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Ring dynamics around non-axisymmetric bodies with application to Chariklo and Haumea

Dense and narrow rings have been discovered recently around the small Centaur object Chariklo 1 and the dwarf planet Haumea 2 , while being suspected around the Centaur Chiron 3 , although this point is debated [START_REF] Ruprecht | stellar occultation by 2060 Chiron: Symmetric jet-like features[END_REF] . They are the first rings observed in the Solar System elsewhere than around giant planets. Contrarily to the latters, gravitational fields of small bodies may exhibit large non-axisymmetric terms that create strong resonances between the spin of the object and the mean motion of rings particles. Here we show that modest topographic features or elongations of Chariklo and Haumea explain why their rings are relatively far away from the central body, when scaled to those of the giant planets [START_REF] Esposito | Planetary rings[END_REF] . Resonances actually clear on decadal time-scales an initial collisional disk that straddles the corotation resonance (where the particles mean motion matches the spin rate of the body). Quite generically, the disk material inside the corotation radius migrates onto the body, while the material outside the corotation radius is pushed outside the 1/2 resonance, where the particles complete one revolution while the body completes two rotations. Consequently, the existence of rings around non-axisymmetric bodies requires that the 1/2 resonance resides inside the Roche limit of the body, favoring faster rotators for being surrounded by rings.

Chariklo and Haumea's non-axisymmetric gravity fields raise new and rich dynamical issues that are not encountered for rings around the giant planets. The strong coupling between the body and the surrounding collisional disk put tight constraints on the ring final location. This is the main topic of this paper, while the possible formation scenarios for those rings, that are discussed elsewhere [START_REF] Braga-Ribas | A ring system detected around the Centaur (10199) Chariklo[END_REF][START_REF] Ortiz | The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation[END_REF][START_REF] Sicardy | Planetary ring systems[END_REF][START_REF] Pan | On the mass and origin of Chariklo's rings[END_REF][START_REF] Hyodo | Formation of centaurs' rings through their partial tidal disruption during planetary encounters[END_REF][START_REF] Araujo | The rings of Chariklo under close encounters with the giant planets[END_REF][START_REF] Wood | The Dynamical History of Chariklo and Its Rings[END_REF][START_REF] Melita | Assessment of different formation scenarios for the ring system of (10199) Chariklo[END_REF] , will not be addressed here.

To be more specific, Haumea is a triaxial ellipsoid with principal semi-axes A>B>C and elongation ∼ 0.61 (see Table 1). Chariklo's shape is less constrained due to scarce observations. Extreme solutions [START_REF] Leiva | Size and Shape of Chariklo from Multi-epoch Stellar Occultations[END_REF] are a spherical Chariklo of radius R sph = 129 km with topographic features of typical heights z ∼ 5 km, or an ellipsoid with elongation ∼ 0.20. The two bulges associated with those elongations contain large masses (of order ) compared to the body itself. Even a 5km topographic feature on Chariklo represents a mass anomaly µ ∼ (z/2R sph ) 3 ∼ 10 -5 relative to the body. This is much larger than the mass of Janus (a small satellite that confines the outer edge of Saturn's main rings) with µ ∼ 3 × 10 -9 , or putative Saturnian mass anomalies [START_REF] Hedman | More Kronoseismology with Saturns rings[END_REF] , with µ < 10 -12 , supporting the strong coupling mentioned earlier.

Fig. 1 outlines two possible configurations of Chariklo's dynamical environment, one with a mass anomaly and one with an elongated body. In both cases, there are four fixed points C 1 , ...C 4 near the corotation radius a cor ∼ (GM/Ω 2 ) 1/3 = R/q 1/3 , where the dimensionless rotation parameter q is defined by

q = Ω 2 R 3 GM , (1) 
G being the gravitation constant, M the mass of the body, Ω its spin rate, and R denoting either the radius R sph of a sphere or the reference radius of the ellipsoid (Table 1).

In principle, the region around C 2 or C 4 may host ring arcs, but these points being potential maxima, arcs are unstable against dissipative collisions over time scales of some 10 4 years at most. Moreover, for Chariklo's elongations larger than the critical value crit ∼ 0.16 (which is the case here with the adopted value = 0.20), the points C 2 and C 4 are linearly unstable (see Methods). Consequently, particles moving away from C 2 or C 4 rapidly collide with the body (Fig. 1), This problem is exacerbated in the case Haumea, because of its larger elongation, ∼ 0.61.

Particles with mean motion n and epicyclic frequency κ experience Lindblad Resonances (LRs) for κ = m(n -Ω), m integer.
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The resonances occur either inside (m>1) or outside (m<0) the corotation radius (Fig. 1), with only even values of m allowed in the ellipsoid case, due to symmetry reasons (Methods). Only disks revolving in a prograde direction are considered here. Retrograde resonances are weaker 14 and will not be studied here. Since κ ∼ n, the relation above reads n/Ω ∼ m/(m -1), referred to as an m/(m-1) LR. In a disk dense enough to support collective effects (self-gravity, pressure or viscosity), an m/(m -1) LR forces a m-armed spiral wave that receives a torque

Γ m = sign(Ω -n) 4π 2 Σ 0 3n (GM ) 2 ΩR 2 A 2 m . (3) 
This formula encapsulates in separate factors the sign of the torque, the physical parameters of the disk (n and its surface density Σ 0 ) and of the perturber (M , R, Ω), and an intrinsic dimensionless strength factor A m , see Methods. Importantly, this is a generic formula that applies in contexts as different as galactic dynamics [START_REF] Goldreich | The excitation of density waves at the Lindblad and corotation resonances by an external potential[END_REF][START_REF] Hopkins | An analytic model of angular momentum transport by gravitational torques: from galaxies to massive black holes[END_REF] , circum-stellar accretion disks 17 , protoplanetary disks [START_REF] Goldreich | Disk-satellite interactions[END_REF] or planetary rings and interiors [START_REF] Goldreich | The dynamics of planetary rings[END_REF][START_REF] Meyer-Vernet | On the physics of resonant disk-satellite interaction[END_REF][START_REF] Marley | Planetary acoustic mode seismology: Saturn's rings[END_REF] . Moreover, both the sign of the torque and its value are largely independent of the physics of the disk 20 , providing a robust estimation of Γ m even ignoring the detailed processes at work.

