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Abstract Secondary flows are ubiquitous in channel flows,
where small velocity components perpendicular to the main
velocity appear due to the complexity of the channel geome-
try and/or that of the flow itself such as from inertial or non-
Newtonian effects, etc. We investigate here the inertialess
secondary flow of viscoelastic fluids in curved microchan-
nels of rectangular cross-section and constant but alternating
curvature: the so-called “serpentine channel” geometry. Nu-
merical calculations (Poole et al, 2013) have shown that in
this geometry, in the absence of elastic instabilities, a steady
secondary flow develops that takes the shape of two counter-
rotating vortices in the plane of the channel cross-section.
We present the first experimental visualization evidence and
characterization of these steady secondary flows, using a
complementarity of µPIV in the plane of the channel, and
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E-mail: anke.lindner@espci.fr
Present address: of L. Casanellas, Laboratoire Charles Coulomb UMR
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confocal visualisation of dye-stream transport in the cross-
sectional plane. We show that the measured streamlines and
the relative velocity magnitude of the secondary flows are in
qualitative agreement with the numerical results. In addition
to our techniques being broadly applicable to the character-
isation of three-dimensional flow structures in microchan-
nels, our results are important for understanding the onset of
instability in serpentine viscoelastic flows.

Keywords polymer solutions · non-Newtonian fluids ·
vortices · confocal microscopy · particle image velocimetry

1 Introduction

Three-dimensional velocity fields are widespread in channel
and pipe flows, where the geometry of the duct can combine
with the properties of the base primary flow (i.e. the flow
in the streamwise direction) to trigger a weak current with
velocity components perpendicular to the streamwise direc-
tion. Therefore, the ability to measure, and understand, the
velocity field in all three directions of such flows is of gen-
eral importance. In microfluidic flows, however, the flow-
field in the streamwise direction is often the only compo-
nent characterised, because of optical access limitations and
due to the fact that the absolute value of the other velocity
components are typically very small (Tabeling, 2005). De-
spite their small magnitude, such secondary flows are often
ultimately responsible for enhanced mixing (above that due
to diffusion alone) of mass and heat which is a frequent aim
of various microfluidic devices (Lee et al, 2011; Mitchell,
2001; Stroock et al, 2002; Amini et al, 2013; Hardt et al,
2005; Kockmann et al, 2003). Secondary flows also have im-
portant implications in particle focussing (Del Giudice et al,
2015; Di Carlo et al, 2007) where they may either be ex-
ploited or act as a hindrance.
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Secondary flows in microfluidic systems may be driven
by the complexity of the channel geometry only: for the
creeping flow of a Newtonian fluid, Lauga et al (2004) have
shown that a secondary flow must develop if the channel
has both varying cross-section and streamwise curvature.
Changes in the streamwise curvature of channels with con-
stant cross-section have also been shown to give rise to a
secondary flow around the bend (Guglielmini et al, 2011;
Sznitman et al, 2012). More complex geometries have been
designed to obtain chaotic micromixers, in which secondary
flows are triggered and expose volumes of fluid to a repeated
sequence of rotational and extensional local flows (Ottino,
1989; Stroock et al, 2002; Amini et al, 2013).

Complexity in the equations of fluid motion is another
driving mechanism for secondary flows: although usually
not dominant at the microscale, inertia can play a role in
microfluidic systems (Di Carlo, 2009; Amini et al, 2014).
Combined with the flow geometry, it drives secondary flows
such as the well-known “Dean” vortices (Dean, 1927, 1928)
observed in curved channels and pipes, or the steady vorti-
cal structure of the “engulfment” regime in T-junction mix-
ers (Kockmann et al, 2003; Fani et al, 2013). In the ab-
sence of inertia, viscoelasticity is another source of fluid dy-
namic complexity: viscoelastic analogues of the Dean vor-
tices are formed, in the creeping-flow regime, by the cou-
pling of the first normal-stress difference with streamline
curvature (Robertson and Muller, 1996; Fan et al, 2001; Poole
et al, 2013; Bohr et al, 2018). Note that second-normal stress
differences in viscoelastic fluids may also drive an inertia-
less secondary motion in ducts of non-axisymmetric cross-
section, but this flow is typically much weaker (Gervang and
Larsen, 1991; Debbaut et al, 1997; Xue et al, 1995). We em-
phasise that in listing those potential sources of secondary
flow we are not attempting to be exhaustive, but simply to
illustrate that they may occur under many different scenar-
ios.

