined in the available reference 

genomes. Since the sequences of the two mating types have not yet been identified in 

Bathycoccus and Micromonas, the inference of mating types is not yet possible in these 

genera. The amino-acid sequence of orthologous genes could be retrieved for 6 out of the 23 

gene families (Figure 2 A). This low gene number is not surprising given the low nuclear 

genome coverage of each SAG (Table 1), but gene family 16 (GF16 – encoding for a 

diacylglycerol glucosyltransferase) had matches with 3 out of the 4 Ostreococcus SAGs.  



Comparison of the amino-acid sequence of these genes with genes from Ostreococcus sp. 

RCC809 indicate that the four Ostreococcus SAGs have the same mating type as RCC809, 

that is MT+  (Figure 2B).  

 

Taxonomic Diversity of Non-target contigs  
 
The non-target assemblies recruited 0.01 to 6% of the reads (Table 1). Taxonomic affiliation 

of total non-target contigs is provided in Figure 3A and varies greatly between SAGs. For 

eight SAGs, most non-target reads were recruited to Bacteria, for 2 SAGs, most non-target 

reads were recruited to Oomycetes, and for 2 SAGs, most reads were recruited to sequences 

of viral origin. Sequence comparison between non-target assemblies revealed 100% 

identical sequences shared between SAGs coming from different stations, but sequenced on 

the same Illumina lane, a suspicious signature suggesting cross-contamination during the 

amplification and sequencing step (73). This led us to define a cross-contamination filter 

procedure for all SAGs sequenced within the same run. To find out which of the SAGs was 

the most likely source of the contamination, we used the number of reads recruited to non-

target contigs. The SAG containing the most sequenced reads was considered as the source 

SAG of the non-target contig. The taxonomic affiliation of non-target contigs following 

filtering is presented in Figure 3B. Basically, this led to a 2 to 7-fold reduction of the total 

non-target assembly length depending on the SAG (Table 2). Following cross-contamination 

filtering, the maximum percent of reads recruited to non-target sequences dropped from 6% 

to 1% in SAG8, and became almost negligible (0.002%) in SAG10. The taxonomic affiliation 

of these filtered non-target sequences could be divided into three groups: Bacteria, 

Oomycetes/Fungi and Viruses, in order of decreasing frequency. 

Most non-target reads were recruited to Bacteria for 11 SAGs and to virus for one SAG 

(SAG12) (Figure 3B). The non-target bacterial contigs had a large phylogenetic spread 

(Figure 4A) and while the most common phylum belonged to the Proteobacteria, there was 

no evidence of any specific bacteria - SAG association from this analysis. To gain more 

information about the origin of the 83 non-target bacterial sequences, we estimated their 

similarity with 957 manually curated partial assemblies (metagenome-assembled genomes 

MAGs) reconstructed from 93 TARA Oceans metagenomes (66). Over one third (32 out of 

83) bacterial contigs had more than 98% identity over 90% of their length with a TARA 

MAG, suggesting indeed that these bacteria belong to the most abundant bacteria 

sequenced within the TARA Ocean sampling (Figure 4A). However, only 3 bacterial contigs 



had a hit against a MAG from the North Indian Ocean, while most hits were against MAGs 

from the Mediterranean Sea and South East Pacific Ocean. Therefore, except for the 3 

bacterial contigs assembled from SAG3 and SAG4, the bacteria sampled together with the 

SAG do not represent the most dominant bacteria at the sampling site.  