Eq. (3) shows that the LRs cause the migration of the disk material away from the corotation. An annulus of width W and average radius a has most of its angular momentum H ∼ 2πaW Σ 0 √ GM a = 2πΣ 0 W (ΩR 3 /q) transfered to the body over a migration time scale

t mig ∼ H | Γ m | = 3q 4π 2 W R T rot [(m -1)/m]A 2 m , (4) 
where T rot = 2π/Ω is the rotation period of the body. The summation includes the relevant torques Γ m that apply inside the annulus (Fig. 2). Note that the current angular momentum of Chariklo's rings is less than 10 -5 of that of the body [START_REF] Braga-Ribas | A ring system detected around the Centaur (10199) Chariklo[END_REF][START_REF] Sicardy | Planetary ring systems[END_REF] . Even considering an initial disk one hundred times more massive, the reaction torque of the disk on the body has a negligible effect on Chariklo's rotation rate, with similar conclusions for Haumea.

We estimate t mig for two annuli around Chariklo, one initially placed inside the corotation radius, and one placed outside. Fig. 2 shows that (i) a difference A-B as small as a kilometer ( < ∼ 0.01) causes a rapid, decadal scale outward migration of the outer annulus; (ii) the resonances on the inner annulus are weaker, but t mig remains geologically short ( < ∼ Myr) for A -B > ∼ 5 km; (iii) even ∼ 5-km topographic features are sufficient to induce migration time scales of a few Myr.

Numerical simulations can test those mechanisms. Global collisional codes have been run [START_REF] Michikoshi | Simulating the Smallest Ring World of Chariklo[END_REF] , but with no torque appearing as the potentials considered were axisymmetric. Other local simulations do consider elongated bodies [START_REF] Gupta | Rings of non-spherical, axisymmetric bodies[END_REF] , but not rotating, hampering again any torque. Here we performed numerical integrations using a simple Stokes-like friction acting on the particles,

γ Stokes = -ηΩv r , (5) 
where v r is the particle radial velocity and η is a dimensionless friction coefficient. This friction dissipates energy while conserving angular momentum, thus being a good proxy for collisions at low computing cost. Fig. 3 shows results using η = 0.01 (see Methods for the choice of η). As mentioned earlier, the specific form of γ Stokes and the value of η have little effects on the resonant torque Γ m , when compared to more realistic situations including collisions and self-gravity.

We have checked numerically the dependence t mig ∝ A -2 m (Eq. ( 4)). This permits to save computing time in the case of a mass anomaly by using µ = 0.005 (instead of ∼ 10 -5 ), hence speeding up migration time scales by a factor 500 2 = 2.5 × 10 5 , an effect accounted for in Fig. 3a,b,c,d. In contrast, the integration shown in Fig. 3e,f,g,h uses a realistic Chariklo's elongation = 0.20, with no further corrections applied. Fig. 3 confirms our calculations, i.e. (i) the rapid infall of particles onto Chariklo's equator inside the corotation radius, exacerbated by the fact that the large orbital eccentricities enhance collisions with the body, and due to the unstable character of the C 2 and C 4 points for = 0.20 (Fig. 1); (ii) the strong torques up to the 1/2 resonance, that pushes the disk material outwards. Our integrations actually show that inward of the 1/2 resonance, and between discrete LRs, the orbital eccentricities remain sufficiently excited to cause a slower but still significant migration away from the corotation radius.

A LR opens a cavity in the disk if Γ m exceeds the viscous torque 19 Γ ν = 3πna 2 νΣ 0 , where the kinematic viscosity ν = h 2 n is related to the ring vertical thickness h, see Methods. From Eq. (3), we obtain

Γ m Γ ν ∼ 4π 9q 4/3 m -1 m 5/3 R h 2 A 2 m . (6) 
Using h ∼ 10 m (see Methods) and z ∼ 5 km we get |Γ -2 /Γ ν | ∼ 3 × 10 -2 for m = -2 (2/3 outer LR). Thus, a 5-km feature is too weak to open a cavity, but not by much owing to the steep dependence of A 2 m ∝ µ 2 ∝ z 6 . In contrast, the torque exerted by an ellipsoid with = 0.20 is overwhelming (by six orders of magnitude) at the 2/3 LR compared to Γ ν . Since A -2 ∝ (see Methods), ellipsoids with A -B as small as 0.1 km are actually able to carve a cavity inside the 2/3 LR.

Chariklo and Haumea's elongations considered here are large enough to strongly perturb a ring near the 1/2 resonance, although no torque formula is available at that resonance in the ellipsoid case, because it is of second order nature (it must actually be noted 2/4, and is not a LR, see Methods). This said, the final radius of the cavity depends on processes that are not considered here, since our friction law is an oversimplification of actual collisions. More importantly, accretion into satellites takes over as the Roche limit is approached, leading to complex ring-satellites interaction like shepherding. Nevertheless, our results show that either due to mass anomalies or body elongation, rings should not exist inward of the 1/2 resonance at a 1/2 = 2 2/3 a cor . This is consistent with what is observed for Chariklo and Haumea.

In fact, the ring existence requires that a space exists between a 1/2 and the Roche limit a Roche , to prevent the ring accretion into satellites. From a Roche ∼ (3/γ) 1/3 (M/ρ ) 1/3 , where ρ is the density of the ring particles, and γ is a factor describing the particle shape [START_REF] Tiscareno | Compositions and Origins of Outer Planet Systems: Insights from the Roche Critical Density[END_REF] , the condition a 1/2 < a Roche reads

γρ < ∼ 3 4 Ω 2 G . (7) 
Thus, a non-axisymmetric body must rotate fast enough and/or the particles be underdense enough for a ring to exist. Although γ and ρ are poorly known, we can consider the preferred value γ = 1.6 that describes particles filling their lemon-shaped Roche lobes [START_REF] Porco | Saturns small inner satellites: clues to their origins[END_REF] , and ρ ∼ 450 kg m -3 , typical of the small moons orbiting near Saturn's rings [START_REF] Thomas | shapes, and derived properties of the saturnian satellites after the Cassini nominal mission[END_REF] , and a good proxy of ring particle densities. Eq. ( 7) then requires rotation periods shorter than about 7 h, a condition met by both Chariklo and Haumea.