We focus here on the viscoelastic secondary flow driven
by streamline curvature. This steady secondary flow is al-
ways present in the steady flow of viscoelastic fluids in curved
geometries, and pertains at all flow rates until a critical flow
rate is reached at which the flow becomes time-dependent
due to a well-known purely elastic instability (Groisman and
Steinberg, 2000; Arratia et al, 2006; Afik and Steinberg,
2017; Souliès et al, 2017). Characterising this secondary
flow is thus essential to the knowledge of the three-dimensional
base flow from which the elastic instability develops: its
structure may interact with the onset of the instability, as
hypothesised to explain the partially unaccounted for sta-
bilisation of shear-thinning viscoelastic flow in curved mi-
crochannels (Casanellas et al, 2016). It is also important for
mixing and particle focusing applications that rely on vis-
coelastic fluids (Groisman and Steinberg, 2000; Del Giudice
et al, 2015).

Evidence for such secondary flows is readily observable
in simple visualisation experiments. By way of example, in
Fig.1 we show a classical experiment for the visualisation of
mixing efficiency in a serpentine microchannel (Groisman
and Steinberg, 2000): two streams of the same fluid, one of
them dyed with fluorescein, are co-injected into the serpen-
tine micromixer. When a Newtonian fluid is injected, mixing
is achieved by diffusion alone, which broadens the interface.
With increasing flow rate, the residence time decreases, and
so does the width of the interface. When a viscoelastic fluid
is used, the evolution of the width of the interface with in-
creasing flow rate is very different. At small flow rates a very
broad interface is again observed, which initially sharpens
when the flow rate is increased. When the flow rate is fur-
ther increased however, the interface locally widens again.
This effect cannot be attributed to diffusion, which becomes
less important with increasing flow rate (thus decreasing res-
idence times). In addition, an asymmetry can be observed
with the interface being significantly wider towards the end
of each loop and a sharpening of the interface at the begin-
ning of each new loop. This observation can only be ex-
plained with an underlying three dimensional flow structure
that reverses direction in between consecutive loops. Previ-
ous numerical simulations (Poole et al, 2013) have shown
the occurrence of a steady secondary flow in this serpen-
tine channel geometry for dilute viscoelastic liquids. One
of the aims of this work is to demonstrate and quantify the
occurrence of this secondary flow experimentally by direct
measurement. More generally, we show how different ex-
perimental methods can be used to determine quantitative
information of generic secondary flows in micro-devices.

Being typically very weak (on the order of a few percent
of the bulk primary velocity), secondary flows are hard to
resolve even in macro-sized classical fluid mechanics exper-
iments (Gervang and Larsen, 1991). Thus it is not surpris-
ing that such flows have been little characterised at the mi-
croscale. A number of recent experimental approaches may
alleviate this issue, in particular the holographic microparti-
cle tracking velocimetry (µPTV) technique (Salipante et al,
2017), confocal microparticle image velocimetry (confocal
µPIV) (Li et al, 2016) or using standard particle image ve-
locimetry in conjunction with a channel design and material
that allow for microscope observation in several perpendic-
ular planes (Burshtein et al, 2017).

2 The small fluorescein molecule diffuses almost freely in the poly-
mer network and thus probes a local viscosity that is lower than the
shear viscosity of the polymer solution as measured with a rheome-
ter. The same behaviour has been quantified in solutions of (hydrox-
ypropyl)cellulose (Mustafa et al, 1993), dextran (Furukawa et al, 1991)
and polyethylene glycol (Holyst et al, 2009). For this reason, we use
the solvent of the polymer solution as a Newtonian reference fluid. The
slightly lower diffusion in the polymeric solution shows that the con-
tribution from the polymer to the local viscosity, albeit small, is not
entirely negligible.
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Fig. 1 Visualisation of mixing in a serpentine microchannel (the chan-
nel edges are highlighted in white): two streams of fluid are co-injected
in a Y-junction, one of them being fluorescently labelled. Data for a vis-
coelastic polymer solution are displayed on the right-hand side, while
data for the Newtonian solvent (a mixture of water and glycerol at
75 wt.% – 25 wt.%)2 are shown on the left-hand side. The flow rate in-
creases from 2 µl/min (top row) to 6 µl/min (middle row) and 12 µl/min
(bottom row). At low flow rates ((a), (b)) the interface between the two
streams is broadened in both cases by the strong diffusion of the dye.
At larger flow rates ((c) and (d)), the interface sharpens all along the
channel due to the decreasing residence time. Further increase of the
flow rate ((e) and (f )) leads to further sharpening of the interface for the
Newtonian flow (e), but an additional spatially varying “blur” develops
in the viscoelastic flow ((f ), blue triangular arrow).