The cross-contamination filtering removed most of Oomycetes affiliated non-target contigs 

(Figure 3B), and the source was one uncultured marine Stramenopile (MAST) SAG (70) 

sequenced in the same lane as SAG7 to SAG12. The class Oomycetes is also from the 

Stramenopiles group and form a distant, yet phylogenetically related clade to MASTs, 

which currently lack representation in reference databases (74).  Following the cross-

contamination filtration step, non-target Oomycete contigs were affiliated to four families 

(Figure 4B): Pythiaceae (2 contigs), Albuginaceae (3 contigs) and the more abundant 

Peronosporaceae (30 contigs) and Saprolegniaceae (33 contigs). Given the available genome 

size estimations in Oomycetes (75) or MASTs (70), which are larger than 20 Mbp, the size of 

the largest target Mamiellales, Micromonas (Table 1), the quantity of Oomycetes DNA 

present within the SAGs precludes any evidence of co-sampling, but rather suggests 

random capture of DNA during the cell sorting process. 

The least frequent non-target sequence group was affiliated to viruses. Analysis of the 

contigs affiliated to viruses in SAG8 (Micromonas) and SAG12 (Ostreococcus) led us to 

assemble two novel circular viral genomes, which we named "Mamiellales SAG associated 

circular virus" (MACV). Genome sizes varies between 1586 bp (SAG12 – Ostreococcus 

Figure 5A) and 1788 bp (in SAG8 – Micromonas), both coding for two ORFs, a replicase gene 

(ORF1) and putative capsid gene (ORF2). The two genomes are 100% identical, except for a 

202 bp deletion in the shorter version, leading to smaller ORF1 sequence. The experimental 

analysis performed would not discriminate whether these sequences arose from single or 

double stranded DNA. The read coverage of the SAG8 and SAG12 viruses is 50x and 7893x 

respectively. Assuming MDA amplification did not induce coverage biases between the 

virus and nuclear genomes, the same average coverage would be expected for viral and 

nuclear nucleotides. Compared to the average coverage of the nuclear genome, the SAG8 

associated virus had a 10-fold lower coverage, while the SAG12 associated virus had a 5-

fold higher coverage. This supports the notion that the virus was present in multiple copies 

(5 copies) within the cytoplasm of SAG12, suggesting an infected state, while there were 

fewer copies, and may have been under-amplified, in SAG8. The majority of circular DNA 

viruses were “Circular Replication-associated protein Encoding Single-Stranded DNA” 



(CRESS) viruses (76). They have been found within diverse hosts and marine metagenomes, 

even though there is not much information regarding their infection strategies. To explore 

the similarity of the Mamiellales associated circular virus to other CRESS DNA viruses, we 

performed Maximum likelihood phylogenetic analyses of their predicted capsid (Figure 5C) 

and predicted replicase (Figure 5D) proteins, together with their retrieved blast hits (e-value 

cut off 1E-5) both in GenBank and in the TARA-Oceans Gene Atlas. Capsid homologous 

sequences were found in seven TARA-Oceans metagenomes (Figure 5B) including station 

41 in the Indian Ocean, the same station where the Ostreococcus SAG12 was sampled. The 

phylogenies of both genes suggested that Mamiellales associated circular viruses formed a 

well-supported monophyletic clade, which included circo-like viruses, metagenomic 

sequences, and plant ssDNA viruses (Yerba mate virus and Banana bunchy top virus). 

Sequences from other ssDNA viruses clades, such as genes encoded by Bacilladnaviruses 

(from Diatoms), belonged to divergent branches suggesting that Mamiellales associated 

circular viruses might form a divergent group of a novel ssDNA virus family.  

 

4. Discussion  
 
SAGs have so far been previously used to increase our knowledge of the uncultivable 

multitude of marine microorganisms (40)(74). The use of SAGs to discover novel species 

does not necessitate high genome coverage as only a handful of highly conserved genes is 

informative to delineate a species. However, partial genome coverage may constitute a 

greater challenge for the use of SAGs in evolutionary studies. To increase the genome 

coverage of a target species, data from genetically close SAGs may be merged together 

(33)(45). This approach has been successfully applied by Vannier et al (33) to the 4 

Bathycoccus SAGs and resulted in an assembly estimated to contain 64% of the complete 

genome. The amino-acid identity between this novel assembly and the reference B. prasinos 

RCC1105 genome led the authors to conclude that these 4 SAGs belonged to a cryptic novel 

Bathycoccus species, TOSAG39, which is supported here by the phylogenetic divergence of 

their mitochondrial genome sequences. Although combining SAGs produces a more 

complete genome, individual information about the environment of the sorted single cells, 

which could indicate potential biological interactions, or even stages of infections in the case 

of parasites, may be lost. 