Our model predicts that the inner part of the disk may be deposited on the equator of the body, forming a ridge akin to that of the Saturnian satellite Iapetus. It has been proposed that this ridge is due to the presence of a transient ring that rained down onto Iapetus' equator due to the torque from of a former subsatellite [START_REF] Ip | On a ring origin of the equatorial ridge of Iapetus[END_REF][START_REF] Levison | Ridge formation and de-spinning of Iapetus via an impact-generated satellite[END_REF][START_REF] Dombard | Delayed formation of the equatorial ridge on Iapetus from a subsatellite created in a giant impact[END_REF] . This may happen on short time scales. For instance Eq. ( 4) shows that a 10 km-radius satellite orbiting at 500 km pushes an initial disk extending from the surface to 400 km in less than 1 Myr. In our case, the disk decay is caused by the body itself. The infall time scales being of many years (Fig. 2), impact angles on the surface are very shallow, with velocities less than a km s -1 , ensuring that the material piles up as a ridge instead of forming craters. Future stellar occultations might detect such ridges on Chariklo or Haumea.

In a broader and more speculative perspective, it is interesting to consider the orbital distribution of satellites of asteroids and Trans-Neptunian Objects. Supplementary Fig. 1 displays the histogram of the satellite orbital periods, expressed in units of the rotation periods of the primaries. Apart from a conspicuous peak corresponding to synchronous, tidally evolved orbits, this histogram indicates a clearing between the corotation radius and the outer 1/2 resonance, followed by a steady increase beyond this resonance. This distribution might be the signature of satellite formation proceeding from an initial collisional disk that has been pushed away by the resonant mechanism described here. (a) No error bars are considered here, the adopted parameters being representative of typical cases examined in this work.

(b) See Eq. ( 1).

(c) Defined as R = √ 3(1/A 2 + 1/B 2 + 1/C 2 ) -1/2
, see Methods Eq. ( 16). (d) See Methods Eq. ( 18). (e) Assuming a spherical body of radius R sph = 129 km (ref. 12). This corresponds to a mass anomaly µ ∼ (z/2R sph ) 3 ∼ 10 -5 . (f ) Using a cor = Rq -1/3 , from Eq. ( 1) and Kepler's third law.

(g) Using a 1/2 = 2 2/3 a cor , from Kepler's third law. (h) Using the classical expression a Roche ∼ (3/γ) 1/3 (M/ρ ), with γ = 0.85 and icy ring particles with density ρ = 1000 kg m -3 . More realistic values of γ and ρ are discussed in the text. In both panels (topographic feature on the left, elongated body on the right), the red (resp. blue) circles correspond to inner (resp. outer) m/(m -1) Lindblad resonance (LR) radii with m>1 (resp. m<0), see Eq. ( 2). The black lines show isopotential curves in a frame corotating with Chariklo, and the gray lines outline the limb of the body. The dots C 1 , ...C 4 mark the corotation fixed points. The points C 2 and C 4 are local potential maxima and are linearly stable if the mass anomaly or the elongation of the body are not too large, see Methods. Left -A topographic feature of height z = 5 km (gray half dome, not on scale) is sitting at the surface a body of radius R sph = 129 km, and corresponds to a mass anomaly µ ∼ 10 -5 . For better viewing, the isopotential black lines have been radially stretched by a factor of 50 with respect to the corotation radius. A few inner (m = 2, 3, 4, 5) and outer (m = -1, -2, -3, -4) LR radii are shown. Right -The same for a Chariklo shape solution with elongation = 0.20. The limb of the body and the isopotential lines are plotted on scale. Only LRs with m even are now allowed, the inner one corresponding to m = 6, and the two outer ones corresponding to m = -2, -4. The green curve is an orbit that starts at C 2 without applying any friction (conservative case). It is unstable because the elongation is larger than the critical value crit = 0.16 (see Methods), leading to a collision with the body after three months in the example shown here. 3)) vs. the resonant radii on each side of the corotation radius (dotted line). The values of A m are evaluated from Supplementary Table 1, using a Chariklo equatorial topographic feature of height z = 5 km, corresponding to a mass anomaly µ = 10 -5 (blue squares), or a difference of semi-axes A -B = 18 km (Table 1), corresponding to an elongation parameter = 0.20 (red squares). Note the steep decrease of the torques as the corotation radius is approached, due to the exponential decrease of A 2 m as |m| increases, see Methods. The light gray region at left encloses Chariklo's largest semi-axis A = 157 km, inside which particles collide with the body in the ellipsoidal case, while the dark gray region encloses Chariklo's radius R sph = 129 km in the spherical case (Table 1). b, Solid lines: migration times (Eq. ( 4)) of an outer annulus of width 100 km that extends outside the corotation (see a), either due to the topographic features (blue) of heights z or ellipsoids with various A -B (red). Dotted lines: the same for an inner annulus of width 20 km in the ellipsoidal case, and 60 km in the spherical case, see a. 5)). The radii of the corotation point C 2 (a cor ), the 2/3 and 1/2 outer Lindblad Resonances (LRs) between the particle mean motions and Chariklo's rotation period are marked at the bottom, together with the location of Chariklo's main ring 1 C1R. a, b, c, d, The effect of an equatorial topographic feature (black dot) with mass µ = 5 × 10 -3 relative to Chariklo. Initially, 701 particles are regularly placed between 0.7a cor and 2.2a cor . In all panels, each particle is plotted over twenty regular time steps spanning 40,000 years. a, After 40,000 years, the clearing of the corotation region is ongoing; b, After 2.5 × 10 5 years, some particles remain near C 2 , while others are pushed outside the 2/3 LR; c, After 2.5 × 10 6 years, all the particles inside the corotation radius and near C 2 have collided with Chariklo; d, After 6.3 × 10 6 years, all the remaining particles are now outside the 1/2 LR. e, f, g, h, Effect of an ellipsoid with elongation = 0.20, displayed with its longest axis face on. The particles now start between 1.1a cor and 2.2a cor (particles inside 1.1a cor collide with Chariklo after a few days). e, After three months, most of the particles have been pushed outside the 2/3 LR; f, g and h, After one, five and twelve years, respectively, all the particles have either collapsed onto Chariklo, or continue their outward migration at decreasing pace outside of the 2/4 resonance. Note that time scales of same order (but shorter) would be obtained for particles orbiting around Haumea, which has a larger elongation = 0.61.