Here, we will characterise experimentally the three-dim-
ensional structure of the flow with supporting numerical sim-
ulations that match the geometrical conditions. Our aim is
to use a complementarity of µPIV, confocal microscopy and
insight gleaned from simulation to quantify the secondary
flow and confirm its vortical structure and sense of rotation.
Our techniques are very generic and thus broadly applicable
to the characterisation of three-dimensional flow structures
in microchannels.

2 Experimental and numerical methods

2.1 Working fluids and rheological characterisation

Model viscoelastic fluids were prepared by dissolving poly-
ethylene oxide (PEO, from Sigma Aldrich) with a molecu-
lar weight of MW = 4×106 g/mol in a water/glycerol (75%
- 25% in weight) solution. The PEO was supplied from the
same batch as used in Casanellas et al (2016). The solvent
viscosity at T = 21◦C is ηs = 2.1 mPa·s (data not shown).

The polymer concentration was fixed to c = 500 ppm (w/w).
The total viscosity of the resulting solution at T = 21◦C is
η = 3.8 mPa·s giving a solvent-to-total viscosity ratio β =
0.55. The overlap concentration for this polymer in water
is c∗ ' 550 ppm (Casanellas et al, 2016). Although this so-
lution is close to the semi-dilute limit, we confirmed that
shear-thinning effects, of both the shear viscosity and the
first normal-stress difference, are essentially negligible (see
e.g. Casanellas et al (2016)).

2.2 Microfluidic geometry

We tested the polymer solution in serpentine microchan-
nels consisting of nine half loops. A sketch of the chan-
nel is shown in Fig.2. We note that, in this channel geom-
etry, the absolute value of the curvature is constant along the
channel but the sign of the curvature changes from positive
to negative between consecutive half-loops. This change of
sign is not required for the development of the viscoelastic
secondary flow, but is a feature of our two-dimensional ge-
ometry which conveniently allows for the study of several
consecutive loops at a constant radius of curvature. Numer-
ical simulations of the creeping flow of Newtonian fluids in
bent microchannels show that this change in curvature is ex-
pected to trigger a local secondary flow where subsequent
half-loops reconnect, but this flow quickly decays in the re-
gions of constant curvature (Guglielmini et al, 2011), where
our velocity measurements were made. Most of our results
were obtained on a channel of nearly square cross-section,
with a width W = 110±3 µm, height H = 99±1 µm and an
inner radius of curvature (measured at the inner wall of the
channel) Ri = 40± 1 µm. Additional channels of compara-
ble cross-sectional dimensions but larger radii of curvature
were used for comparison.

Fig. 2 Schematic of the microfluidic geometry used: (a) top view and
(b) cross-sectional view displaying the choice of axes. x is the primary
flow velocity direction, y is the wall-normal direction (where the origin
is taken at the inner edge of each loop), and z is the spanwise (vertical)
direction. Therefore, the x,y,z coordinate system we consider is not
fixed in space but advected with the flow. The location of the dyed
stream used for confocal visualisation is also indicated.

The microchannels were fabricated in polydimethylsilox-
ane (PDMS), using standard soft-lithography microfabrica-
tion methods (Tabeling, 2005), and mounted on a glass cov-
erslip. The fluid was injected into the channel via two in-
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lets using two glass syringes (Hamilton, 500 µl each) that
were connected to a high-precision syringe pump (Nemesys,
from Cetoni GmbH). The experimental protocol consisted
of stepped ramps of increasing flow rate from 2 µl/min up to
a maximum of 20 µl/min, with a flow rate step of 2 µl/min.
The resolution of the applied flow rate was controlled at a
precision of ± 0.2 µl/min, as confirmed independently us-
ing a flow sensor (Flow unit S, from Fluigent, at low flow
rates and SLI-0430 Liquid flow meter, from Sensirion for
Q > 6 µl/min). The step duration was set to 120 s, and the
measurements performed over the last 60 s, which we con-
firm was long enough to ensure flow steadiness and the de-
cay of any initial transient regime. Experiments were contin-
ued until the onset of the purely-elastic instability where the
flow became time-dependent. For the Ri = 40 µm channel
this occurred at 14 µl/min which we define as Qinsta.