Although the individual SAGs were estimated to represent a maximum of 27% of the 

complete genome sequence in Ostreococcus, a search for the presence of 23 gene families 



located in the mating-type region in Mamiellales enabled us to retrieve orthologous genes 

for 3 Ostreococcus SAGs.  Amino-acid identity between the SAG sequences and the 

sequences from available genomes indicated that the candidate mating type of the 3 

Ostreococcus SAGs was MT+, like the candidate mating type of the closest reference genome 

from strain O. sp RCC809 (28). The relative prevalence of the MT+ and MT- in natural 

Ostreococcus blooms remains an open question. To the best of our knowledge, the co-

occurrence of strains of the two mating types from the same sample has not yet been 

reported, but the maximum number of strains isolated from the same sampling point is less 

than 3 (77). The minimal frequency of sexual reproduction has been estimated indirectly in 

Ostreococcus tauri from the population polymorphism spectrum, 1 sexual meiosis for 100,000 

clonal divisions (28). This low rate may be explained either by a low encounters rate of MT+ 

and MT- strains in their natural environment, or by a low rate of outcrossing. The 

identification of informative sequences from the MT locus in 3 of the 4 SAGs demonstrates 

the utility of the single cell genomics approach for estimating the frequencies of the two 

mating types within a bloom, provided that a sufficient number of cells is analysed. While 

the presence of identical MTs in 3 SAG is consistent with clonal reproduction within a 

bloom, the sample size was too small for a proper estimation of the level of clonality within 

a bloom.  

The estimations of the percentages of reads recruited to the mitochondrion and chloroplast 

genomes in each SAG attest the ability of single cell sequencing to identify novel candidate 

associations in the smallest eukaryotic microalgae of the order Mamiellales. Indeed, while 

organellar copy numbers may reach several thousands of copies in humans (78) or 

Arabidopsis (79), bacterial-sized Ostreococcus have a reduced number of organellar genomes, 

with an average copy number per cell estimated at 4 and 5 for the mtDNA and cpDNA, 

respectively. As a consequence, the systematic identification of mtDNA and cpDNA 

sequences from the SAGs provides support to the ability of this strategy to detect genomic 

sequences of any intracellular symbionts, provided there is no DNA amplification bias as a 

consequence of differences in genome architecture or cell wall structure between the 

symbiont and the organellar genome. Alternatively, these sequences might arise from 

random capture of amplified dissolved DNA in the marine seawater around the isolated 

picoalgal cells. In a typical sorting run the droplet containing a single cell may contain 

about 2.8 nL (80), or 2.8 × 106 µm3. The sample volume within a drop is around 1/1000 of 

the total volume, or 2.8 × 103 µm3, whereas a single Ostreococcus cell contains about 0.5 µm3 



of cytoplasm, giving about 6 × 103 fold more seawater than cell volume, ample space for the 

“phycosphere” (81) or dissolved DNA (82) that may be sequenced with the targeted algal 

cell. 

To distinguish between random capture of dissolved DNA and intracellular symbionts, 

relative read coverage of the non-target to the target genomes provides a rule of the thumb 

about the likely origin of the non-target sequences. In the present data, we found that most 

of the non-target sequence data can be traced back to cross-contamination from another 

SAG, sequenced in the same Illumina run. Filtering out cross-contaminants, the amount of 

non-target DNA identified – except for the virus sequence - is not compatible with co-

sampling of a Mamiellales and a bacteria or Oomycete cell, and rather suggests random 

capture of dissolved DNA. These associated non-target sequences may nevertheless 

provide information about the diversity of microorganisms present in the cell’s 

environment. Indeed, Mamiellales are auxotrophic for B vitamins (83) and have been found 

to co-occur with diverse bacteria in lab cultures (29)(84), though no obligate specific 

association has been yet observed. The taxonomic diversity of the candidate associated 

bacterial contigs retrieved from the SAG data is thus not surprising.  