Supplementary Figure 1 | Distribution of orbital periods of satellites around asteroids and Trans-Neptunians Objects. The orbital period P s of 179 satellites known around binary or multiple asteroids and Trans-Neptunians Objects (taken from http://www.johnstonsarchive.net/ astro/astmoontable.html as of April 2018) are plotted in units of the rotation period P p of their primaries. The resulting histogram of P s /P p shows a peak near unity, corresponding to tidally evolved systems, in which the primary rotates synchronously with the satellite orbital period. The vertical dotted line correspond to the outer 1/2 resonance, where the satellite completes one revolution while the primary completes two rotations. The steady increase of satellite presence beyond that resonance is in line with the model presented in the text, i.e. satellite formation in a primordial collisional disk that has been pushed outwards by the resonant torque of the 1/2 resonance.

Supplementary Figure 2 | Phase portrait of the 2/4 outer spin-orbit resonance. The phase portrait of the 2/4 resonance is shown for an ellipsoidal Chariklo with elongation = 0.20 (Table 1), with X = e cos(φ 2/4 ) and Y = e cos(φ 2/4 ), where e is the particle eccentricity,

φ 2/4 = 2λ -λ A -
is the resonant angle, and the various other angles are defined in the Methods. All the trajectories share the same Jacobi constant, see Murray & Dermott, Solar system dynamics, Cambridge University Press (1999) for details. This constant has been chosen so that the particle that starts at the origin (X, Y ) = (0, 0) is at exact resonance, i.e. with semi-major axis a 2/4 = a 1/2 , see Main Text. The origin is then an unstable hyperbolic point that forces particles initially on a circular orbit to acquire high eccentricities of the order of e ∼ 0.2, see Methods. This kind of topology occurs for a narrow semi-major axis range of a 1/2 (1 -0.25 ) < ∼ a < ∼ a 1/2 (1 + 0.25 ) around the resonance.

Methods

We calculate the potential outside a body in two simple cases: a topographic feature located at the equator of a spherical object and a homogeneous triaxial ellipsoid. Calculations are restricted to the equatorial plane of the body, where a collisonal disk is expected to settle.

Topographic feature

We consider a spherical body of mass M , radius R sph and center C with an equatorial topographic feature of mass µ relative to the mass of the body, that rotates with period T rot and angular velocity Ω = 2π/T rot . We denote O the center of mass of the body plus the topographic feature, r the position vector of the particle, measured from the center of the body, r = ||r||, θ = L -L A , where L is the true longitude of the particle, and L A = Ωt is the orientation angle of the topographic feature, counted from an arbitrary origin. Finally, R is the vector that connects the center of mass O to the topographic feature and ∆ = r-R The potential acting on the particle at position r in a frame fixed at C is:

U (r) = - GM r -µ GM ∆ + Ω 2 (CO • r), (8) 
where the last term is the indirect part stemming from the motion of C around O. Using CO = µR and the definition of the rotational parameter q (Main Text Eq. ( 1)), we obtain

U (r) = - GM r -GM µ 1 ∆ -q R • r R 3 sph = - GM r - GM 2R sph µ +∞ m=-∞ b (m) 1/2 (r/R sph ) cos(mθ) -2q r R sph cos(θ) , (9) 
where the b (m) 1/2 's are the classical Laplace coefficients.

Homogeneous triaxial ellipsoid

We now consider a homogeneous triaxial ellipsoid of mass M and semi-axes A>B>C. The potential U (r) can again be expanded in a series in cos(mθ), where θ is now the difference between the true longitude of the particle and the orientation of the largest axis of the ellipsoid. Only even values of m must appear to ensure the invariance of the potential under a rotation of π radians. Thus, posing m = 2p,

U (r) = +∞ p=-∞ U 2p (r) • cos (2pθ) . ( 10 
)
In the 3-D case, we use the Eq. (64) of ref. 33, where the m index used by this author is replaced by p in our version. Correcting for the typo of ref. 33, in which the index m should vary from 0 to l (and not from 1 to l):

U (r) = - GM r    +∞ p=0 cos (2pθ)   +∞ l=p R r 2l C 2l,2p P 2l,2p (sin ϕ)      , ( 11 
)
where ϕ is the latitude. The coefficient P l,p is the associated Legendre polynomial, whose classical expression is

P l,p (u) = (-1) p (1 -u 2 ) p/2 2 l l! d l+p du l+p (u 2 -1) l . ( 12 
)
Note that the factor (-1) p is absent in Eq. ( 2) of ref. 33, but is transfered to the coefficient K lp used by this author (his Eq. ( 3)).

Here we consider particles moving in the equatorial plane of the body, i.e. ϕ = 0. Using the binomial expansion of (u 2 -1) l , we obtain:

P 2l,2p (0) = (-1) (l-p) (2l + 2p)! 2 2l (l + p)!(l -p)! (13) 
Moreover, from the last equation of ref. 34, we have:

C 2l,2p = 3 R 2l l! (2l -2p)! 2 2p (2l + 3) (2l + 1)! 2 -δ (0,p) × int( l-p 2 ) i=0 (A 2 -B 2 ) p+2i C 2 -1 2 (A 2 + B 2 ) l-p-2i 16 i (l -p -2i)! (p + i)!i! , (14) 
where δ (0,p) is the Kronecker delta function. Because we want both negative and positive values of p in Eq. ( 10), it is convenient to modify Eq. ( 11) so that p varies from -∞ and +∞. This can be accommodated by replacing the factor (2 -δ (0,p) ) by 1 in Eqs. 14, and replacing p by |p| when calculating P 2l,2p and C 2l,2p . Thus,