At the onset of flow instability the Reynolds number
(Re = ρUW/η , where ρ is the fluid density and U the mean
velocity) is small in all experiments, being at most 0.6. There-
fore, in our microfluidic flow experiments inertial effects can
be disregarded.

2.3 Micro-particle image velocimetry

Quantitative two-dimensional measurements of the flow field
were made in the xy-centreplane (z = 0 plane) of the serpen-
tine device (Fig.2) using a micro-particle image velocimetry
(µPIV) system (TSI Inc., MN) (Meinhart et al, 2000; Were-
ley and Meinhart, 2005). For this purpose, no fluorescent
dye was used but the test fluid was seeded with 0.02 wt% flu-
orescent particles (Fluoro-Max, red fluorescent microspheres,
Thermo Scientific) of diameter dp = 0.52 µm with peak ex-
citation and emission wavelengths of 542 nm and 612 nm,
respectively. The microfluidic device was mounted on the
stage of an inverted microscope (Nikon Eclipse Ti), equipped
with a 20× magnification lens (Nikon, NA = 0.45). With
this combination of particle size and objective lens, the mea-
surement depth over which particles contribute to the deter-
mination of the velocity field was δ zm ≈ 13 µm (Meinhart
et al, 2000), which is approximately 13% of the channel
depth.

The µPIV system was equipped with a 1280×800 pixel
high speed CMOS camera (Phantom MIRO, Vision Research),
which operated in frame-straddling mode and was synchro-
nized with a dual-pulsed Nd:YLF laser light source with a
wavelength of 527 nm (Terra PIV, Continuum Inc., CA). The
laser illuminated the fluid with pulses of duration δ t < 10 ns,
thus exciting the fluorescent particles, which emitted at a
longer wavelength. Reflected laser light was filtered out by
a G-2A epifluorescent filter so that only the light emitted by
the fluorescent particles was detected by the CMOS imag-
ing sensor array. Images were captured in pairs (one image
for each laser pulse), where the time between pulses ∆ t was

set such that the average particle displacement between the
two images in each pair was around 4 pixels. Insight 4G
software (TSI Inc.) was used to cross-correlate image pairs
using a standard µPIV algorithm and recursive Nyquist crite-
rion. The final interrogation area of 16 × 16 pixels provided
velocity vector spaced on a square grid of 6.4 × 6.4 µm in
x and y. The velocity vector fields were ensemble-averaged
over 50 image pairs.

2.4 Confocal microscopy

Vertical images of the cross-section of the channel (in yz
planes) were obtained by confocal microscopy imaging us-
ing dyed stream visualisation (as illustrated in the xy plane in
Fig.1). z-stacks of two-dimensional images of size 1024×1024
pixels in xy planes were acquired at a rate of 6 fps using a
laser line-scanning confocal fluorescence microscope (LSM
5 Live, Zeiss), with a 40× water immersion objective lens
(1.20 NA). The voxel size was 0.16× 0.16× 0.45 µm in the
x− y− z direction.

2.5 Viscoelastic constitutive equation, numerical method
and structure of predicted secondary flow

The three-dimensional numerical simulations assume isother-
mal flow of an incompressible viscoelastic fluid described
by the upper-convected Maxwell (UCM) model (Oldroyd,
1950) in a channel of matched dimensions to those used in
the experiments. The equations that need to be solved are
those of mass conservation,

∇ ·u = 0, (1)

and the momentum balance,

−∇p+∇ · τ = 0, (2)

assuming creeping-flow conditions (i.e. the inertial terms
are exactly zero), where u is the velocity vector with Carte-
sian components (ux, uy, uz), and p is the pressure. For the
UCM model the evolution equation for the polymeric extra-
stress tensor, τ , is

τ +λτ(1) = ηγ̇, (3)

where τ(1) represents the upper-convected derivative of
τ and η the constant polymeric contribution to the viscosity
of the fluid, respectively.