The presence of a novel CRESS-like DNA virus came as a surprise. Single-stranded DNA 

(ssDNA) viruses with circular genomes, with sizes from ~1700 bases, are the smallest 

viruses known to infect eukaryotes (85). Several previous metagenomic studies have 

identified many novel genomes similar to ssDNA circular viruses through data-mining of 

public marine metagenomes (85)(86), but with no hints about their putative hosts. 

Previously described CRESS viral hosts range from plants (87) (Geminiviridae, 

Nanoviridae), bleached kelp macroalgae (88), vertebrates (89) (Circoviridae), fungi, insects 

(Genomoviridae) (90), and crustaceans (91). In protists, CRESS viruses were discovered in 

SAGs targeting Picobiliphytes (31) and in Bacillariophyceae diatoms, where they have been 

isolated and their lytic effect could be demonstrated (92). The Mamiellales associated 

circular viruses described here are among the smallest viral genomes described to date 

infecting the smallest photosynthetic eukaryotes.  

 

In conclusion, sorting of these 12 Mamiellales SAGs by flow cytometry relied on the choice 

of appropriate volumes to favour isolation of one cell, and the “phycosphere” around cell 

had been subjected to turbulent mixing with the cytometer sheath fluid, thus limiting the 

suitability of this technique for identification of cell-to-cell interactions. Independent ways 



of finding such associations are necessary, one of which may be to pick off single cells using 

micromanipulation (see (35) in this issue), but the technical challenge of performing this for 

picoeukaryotes < 2 µm in size, such those in the Mamiellales, remain very challenging. 

Conventional culture-based approaches of strains and viruses are required to demonstrate 

the outcome of interactions by co-culture (93) and remain an essential tool for deciphering 

both intercellular and virus-host interactions in aquatic environments and interpreting 

environmental sequencing data. Nevertheless, we showed here that - provided careful 

filtration of contaminations between dataset is performed - SAGs provide in-situ ecological 

information that would be lost in conventional isolation and culture processes, which select 

for the fastest growing cells in laboratory culture medium. 
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Tables 

 

Table 1: Assembly statistics of 12 SAGs and statistics of reference genomes from the order 
Mamiellales 

Sample - station Bathycoccus - 39 Micromonas - 46 Ostreococcus - 41 

SAG 1 2 3 4 5 6 7 8 9 10 11 12 

Assembly size (Mb) 3.25 4.42 3.36 3.72 0.89 0.56 0.58 0.53 0.85 3.46 1.54 2.71 

N50 (kb) 13.6 17.4 19.5 20.2 3.17 2.47 9.67 6.91 6.44 37.5 17.8 36.4 

GC% 45.7 47.0 46.6 46.5 40.0 39.3 41.6 39.1 52.2 57.1 52.1 56.6 

Contigs 3157 3129 3461 2913 2864 1894 1043 1788 2914 2479 2207 2364 

Contigs (> 400 bp) 1048 1241 990 991 691 470 272 275 410 737 546 655 

Reference Genome 
  Nuclear  (GC%) 
  Mitochondria (bp) (GC%) 
  Chloroplast (bp)    (GC%) 

B. prasinos RCC1105 
15 Mb (48.0) 
43,614 (40.1) 
72,700 (43.3) 

M. commoda RCC299 
21 Mb (63.8) 
47,425 (34.6) 
72,585 (38.8) 

O. tauri RCC4221 
13 Mb (59.0) 
44,237 (38.2) 
67,681 (39.9) 

 

  



 

 

Table 2: Summary statistics of assemblies per taxonomic affiliation categories, assembly length and percent of reads recruited are provided 

for Target (Mamiellophyceae) and Non Target assemblies (Bacteria, Eukaryote, Archaebacteria and virus). 