U 2p (r) = - GM r +∞ l=|p| R r 2l Q 2l,2|p| , (15) 
where Q 2l,2|p| = C 2l,2|p| P 2l,2|p| (0). Moreover, the reference radius R is defined by

3 R 2 = 1 A 2 + 1 B 2 + 1 C 2 . (16) 
Finally, a closed form of U (r) outside the body that depends on A, B and C can be derived, with

Q 2l,2|p| = 3 2 l+2|p| (2l + 3) (2l + 2|p|)!(2l -2|p|)!l! (l + |p|)!(l -|p|)!(2l + 1)! × int( l-|p| 2 ) i=0 1 16 i |p|+2i (|p| + i)!i! f l-|p|-2i (l -|p| -2i)! . ( 17 
)
The dimensionless parameters and f measure the elongation and oblateness of the body, respectively:

= A 2 -B 2 2R 2 and f = A 2 + B 2 -2C 2 4R 2 . ( 18 
)
Note that in the limiting case where tends to zero, ∼ (A -B)/A. In the limiting case where f tends to zero and the body is axisymmetric ( = 0), f ∼ (A -C)/A, the usual definition of oblateness.

The term Q 2l,2|p| is of order l in ( f ). For evaluating the effect of Lindblad resonances, it is enough to consider the term of lowest order in R/r in Eq. ( 15), corresponding to l = |p|. Defining the sequence S |p| = Q 2|p|,2|p| / |p| and from m = 2p, we obtain

U (r) = - GM r +∞ m=-∞ R r |m| S |m/2| |m/2| cos (mθ) (m even), (19) 
where S |p| is recursively given by

S |p|+1 = 2 (|p| + 1/4)(|p| + 3/4) (|p| + 1)(|p| + 5/2) × S |p| with S 0 = 1. ( 20 
)
The potential ( 19) has been implemented in numerical schemes to integrate the motion of particles around an elongated body (adding the Stokes-like friction of Main Text Eq. ( 5)). We have truncated the expansion of the potential above |m| > 10, which is justified by the fact that the resonance strength rapidly decreases as m increases (Fig. 2). In the numerical integrations, the initial velocities assigned to the particles is simply the local circular keplerian velocity around a body of mass M . The Stokes-like friction rapidly damps any radial motions caused by this choice, over a transient time scale 1/ηΩ. Taking η = 0.01 (see below), this corresponds to about 15 revolutions around the body, a short time compared to the integrations performed here. Moreover, Eq. ( 15) yields the axisymmetric part of the potential by making p = 0,

U 0 (r) = - GM r +∞ l=0 Q 2l,0 R r 2l , (21) 
which in turns provides the particle mean motion and horizontal epicyclic frequency:

n 2 (r) = 1 r dU 0 (r) dr and κ 2 (r) = 1 r 3 d(r 4 n 2 ) dr . ( 22 
)
In our numerical integrations, we have kept the lowest order term in R/r, corresponding to l = 1, i.e. U 0 (r) = -(GM/r) [1 + (f /5)(R/r) 2 ]. Identification with classical formulae shows that this corresponds to a body with dynamical oblateness J 2 = (2/5)f . This approximation provides:

n 2 (r) ∼ GM r 3 1 + 3f 5 R r 2 and κ 2 (r) ∼ GM r 3 1 - 3f 5 R r 2 (23) 

Expansion of the disturbing function

The potential in Eq. ( 9) can be expressed as U (r) = -GM/r -R, where R is the classical disturbing function:

R(r) = GM 2R sph µ +∞ m=-∞ b (m) 1/2 (r/R sph ) cos(mθ) -2q r R sph cos(θ) ( 24 
)
It can be expressed in terms of the orbital elements of the particle, a, e, λ and (semimajor axis, eccentricity, mean longitude and longitude of periapse, respectively), using e.g. the formalism presented in Chapter 6 and Appendix B of ref. 37 to describe perturbations by a satellite. This transformation uses operators f n that contain multiplications by powers of the ratio β = a/R sph and the differential operator D = d/dβ. The only difference with the case of satellite perturbations is that the ratio a/R sph replaces the ratio a/a s , where a s is the satellite semi-major axis.

In the case of an ellipsoid, R is derived from Eq. ( 19),

R(r) = GM r +∞ m=-∞(m =0) R r |m| S |m/2| |m/2| cos (mθ) ( 25 
)
The same formalism as in ref. 37 can be applied, i.e. using exactly the same operators f n . Identifications term by term in the summations above show that it is sufficient for that to replace R sph by R and µb

(m) 1/2 (r/R sph ) by 2(R/r) |m|+1 S |m/2| |m/2| .

Corotation resonance

The potential near the corotation radius a cor , as observed in a frame corotation with the body, is

V (r) = U (r)- Ω 2 r 2 2 ∼ - 3 2 Ω 2 a 2 cor ∆r a cor 2 - GM a cor f (θ) = - 3 2 Ω 2 a 2 cor ∆r a cor 2 - Ω 2 R 2 q 2/3 f (θ), ( 26 
)
where the azimuthal function f (θ) is given in Supplementary Table 1, and ∆r = r -a cor a cor . Examples of isopotential levels for the two cases examined here are displayed in Fig. 1. Note that the corotation points associated with the mass anomaly mimic the Lagrange points L 1 , ...L 5 , except that L 1 and L 2 have merged into a single saddle point C 1 where the potential remains finite. Also, the points C 2 and C 4 are close to but not at 60 degrees from C 1 . That angle actually depends on q (see Supplementary Table 1) and is close to 70 deg in the particular example displayed in Fig. 1.