Although the UCM model exhibits an unbounded steady-
state extensional viscosity above a critical strain rate (1/2λ ),
in shear-dominated serpentine channel geometries such model
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deficiencies are unimportant and it is arguably the simplest
differential constitutive equation which can capture many
aspects of highly-elastic flows. Many more complex models
(e.g. the FENE-P, Giesekus and Phan – Thien – Tanner mod-
els, see e.g. Bird et al (1987)), simplify to the UCM model
in certain parameter limits and thus its generality makes it
an ideal candidate for fundamental studies of viscoelastic
fluid flow behaviour. The governing equations were solved
using a finite-volume numerical method, based on the loga-
rithm transformation of the conformation tensor. Additional
details about the numerical method can be found in Afonso
et al (2009, 2011) and in other previous studies (e.g. Alves
et al (2003a,b)). For low Deborah numbers De = λU/Ri
(with λ the relaxation time of the fluid, U the mean ve-
locity and Ri the inner radius of curvature), the numerical
solution converges to a steady solution, which was assumed
to occur when the L1 norm of the residuals of all variables
reached a tolerance of 10−6. Beyond a critical Deborah num-
ber, a time-dependent purely-elastic instability occurs. The
numerical results in the current paper are restricted to Deb-
orah numbers below the occurrence of this purely-elastic in-
stability, thus the flow remains steady in all simulations.
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Fig. 3 (a) Numerically predicted structure of the secondary flow:
two counter-rotating vortices develop in the cross-sectional plane of
the channel. (b) Contour plot of the first normal stress difference
(N1/(ηU/W )), in the cross-section of the channel (De = 0.5, W/H =
W/R = 1): the strong positive and asymmetric normal stress differ-
ence at the top and bottom wall drives the secondary flow. (c) Nu-
merically calculated scaling of the strength of the secondary flow: the
maximum spanwise velocity scales linearly with De over a wide range
of aspect ratio and radius of curvature parameters (adapted from Poole
et al (2013)).

The structure and strength of viscoelastic secondary flows
in a serpentine geometry have been investigated in detail

by Poole et al (2013). The main results of this study are
recalled below, and lay the foundations for the simulations
that we carry out here, which are focused on the geometry of
the experimental system we used. The projected streamlines
in the yz plane of the computed secondary flow are shown
in Fig.3(a). The flow takes the shape of a pair of counter-
rotating vortices in the cross-sectional plane of the channel.
It is driven by the hoop stress, which drives the fluid to-
wards the inner side of the bend close to the top and bottom
walls (where the shear rate and thus the first normal stress
difference are larger, as illustrated in Fig.3(b)). The fluid
is then carried back towards the outer edge of the bend at
the centreplane (z = 0). Although the driving mechanism is
different, the resulting qualitative features of this elasticity-
driven secondary flow are thus similar to the inertia-driven
Dean vortices (Dean, 1928). The strength of the viscoelastic
secondary flow increases with the elastic contribution to the
flow (increasing De) and the curvature of the channel. Poole
et al (2013) have shown that far from the onset of the purely
elastic instabilities, the magnitude of the secondary flow, as
quantified by the maximum spanwise velocity uz,max, scales
linearly with De (see Fig.3(c)). The structure of the flow
has been shown to remain identical for aspect ratios W/H
varying from 1 up to 4; accordingly, the scaling for uz,max
with De is not modified by the aspect ratio of the channel.
The scaling of the secondary flow strength with the solvent
viscosity contribution has also been assessed (Poole et al,
2013), and can be expressed as an effective Deborah num-
ber Dee f f = (1− β )De where β is the ratio of the solvent
viscosity to the total (solvent + polymeric) viscosity. In the
UCM model, Dee f f = De.