* Tara-Oceans Expedition station number 

 

 

 

 

Table 3: Summary statistics of cpDNA and mtDNA manual assemblies from combined SAG 

sequence data. 

  Target sequences 

Assembly total length (% of reads recruited) 

Non Target sequences 

Total length (% of reads recruited) 

BUSCO 

T.-O.* 

Station 

SAG Total  

x10
3 
bp    (%) 

Mitochondria   

bp          (%) 

Chloroplast 

bp              (%) 

Total 

bp           (%) 

Filtered 

bp      (%) 

 

(%) 

39 SAG1 3,001 (99.89) 40,481 (1.46) 33,423 (0.03) 101,751 (0.09) 29,645    (0.03)  11.9 

39 SAG2 4,166 (99.47) 49,421 (0.05) 21,954 (0.01) 89,862 (0.28) 22,815    (0.07) 17.2 

39 SAG3 3,130 (99.91) 46,597 (0.11) 35,348 (0.05) 90,824 (0.06) 46,751    (0.03) 15.2 

39 SAG4 3,509 (99.96) 54,044 (0.08) 38,960 (0.04) 118,507 (0.02) 32,028  (0.005) 16.8 

46 SAG5 441 (90.32) 54,577 (3.36) 51,112 (65.97) 228,342 (2.15) 122,933    (1.16) 2.0 

46 SAG6 271 (98.26) 37,972 (20.66) 64,962 (48.70) 135,783 (0.26) 33,796    (0.06) 1.0 

46 SAG7 255 (96.12) 34,404 (0.28) 53,356 (73.30) 136,620 (2.02) 26,962    (0.39) 2.3 

46 SAG8 187 (82.95) 44,825 (14.67) 42,081 (0.21) 144,189 (6.09) 31,813   (1.34) 3.0 

41 SAG9 712 (99.86) 43,157 (1.58) 40,737 (0.15) 41,906 (0.08) 6,307   (0.01) 28.7 

41 SAG10 3,180 (99.88) 47,961 (1.11) 93,684 (0.79) 55,576 (0.01) 11,764 (0.002) 22.8 

41 SAG11 1,225 (92.74) 28,820 (19.66) 101,901 (7.98) 142,887 (1.78) 20,493   (0.25) 7.6 

41 SAG12 2,250 (98.85) 43,041 (0.15) 84,203 (10.60) 79,669 (1.11) 11,876   (0.16) 15.5 



 

 

 Chloroplast genome (cpDNA) Mitochondrial genome (mtDNA) 
 assembly 

size (Kb) 
assembly name assembly size 

(Kb) 
assembly name 

SAG1-4 - - 48.8 Ba_mt_TOSAG39 
complete 

SAG5-8 54.7 Mi_cp_TOSAG46 
partial  

33.3 Mi_mt_TOSAG46 partial 

SAG9-12 68.9 Os_cp_TOSAG41 
complete 

39.1 Os_mt_TOSAG41 
partial 



 

 

 

 
Figure captions 

 

FIG1 -  Maximum likelihood phylogeny (under GTR model) of 18S rDNA sequences 

retrieved from the SAG assemblies of Bathycoccus sp. (SAG1-3), Micromonas sp. (SAG5 and 

8) and Ostreococcus sp. (SAG9-12). Mamiellales reference genomes are marked with a red 

star, and SAGs are marked with orange star. Rapid bootstrap support values are indicated 

in the key (100 replicates), represented by colored circles in branches. The final alignment 

contained 1750 nucleotides. 