Near a cor , the particles follow the trajectory (3/8)(∆r/a cor ) 2 + f (θ) ∼ constant. They are nothing else than the level curves of the potential in a frame corotating with the body (Fig. 1), except for a dilation by a factor two with respect to a cor (ref. 35). The full radial width of the trajectory is then W cor = 2 8∆f /3, where ∆f = f max -f min is the total variation of f (θ) over [0,2π[. For order of magnitude considerations, we note that ∆f ∼ µ for the case of the mass anomaly. In the case of the ellipsoid, and for sake of estimation, we can simplify the expression (19) further by taking the lowest orders p = 0 and |p| = 1, i.e. (noting that S 1 = 0.15)

V (r) ∼ - 3 2 Ω 2 a 2 cor ∆r a cor 2 - 3 10 R 2 Ω 2 cos (2θ) , (27) 
so that f (θ) ∼ (3/10)q 2/3 cos(2θ) and thus ∆f ∼ (3/5)q 2/3 , from which we derive

W cor,µ ∼ 4Rq -1/3 2 3 µ and W cor, ∼ 4R 2 5 . ( 28 
)
in each of the two cases examined here. For a typical Chariklo topographic feature (µ ∼ 10 -5 ), we obtain a narrow corotation region with W cor,µ ∼ 2 km only, while for ∼ 0.20, W cor, ∼ 130 km, meaning that the corotation region fills in all the space between a cor and Chariklo's surface (Fig. 1).

If ring arcs are present near C 2 and C 4 , they should be destroyed by viscous spreading time scales t spread ∼ W 2 cor /ν, where ν is the kinematic viscosity. This quantity can be parametrized as ν = h 2 n, where h typically represents, for a dense disk, the size of the largest particles, or equivalently, the vertical thickness of the ring [START_REF] Schmidt | Dynamics of Saturn's dense rings[END_REF] . The local velocity field in Chariklo or Haumea's rings are comparable to those of Saturn 1 . Consequently, the collisional physics in those systems is expected to be similar 6 , i.e. h ∼ 10 meters (ref. 36). From the expressions of W cor derived above, we obtain t spread,µ ∼ 2µ(R/h) 2 T rot for a mass anomaly µ, and t spread, ∼ (R/h) 2 T rot for an ellipsoid. With µ ∼ 10 -5 , we obtain very short escape times (a few years) of the arc material from the corotation region, if caused by a mass anomaly. The spreading time is longer, some 10 4 years, but still geologically short if the corotation is controled by an ellipsoid with elongation ∼ 0.20.

The corotation points C 2 and C 4 are linearly unstable if the potential V (r) meets the condition

4Ω 2 + V xx + V yy 2 ≤ V xx V yy -V 2 xy , (29) 
where the indices x and y are short-hand notations for partial derivatives [START_REF] Murray | Solar system dynamics[END_REF] .

For the classical L 4 and L 5 points (corresponding to q = 1), this condition leads to the Gascheau-Routh criterium µ > 0.0385.... For the cases examined here, q is smaller than but of order unity, so that the critical value of µ remains close to 0.04. This value is safely avoided for Chariklo, as it would correspond to an unrealistic feature with z = 80 km.

In the case of the ellipsoid, it is found from Eqs. ( 27) and ( 29) that C 2 and C 4 are unstable for:

> crit ∼ 0.06 q 2/3 . (30) 
Using q = 0.226 for Chariklo implies crit ∼ 0.16, which is a bit smaller than to Chariklo's adopted elongation (Table 1), making the points C 2 and C 4 unstable, see Main Text. Haumea's elongation = 0.61 is well beyond the critical value, making C 2 and C 4 highly unstable.

Lindblad resonances

A particle revolving around the central body is submitted to a potential of generic form

U (r) = +∞ -∞ U m (r) • cos (mθ) = +∞ -∞ U m (r) • cos [m(L -λ A )] . (31) 
The quantities r and L can be expressed in terms of the keplerian elements of the particle, a, e, λ and . In doing so, terms with frequency jκ -m(n -Ω) appear in the expansion of U (r), where κ is the particle horizontal epicyclic frequency and j is a non negative integer. Each term for which jκ ∼ m(n -Ω) (j integer > 0) (32) describes a resonance between the mean motion of the particle and the spin rate of the body.

For bodies close to spherical, we have κ ∼ n, and the condition above reads

n Ω ∼ m m -j , (33) 
referred to as an orbit-spin m/(m -j) resonance. Its associated resonant critical angle is

φ m,j = [mλ A -(m -j)λ -j ]/j. ( 34 
)
In the case of an ellipsoid, the potential (19) contains only even terms of the form 2pθ, so that the only resonances encountered have the form

n Ω ∼ 2p 2p -j . ( 35 
)
The classical d'Alembert's rule implies that the term responsible for the m/(m -j) resonance is of order e j . Consequently, the strongest resonances are those with j = 1, and are classically referred to as Lindblad Eccentric Resonances, or simply Lindblad Resonances (LRs).

Note that we classically restrict the qualifier "Lindblad" to resonances of first order in e, i.e. of the form κ = m(n -Ω). Lindblad resonances of higher orders k > 1 are possible when they are forced by a satellite with eccentric orbit e s . Then, the resonant term in the forcing potential is proportional to ee k-1 s , i.e. still of first order in e, but of total order k in ee s . In those cases, Ω must be replaced by a pattern speed Ω pat that accounts for higer-order harmonics in the satellite motion [START_REF] Murray | Solar system dynamics[END_REF] . Those complications do not arise here because all the mass elements of the body execute circular motions around the center of mass.

The corresponding terms in the expansion of U (r) are easily obtained by using the first order expansions, r ≈ a -ae cos(λ -) and L ≈ λ + 2e sin(λ -). Introducing them into

+∞ -∞ U m (r) • cos [m(L -λ A )],
we obtain to first order in eccentricity

U (r) = +∞ k=-∞ U k (a) • cos [k(λ -λ A )] -e +∞ m=-∞ A m (a) • cos(φ m ), (36) 
where

φ m = mλ A -(m -1)λ - (37) 
is the resonant angle associated with the m/(m -1) LR and

A m (a) = [2m + a(d/da)] U m (a). ( 38 
)
In order to separate the effects of the physical parameters of the body (Ω, R, q) and the effects of the resonances per se, we define a new dimensionless coefficient A m = -(q/Ω 2 R 2 )A m , so that the potential can eventually be split into a corotation and a Lindblad resonance part,

U (r) = +∞ k=-∞ U k (a) • cos [k(λ -λ A )] + e Ω 2 R 2 q +∞ m=-∞ A m (a) • cos(φ m ). ( 39 
)
The coefficients A m are obtained from Eqs. 9, 19 and 38, and are listed in Supplementary Table 1. For large values of |m|, A m has the exponential behaviour A m ∝ K |m| (K being a constant depending on the problem considered). Using Chariklo's parameters (q = 0.226), we obtain asymptotically that A m ∝ 0.54 |m| µ ∝ 0.54 |m| z 3 in the mass anomaly case, and A m ∝ (1.93 q 2/3 ) |m/2| = (0.72 ) |m/2| in the ellipsoid case, using q = 0.226 (Chariklo case). Note that m is even in the latter case and that the 2/3 LR is the strongest of all (Fig. 2), with A -2 ∝ .