The precise experimental determination of the relaxation
time of the fluid is difficult for dilute polymer solutions so
that the determination of De for our experimental data is
challenging. However, we can use the onset of the purely
elastic instability as a reference point to match the Deborah
numbers in our numerical and experimental data. For a given
serpentine geometry, the flow becomes unstable beyond a
critical flow speed, usually expressed in terms of a critical
Weissenberg number to quantify the importance of the elas-
tic contribution to the flow: Wiinsta(Ri) = λUinsta/W (with
Wi=De×Ri/W the Weissenberg number) (Zilz et al, 2012).
For a given channel geometry Wi/Wiinsta = De/Deinsta =

Q/Qinsta. Therefore, to enable quantitative comparison be-
tween experimental and numerical results, all the results for
the channel geometry described above will be presented in
terms of the reduced quantity De∗ = De/Deinsta = Q/Qinsta,
with Deinsta ≈ 1.24 from the numerical results for the ex-
perimental geometry we used (Ri/W = 0.36). De∗ is inde-
pendent of β and therefore, the solvent viscosity does not
need to be taken into account in the present numerical sim-
ulations.



6 Lucie Ducloué et al.

3 Results

3.1 Flow measurement in the plane of the channel using
µPIV

Fig. 4 Red lines: Experimental flow streamlines in the channel cen-
treplane, for increasing values of flow elasticity. For comparison, the
streamlines for a Newtonian solution of the same viscosity are shown
with a blue dashed line: a clear deviation of the streamlines towards the
outer edge of the bend occurs in viscoelastic flow.

In this section we show that classical µPIV measure-
ments in the xy centreplane provide significant evidence of
the existence of a secondary flow. In this symmetry plane,
uz = 0 so that the velocity field is fully characterised by the
2D PIV. In Fig.4 we show streamlines constructed from the
measured velocity field along the first half loop (i.e. from
A0 to A2 as shown in Fig.2). The blue dashed line high-
lights the Newtonian result which can be seen to travel in
approximate concentric semicircles around the bend. The
red lines indicate the streamlines of the polymeric solution,
which, at low Deborah number, can be seen to match the
Newtonian ones very closely. In contrast, with increasing
De∗ (increasing flow rate) there is a marked deviation of the
streamlines for the viscoelastic fluid away from the inner
bend towards the outer, in good agreement with the sense
of the secondary flow predicted by the numerical simula-
tions (Poole et al (2013)) and as discussed above and shown
in Fig.3. These streamline patterns thus provide our first
piece of qualitative evidence for the existence of an elastic
secondary flow.
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Fig. 5 Experimental (bullets) and numerical (full lines) velocity plots
at location A1 (see Fig.2) for the primary (a) and wall-normal velocity
(b), for increasing values of De∗ (• Newtonian fluid, • 0.43, • 0.71, •
0.86 and - 0, - 0.11, - 0.22, - 0.44, - 0.67, - 0.89). For easier comparison,
only select De∗ values are shown in (b). The zero y location is taken
at the inner edge of the bend, with the geometry being that described
in section 2.2: Ri/W = 0.36. The peak streamwise velocity shifts with
De, as is more visible in the inset of (a). The scale bar in the top right
corner indicates the magnitude of the error on the experimental data.
(c) Scaling for the maximum wall-normal velocity with De∗.

To support these qualitative streamline observations in a
more quantitative sense, in Fig.5 we plot the velocity com-
ponents around location A1. The primary and wall-normal
components of both the experimentally determined (sym-
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bols) and the numerically computed (full lines) velocity fields
have been averaged over an angular sector of 10◦ upstream
and downstream of A1. y describes as usual the wall-normal
direction, and x the primary velocity direction: the primary
velocity component is ux and the transverse (or wall nor-
mal) component is uy. The data is plotted such that the zero
y location corresponds to the inner edge at location A1. In
Fig.5(a) we plot the streamwise velocity component. Firstly
we notice the good agreement between the experiments and
the Newtonian simulation (black line and black symbols)
where a slight asymmetry in the profile towards the inner
wall is noticeable (as has been observed and discussed previ-
ously (Zilz et al, 2012)). Secondly, the effect of elasticity on
this main velocity component is rather subtle but, as is most
easily seen via inspection of the numerical profiles around
the maximum of ux (see inset of Fig.5(a)), it is clear that
elasticity acts to reduce this asymmetry by shifting the peak
velocity back towards the centre of the channel. We then turn
to the wall-normal velocity component, shown in Fig.5(b).
For the Newtonian case this is essentially zero (within ±
1% of the bulk velocity) - in agreement with theoretical pre-
dictions for an inertialess duct of constant cross-sectional
area and constant curvature (Lauga et al, 2004). However,
with the polymer solution, increasingly large wall-normal
velocities (i.e. from the inner wall towards the outer) can
be discerned as the flow rate (or De∗) is increased. At the
highest De∗ for both simulation and experiment these veloc-
ities reach ≈ 0.15U at their peak. It can be observed that,
much as is the case for the primary velocity component,
these transverse velocity profiles are also asymmetric with a
peak closer to the inner wall. We believe that this is a conse-
quence of the shear rate being larger close to the inner wall.
As the streamwise normal stress – which, in combination
with streamline curvature, is the driving force for the sec-
ondary flow – increases with the shear rate, the higher shear
rate at the inner wall leads to a concomitant asymmetry in
the distribution of the secondary flow. Significant noise is
visible on the experimental data, which is due to the dif-
ficulty of resolving accurately a velocity component much
smaller than the average velocity. The systematic small dis-
crepancies between the numerically computed profiles and
the experimental data may be caused by the uncertainty on
Qinsta (known with a precision of ±1 µl/min).