 

 

FIG2 -  Mating type inference from amino-acid identity with MT+ and MT- orthologous 

gene families (GF) in Ostreococcus SAGs (a) Expected taxonomic affiliation for MT- and 

MT+ strains (b) Presence/absence matrix of hits to gene families in each SAGs (c) 

Maximum likelihood phylogeny (LG+G model) of the SAGs sequence corresponding to 

GF16 with orthologous genes from Ostreococcus species. 

 

FIG3 - Taxonomic affiliations of non-target sequences. (a) Percent of raw read number (b) 

Percent of reads following cross-contamination read filtering. 

 

FIG4 - Taxonomic affiliation inferred from best blast hits (1e-5 cut-off) of Bacterial contigs 

(a) at level of the phylum, Oomycetes contigs at level of family (b), sum of contig lengths 

per taxa in each SAG is indicated by bubble size. Length of contig recruited to TARA 

Microbial Assembled Genomes (MAGs) from TARA metagenomes is indicated by bubble 

color. 

 

FIG5 – Genome structure, biogeography and phylogeny of  Mamiellales associated circular 

virus. (a) Genome assembly of 1,586 bp virus encoding two open reading frames ; ORF1 is a 

replicase and ORF2 a putative capsid protein. (b) Biogeographic distribution of putative 

homologous sequences encoding to ORF2 (putative capsid) in the Ocean Gene Atlas (OGA) 

database per TARA station (triangles) and number of hits per station (bubble size) (b). (c) 

Maximum Likelihood Phylogeny of ORF2 (putative capsid – RTREV+I+G+F protein 



evolution model) and (d) ORF1 (replicase – LG+I+G protein evolution model) with 

homologous sequences retrieved from GenBank and OGA database. 

 

 

 

 

 
Figures 

 
 
 
 

  

FIG1 -  Maximum likelihood phylogeny (under GTR model) of 18S rDNA sequences 

retrieved from the SAG assemblies of Bathycoccus sp. (SAG1-3), Micromonas sp. (SAG5 and 

8) and Ostreococcus sp. (SAG9-12). Mamiellales reference genomes are marked with a red 

star, and SAGs are marked with orange star. Rapid bootstrap support values are indicated 

in the key (100 replicates), represented by colored circles in branches. The final alignment 

contained 1750 nucleotides. 
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FIG2 -  Mating type inference from amino-acid identity with MT+ and MT- orthologous 

gene families (GF) in Ostreococcus SAGs (a) Expected taxonomic affiliation for MT- and MT+ 

strains (b) Presence/absence matrix of hits to gene families in each SAGs (c) Maximum 

Likelihood phylogeny (LG+G model) of the SAGs sequence corresponding to GF16 with 

orthologous genes from Ostreococcus, Micromonas and Bathycoccus species. 

  



 

 

 

 

FIG3 - Taxonomic affiliations of non-target sequences. (a) Percent of raw read number (b) 

Percent of reads following cross-contamination read filtering. 

 
 

 

 

 

 

 

 

 

  



 

 

 

 
 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

FIG4 - Taxonomic affiliation inferred from best blast hits (1e-5 cut-off) of Bacterial 
contigs (a) at level of the phylum, Oomycetes contigs at level of family (b), sum of 
contig lengths per taxa in each SAG is indicated by bubble size. Length of contig 
recruited to TARA Microbial Assembled Genomes (MAGs) from TARA metagenomes 
is indicated by bubble color. 
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FIG5 – Genome structure, biogeography and phylogeny of  Mamiellales associated circular 

virus. (a) Genome assembly of 1,586 bp virus encoding two open reading frames ; ORF1 is a 

replicase and ORF2 a putative capsid protein. (b) Biogeographic distribution of putative 

homologous sequences encoding to ORF2 (putative capsid) in the Ocean Gene Atlas (OGA) 

database per TARA station (b). (c) Maximum Likelihood Phylogeny of (putative capsid – 

RTREV+I+G+F protein evolution model) and (d) ORF1 (replicase – LG+I+G protein evolution 

model) with homologous sequences retrieved from GenBank and OGA database. 
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