Choice of the friction coefficient η

Main Text Eq. ( 5) introduces a dimensionless friction coefficient η that quantifies the drag applied to the ring particles in our numerical integrations. Note that we do not consider any other forces acting on the particles, such as radiation pressure or Poynting-Roberston (PR) drag. This is justified by the fact that both Chariklo and Haumea's rings probably contain mainly cmto m-sized particles, which are stable against PR drag over hundreds of millions years [START_REF] Braga-Ribas | A ring system detected around the Centaur (10199) Chariklo[END_REF][START_REF] Sicardy | Planetary ring systems[END_REF] . This said, the choice of η is rather arbitrary as it does not enter in the expression of the torque Γ m (Eq. ( 3)). However, it does define the typical width ∆a m of the m/(m -1) LR, defined as the region over which most of the torque Γ m is deposited around the resonance radius a m . In order to be as realistic as possible about ∆a m , we choose the value of η to match the expected disk properties.

Following the formalism of ref. 20, the dimensionless width α = ∆a m /a m of the resonance is determined by the dominant physical process at work in the disk, which can be self-gravity, viscosity or pressure. In the self gravity case, α is given by

α G = 2π|m -1|GΣ 0 3m 2 Ω 2 a m , ( 40 
)
where G is the gravitational constant and Σ 0 is the disk surface density. Using Σ 0 = 500-1000 kg m -2 (ref. 6), a rotation period of 7 h (Table 1), we obtain a typical value α G ∼ 2×10 -3 .

If viscosity prevails, then α takes the form α ν = [7ν/(9|m|Ωa 2 m )] 1/3 = [7/(9|m-1|)] 1/3 (h/a m ) 2/3 . Taking h ∼ 10 m and a typical a m ∼ 250 km, we obtain α ν < ∼ 10 -3 , with similar values if the disk is pressure-dominated. This shows that Chariklo's rings are likely to be dominated by self-gravity near LRs. Finally, the coefficient α associated with a Stokes-like force as in Main Text Eq. ( 5) is α η = 2η/3|m|, so that η ∼ 0.01 provides a realistic estimation of the LR widths in Chariklo's rings, i.e. α η ∼ α G . The same exercise can be performed for Haumea's rings, yielding smaller values of η, since both the spin rate Ω and the radii a m are larger in this case. However, the orders of magnitude remain the same and the main conclusions of this work are not altered.

Higher order resonances

Besides the first order LRs considered in the Main Text (Eq. ( 2)), higher order n/Ω = m/(m -j) resonances appear, corresponding to j > 1 (as explained above, they are not Lindblad resonances). Being of order e j , they are weaker than the LRs. Nevertheless, they may have significant effects in the ellipsoidal case, owing to the large values of Chariklo and Haumea's elongation parameters .

In that case, combining d'Alembert's rule and Eq. ( 19), we see that a m/(m -j) resonance is of global order e j |m/2| (m even). For instance, while the outer 1/2 (first order) LR appears in the case of a mass anomaly, it only exists in its second order version 2/4 (m = -2, j = 2) in the case of the ellipsoid. Similarly, the outer 1/3 LR appears in its second order version with a mass anomaly, but only in its fourth order version 2/6 (m = -2, j = 4) when caused by an ellipsoid.

To our knowledge, no evaluation of the torque exerted at a m/(m-j) resonance with j > 1 has been published. There are two reasons for that. First, the hydrodynamical equations describing the disk must be expanded to j th order in the perturbations, a challenging task. Second, such resonances cause streamline self-crossings. It can be shown (Sicardy et al. 2018, in preparation) that near a m/(m -j) resonance, where m and j are relatively prime, a periodic resonant streamline has j braids with |m|(j -1) self-crossing points. This creates singularities in the hydrodynamical equations (shocks), even for vanishingly small perturbations, thus requiring new kinds of treatments. This said, we see that although the 2/4 resonance (ellipsoid case) is of second order in the particle eccentricity, it does not induce self-crossing streamlines since the ratio 2/4 can be reduced to 1/2, resulting in | -1|(1 -1) = 0 self-crossing points. Still, as mentioned above, no expression of the resonance torque exists because of the second-order nature of that resonance. A general behaviour can nevertheless be sketched. At second order in eccentricity, Eq. ( 39) is replaced by

U (r) = +∞ k=-∞ U k (a) • cos [k(λ -λ A )] + e 2 Ω 2 R 2 q +∞ m=-∞ B m (a) • cos(2φ m ), ( 41 
)
where now φ m = [mλ A -(m -2)λ -2 ]/2 (with m even). The expression of B m can be retrieved from ref. ) and Y = e cos(φ 2/4 ) (φ 2/4 = 2λ -λ A -), it can be shown that the origin (X, Y ) = (0, 0) is always a fixed point. It is stable, except for a narrow interval of initial semi-major axes a 1/2 (1 -0.25 ) < ∼ a < ∼ a 1/2 (1 + 0.25 ), the coefficient ∼0.25 stemming from the particular values of R and q used here. In that interval (of width ∼25 km for Chariklo and ∼375 km for Haumea, from Main Text Table 1), the origin (X, Y ) = (0, 0) is an unstable hyperbolic point, so that ring particles initially orbiting on those circular orbits periodically acquire orbital eccentricities of order e ∼ √ 0.25 , This shows that a Chariklo with elongation ∼ 0.20 forces large excentricities (e ∼ 0.2) at the second-order 2/4 resonance (see an example in Supplementary Fig. 2), while Haumea ∼ 0.61 forces even larger values (e ∼ 0.35) that lead to collisions with the body. The 2/4 resonant zone is thus a highly perturbed region where no ring is expected to survive.