We quantify in Fig.5(c) the increase in the magnitude of
the secondary flow with the Deborah number De∗. The max-
imum of the numerically computed transverse velocity uy
scales linearly with De∗ over the range of parameters consid-
ered, as expected far from the instability onset (Poole et al,
2013). The trend in the experimental data is more difficult to
resolve because of the noise level, which is particularly high
compared to the expected velocities at the lower flow rates
investigated. Qualitative agreement is nonetheless observed,

with comparable magnitude for the secondary flow in both
cases.

3.2 Cross-sectional visualisation of the flow using confocal
microscopy

Except at the highest flow rates (or De∗), the magnitude of
the secondary flow velocities is very small and thus diffi-
cult to resolve with PIV techniques. However, if the effect of
these small velocities can be integrated over a large distance
any effect should be magnified. One method to achieve this
integrated effect is through the use of confocal microscopy
in combination with dyed stream visualisation, which we
now turn our attention to. For those experiments, the fluid
supplied through one of the inlets is dyed with fluorescein.
The location of the dyed stream is identified in Fig.2. At the
Y-junction, the two streams each occupy half of the channel
width, separated by a straight centred interface in the plane
of the channel cross-section. This interface is broadened by
diffusion as the fluid travels downstream, and deformed in
the region of the loops as the vortices of secondary flows
transport fluid in the plane of the cross-section. Following
the evolution of this interface by taking slices in the yz plane
is thus a means of visualising the fluid transport that has
occurred in the cross-sectional plane between consecutive
slices. This evolution is shown in Fig.6 for three channels
with different inner radii of curvature, at the six locations
identified in Fig.2. The interface between the two streams of
fluid is quite broad, due to molecular diffusion of the dye,
but also due to the convolution of the image with a finite-
sized point spread function, enhanced by the strong illumi-
nation conditions. Therefore, only the qualitative evolution
of the interface can be obtained, by adjusting the light in-
tensity at each z position with a diffusion-type profile. The
inflection point of this profile provides an estimate of the lo-
cation of the interface, which is marked by the bright lines in
Fig.6. This diffusion profile is wider towards the top and bot-
tom, suggesting that Taylor dispersion is active in our sys-
tem (Ismagilov et al, 2000). Coupled with the weaker light
intensity close to the walls, this effect is responsible for a
loss of resolution at the top and bottom wall, causing the
slight bending of the interface observed in the straight chan-
nel (location S).

The top row in Fig.6 shows the evolution of the inter-
face in the channel we used for the µPIV measurements, at
the largest De∗ we investigated (0.86). This evolution is in
good qualitative agreement with the numerically uncovered
nature of the secondary flow as illustrated in Fig.3(a): be-
tween location S and A0, the fluid has travelled a quarter
loop with the dyed stream at the inner edge of the bend.
The convex shape of the interface at A0 indicates that the
dye has been transported towards the outer edge in the cen-
treplane, and that un-dyed fluid has been carried towards
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the inner edge at the top and bottom walls. This is consis-
tent with the transport expected from the numerically com-
puted vortex structure. From A0 to A1, transport along a
quarter loop of reversed curvature leads to the recovery of
a straight interface, which is bent to a concave shape after
further transport in the same half loop to location A2. The
channel then reverses curvature again, and a convex inter-
face is observed after transport over half a loop (location
A4). The images at A0, A2 and A4 are taken at the connec-
tion between consecutive half-loops, were the channel re-
verses curvature. An additional secondary flow is expected
to be triggered from this sudden change in curvature even in
a Newtonian fluid (Guglielmini et al, 2011). However, the
displacement of the interface is not sensitive to the local ve-
locity field, but rather to the integration of the streamlines
over the distance travelled in the channel. Therefore, we ex-
pect that this is the reason we do not seem to observe the
signature of this secondary flow in the cross-sectional pro-
files measured.

We will now use confocal visualisation to probe the in-
fluence of the radius of curvature of the channel Ri on the
secondary flow, to gather further experimental proof of the
flow scaling with De. As the relative magnitude of the sec-
ondary flow decreases for larger Ri, direct velocity measure-
ments are difficult for those geometries. However, the inte-
gration over long distances makes the secondary flow visi-
ble in confocal experiments. The second and third rows in
Fig.6 show the evolution of the dyed and un-dyed streams
interface in two channels of larger radii of curvature: Ri =

135 µm (middle row) and Ri = 420 µm (bottom row), but
similar cross-section as the previous channel. Qinsta depends
non-linearly on Ri, therefore for those two larger channels
we do not work in terms of quantities scaled on the critical
values, such as De∗. We keep the flow rate constant, so that
the ratio of the Deborah numbers for both experiments is in-
versely proportional to that of the channel radii: De1/De2 =

Ri,2/Ri,1. Confocal imaging of the cross-section shows clear
evidence of the cross-sectional vortices, with marked deflec-
tions of the interface. The interface profiles obtained with
the two larger channels have similar curvature, which pro-
vides semi-quantitative experimental evidence for the scal-
ing of uy with De: the displacement of the interface between,
for instance, S and A0, is proportional to uy×∆ t, where ∆ t
is the time required for the base flow to travel from S to
A0. ∆ t ∼ Ri/U ∼ Ri/Q because the channels have the same
cross-section. Therefore, the lateral displacement of the in-
terface scales as uy×Ri/Q. As this displacement is similar
for the two channels, and Q is identical, uy scales as 1/Ri,
which is consistent with the linear scaling of uy with De as
measured numerically.

Finally, we also note that in all cases, the shape of the
interface is almost unchanged after transport over an even
number of consecutive half-loop (see A0 compared with A4).

We thus confirm experimentally for Deborah numbers below
one, memory effects are small in our system, as predicted
numerically (Poole et al, 2013).

4 Conclusions and outlook

The use of two complementary techniques, µPIV in the cen-
treplane of the microfluidic device and confocal microscopy
to image the cross-section of the device, has allowed us to
perform one of the first experimental characterizations of
steady, viscoelastic secondary flows in curved microchan-
nels. The vortical structure of this flow in the cross-sectional
plane, first unveiled by numerical calculations, was confirmed.
Qualitative agreement is found in the flow profiles for the
secondary transverse velocity. Those results improve our com-
prehension of viscoelastic flows in complex channel geome-
tries, by validating the three-dimensional flow driven by the
hoop stress in regions of constant curvature. A full under-
standing of the flow pattern in the serpentine channel, though,
remains beyond the scope of our work: in the regions where
the curvature is not constant (as is typically the case be-
tween consecutive half-loops), additional vortices may ap-
pear, which we do not discuss here. Their contribution to
the flow dynamics in the serpentine microchannel may be
important, though, via their interaction with the viscoelas-
tic Dean flow we have characterised, and their position at a
potentially critical location for the propagation of the elastic
instability in the channel.
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A, Gapiński J, Zywociński A, Kalwarczyk T, Kalwar-
czyk E, Tabaka M, et al (2009) Scaling form of vis-
cosity at all length-scales in poly (ethylene glycol) so-
lutions studied by fluorescence correlation spectroscopy
and capillary electrophoresis. Physical Chemistry Chem-
ical Physics 11(40):9025–9032

Ismagilov RF, Stroock AD, Kenis PJ, Whitesides G, Stone
HA (2000) Experimental and theoretical scaling laws
for transverse diffusive broadening in two-phase lam-
inar flows in microchannels. Applied Physics Letters
76(17):2376–2378
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