Turning to the second order 1/3 (mass anomaly) and fourth order 2/6 (ellipsoid) resonances, we see that it is the unique prograde resonant orbit with only one self-crossing point (corresponding to m = -1 and j = 2, so that |m|(j -1) = 1). Our numerical integrations show no significant effect of the 2/6 resonance on the particle motion, even with an elongation as high as = 0.61 (Haumea's case). This stems from the fourth-order nature of that resonance. It is noteworthy that both Chariklo and Haumea's rings are close to the 1/3 resonance configuration [START_REF] Ortiz | The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation[END_REF][START_REF] Leiva | Size and Shape of Chariklo from Multi-epoch Stellar Occultations[END_REF] , possibly leading to yet-to-be explicited more subtle confining effects of a narrow ring at that location. This makes further investigations (in particular using collisional codes) highly desirable. 

Figure 1 |

 1 Figure 1 | Corotation and Lindblad resonances around Chariklo.In both panels (topographic feature on the left, elongated body on the right), the red (resp. blue) circles correspond to inner (resp. outer) m/(m -1) Lindblad resonance (LR) radii with m>1 (resp. m<0), see Eq. (2). The black lines show isopotential curves in a frame corotating with Chariklo, and the gray lines outline the limb of the body. The dots C 1 , ...C 4 mark the corotation fixed points. The points C 2 and C 4 are local potential maxima and are linearly stable if the mass anomaly or the elongation of the body are not too large, see Methods. Left -A topographic feature of height z = 5 km (gray half dome, not on scale) is sitting at the surface a body of radius R sph = 129 km, and corresponds to a mass anomaly µ ∼ 10 -5 . For better viewing, the isopotential black lines have been radially stretched by a factor of 50 with respect to the corotation radius. A few inner (m = 2, 3, 4, 5) and outer (m = -1, -2, -3, -4) LR radii are shown. Right -The same for a Chariklo shape solution with elongation = 0.20. The limb of the body and the isopotential lines are plotted on scale. Only LRs with m even are now allowed, the inner one corresponding to m = 6, and the two outer ones corresponding to m = -2, -4. The green curve is an orbit that starts at C 2 without applying any friction (conservative case). It is unstable because the elongation is larger than the critical value crit = 0.16 (see Methods), leading to a collision with the body after three months in the example shown here.

Figure 2 |

 2 Figure 2 | Torques strengths at Lindblad Resonances around Chariklo and migration time scales. a, The dimensionless coefficients A 2 m providing the torque value at m/(m -1) Lindblad resonances (Eq. (3)) vs. the resonant radii on each side of the corotation radius (dotted line). The values of A m are evaluated from Supplementary Table1, using a Chariklo equatorial topographic feature of height z = 5 km, corresponding to a mass anomaly µ = 10 -5 (blue squares), or a difference of semi-axes A -B = 18 km (Table1), corresponding to an elongation parameter = 0.20 (red squares). Note the steep decrease of the torques as the corotation radius is approached, due to the exponential decrease of A 2 m as |m| increases, see Methods. The light gray region at left encloses Chariklo's largest semi-axis A = 157 km, inside which particles collide with the body in the ellipsoidal case, while the dark gray region encloses Chariklo's radius R sph = 129 km in the spherical case (Table1). b, Solid lines: migration times (Eq. (4)) of an outer annulus of width 100 km that extends outside the corotation (see a), either due to the topographic features (blue) of heights z or ellipsoids with various A -B (red). Dotted lines: the same for an inner annulus of width 20 km in the ellipsoidal case, and 60 km in the spherical case, see a.

Figure 3 |

 3 Figure 3 | Migration of ring particles around Chariklo. The particles are submitted to Chariklo's gravitational field (topographic feature on the left, elongated body on the right), plus a radial Stokes-like friction with η = 0.01 (Eq. (5)). The radii of the corotation point C 2 (a cor ), the 2/3 and 1/2 outer Lindblad Resonances (LRs) between the particle mean motions and Chariklo's rotation period are marked at the bottom, together with the location of Chariklo's main ring 1 C1R. a, b, c, d, The effect of an equatorial topographic feature (black dot) with mass µ = 5 × 10 -3 relative to Chariklo. Initially, 701 particles are regularly placed between 0.7a cor and 2.2a cor . In all panels, each particle is plotted over twenty regular time steps spanning 40,000 years. a, After 40,000 years, the clearing of the corotation region is ongoing; b, After 2.5 × 10 5 years, some particles remain near C 2 , while others are pushed outside the 2/3 LR; c, After 2.5 × 10 6 years, all the particles inside the corotation radius and near C 2 have collided with Chariklo; d, After 6.3 × 10 6 years, all the remaining particles are now outside the 1/2 LR. e,
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Table 1 -

 1 Chariklo and Haumea's adopted parameters(a) 

	Parameters

  37. It involves the operator which reduces to B -2 = -2.55(R/a 1/2 ) 3 , where a 1/2 is the radius of exact 2/4 resonance. The phase portrait of this resonance is found in various works (e.g. ref.37). Posing X = e cos(φ 2/4

	f 45 =	1 8	(4m 2 -5m) + 2(2m -1)a	d da	+ a 2 d 2 da 2	(42)

that must be applied to each term of the expansion given in Eq. (
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). This provides

B m (a) = -1 4 S |m/2| |m/2| (4m 2 -5m) -2(2m -1)(|m| + 1) + (|m| + 1)(|m| + 2) R a |m|+1 ,

(43)
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Supplementary Table 1:

Azimuthal variation f (θ) of the corotation potential (Methods Eq. ( 26))

Mass anomaly

q -1/6   1

Coefficients A m (a) of the m/(m -1) Lindblad resonances (Main Text Eq. ( 3) and Methods Eq. ( 39))

Mass anomaly

The sequence S p is defined by Eq. ( 20). Supplementary Figure 1: Supplementary Figure 2: