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Dense and narrow rings have been discovered recently around the small Centaur
object Chariklo1 and the dwarf planet Haumea2, while being suspected around the
Centaur Chiron3, although this point is debated4. They are the first rings observed
in the Solar System elsewhere than around giant planets. Contrarily to the latters,
gravitational fields of small bodies may exhibit large non-axisymmetric terms that
create strong resonances between the spin of the object and the mean motion of
rings particles. Here we show that modest topographic features or elongations of
Chariklo and Haumea explain why their rings are relatively far away from the central
body, when scaled to those of the giant planets5. Resonances actually clear on decadal
time-scales an initial collisional disk that straddles the corotation resonance (where
the particles mean motion matches the spin rate of the body). Quite generically, the
disk material inside the corotation radius migrates onto the body, while the material
outside the corotation radius is pushed outside the 1/2 resonance, where the particles
complete one revolution while the body completes two rotations. Consequently, the
existence of rings around non-axisymmetric bodies requires that the 1/2 resonance
resides inside the Roche limit of the body, favoring faster rotators for being surrounded
by rings.

Chariklo and Haumea’s non-axisymmetric gravity fields raise new and rich dynamical issues
that are not encountered for rings around the giant planets. The strong coupling between the
body and the surrounding collisional disk put tight constraints on the ring final location. This
is the main topic of this paper, while the possible formation scenarios for those rings, that are
discussed elsewhere1, 2, 6–11, will not be addressed here.

To be more specific, Haumea is a triaxial ellipsoid with principal semi-axes A>B>C and
elongation ε ∼ 0.61 (see Table 1). Chariklo’s shape is less constrained due to scarce observations.
Extreme solutions12 are a spherical Chariklo of radius Rsph = 129 km with topographic features
of typical heights z ∼ 5 km, or an ellipsoid with elongation ε ∼ 0.20. The two bulges associated
with those elongations contain large masses (of order ε) compared to the body itself. Even a 5-
km topographic feature on Chariklo represents a mass anomaly µ ∼ (z/2Rsph)

3 ∼ 10−5 relative
to the body. This is much larger than the mass of Janus (a small satellite that confines the outer
edge of Saturn’s main rings) with µ ∼ 3 × 10−9, or putative Saturnian mass anomalies13, with
µ < 10−12, supporting the strong coupling mentioned earlier.

Fig. 1 outlines two possible configurations of Chariklo’s dynamical environment, one with a
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mass anomaly and one with an elongated body. In both cases, there are four fixed points
C1, ...C4 near the corotation radius acor ∼ (GM/Ω2)1/3 = R/q1/3, where the dimensionless
rotation parameter q is defined by

q =
Ω2R3

GM
, (1)

G being the gravitation constant, M the mass of the body, Ω its spin rate, and R denoting
either the radius Rsph of a sphere or the reference radius of the ellipsoid (Table 1).

In principle, the region around C2 or C4 may host ring arcs, but these points being potential
maxima, arcs are unstable against dissipative collisions over time scales of some 104 years at
most. Moreover, for Chariklo’s elongations larger than the critical value εcrit ∼ 0.16 (which is
the case here with the adopted value ε = 0.20), the points C2 and C4 are linearly unstable
(see Methods). Consequently, particles moving away from C2 or C4 rapidly collide with the
body (Fig. 1), This problem is exacerbated in the case Haumea, because of its larger elongation,
ε ∼ 0.61.

Particles with mean motion n and epicyclic frequency κ experience Lindblad Resonances (LRs)
for

κ = m(n− Ω), m integer. (2)

The resonances occur either inside (m>1) or outside (m<0) the corotation radius (Fig. 1), with
only even values of m allowed in the ellipsoid case, due to symmetry reasons (Methods). Only
disks revolving in a prograde direction are considered here. Retrograde resonances are weaker14

and will not be studied here. Since κ ∼ n, the relation above reads n/Ω ∼ m/(m− 1), referred
to as an m/(m−1) LR. In a disk dense enough to support collective effects (self-gravity, pressure
or viscosity), an m/(m− 1) LR forces a m-armed spiral wave that receives a torque

Γm = sign(Ω− n)

(
4π2Σ0

3n

)
(GM)2

ΩR2
A2
m. (3)

This formula encapsulates in separate factors the sign of the torque, the physical parameters
of the disk (n and its surface density Σ0) and of the perturber (M , R, Ω), and an intrinsic
dimensionless strength factor Am, see Methods. Importantly, this is a generic formula that
applies in contexts as different as galactic dynamics15, 16, circum-stellar accretion disks17, proto-
planetary disks18 or planetary rings and interiors19–21. Moreover, both the sign of the torque and
its value are largely independent of the physics of the disk20, providing a robust estimation of
Γm even ignoring the detailed processes at work.

Eq. (3) shows that the LRs cause the migration of the disk material away from the coro-
tation. An annulus of width W and average radius a has most of its angular momentum
H ∼ 2πaWΣ0

√
GMa = 2πΣ0W (ΩR3/q) transfered to the body over a migration time scale

tmig ∼
H

|∑Γm|
=

3q

4π2

(
W

R

)(
Trot∑

[(m− 1)/m]A2
m

)
, (4)

where Trot = 2π/Ω is the rotation period of the body. The summation includes the relevant
torques Γm that apply inside the annulus (Fig. 2). Note that the current angular momentum
of Chariklo’s rings is less than 10−5 of that of the body1, 6. Even considering an initial disk one
hundred times more massive, the reaction torque of the disk on the body has a negligible effect
on Chariklo’s rotation rate, with similar conclusions for Haumea.
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We estimate tmig for two annuli around Chariklo, one initially placed inside the corotation radius,
and one placed outside. Fig. 2 shows that (i) a difference A−B as small as a kilometer (ε <∼ 0.01)
causes a rapid, decadal scale outward migration of the outer annulus; (ii) the resonances on the
inner annulus are weaker, but tmig remains geologically short (<∼ Myr) for A− B >∼ 5 km; (iii)
even ∼ 5-km topographic features are sufficient to induce migration time scales of a few Myr.

Numerical simulations can test those mechanisms. Global collisional codes have been run22,
but with no torque appearing as the potentials considered were axisymmetric. Other local
simulations do consider elongated bodies23, but not rotating, hampering again any torque. Here
we performed numerical integrations using a simple Stokes-like friction acting on the particles,

γStokes = −ηΩvr, (5)

where vr is the particle radial velocity and η is a dimensionless friction coefficient. This friction
dissipates energy while conserving angular momentum, thus being a good proxy for collisions at
low computing cost. Fig. 3 shows results using η = 0.01 (see Methods for the choice of η). As
mentioned earlier, the specific form of γStokes and the value of η have little effects on the resonant
torque Γm, when compared to more realistic situations including collisions and self-gravity.

We have checked numerically the dependence tmig ∝ A−2m (Eq. (4)). This permits to save
computing time in the case of a mass anomaly by using µ = 0.005 (instead of ∼ 10−5),
hence speeding up migration time scales by a factor 5002 = 2.5 × 105, an effect accounted for
in Fig. 3a,b,c,d. In contrast, the integration shown in Fig. 3e,f,g,h uses a realistic Chariklo’s
elongation ε = 0.20, with no further corrections applied. Fig. 3 confirms our calculations, i.e.
(i) the rapid infall of particles onto Chariklo’s equator inside the corotation radius, exacerbated
by the fact that the large orbital eccentricities enhance collisions with the body, and due to the
unstable character of the C2 and C4 points for ε = 0.20 (Fig. 1); (ii) the strong torques up
to the 1/2 resonance, that pushes the disk material outwards. Our integrations actually show
that inward of the 1/2 resonance, and between discrete LRs, the orbital eccentricities remain
sufficiently excited to cause a slower but still significant migration away from the corotation
radius.

A LR opens a cavity in the disk if Γm exceeds the viscous torque19 Γν = 3πna2νΣ0, where
the kinematic viscosity ν = h2n is related to the ring vertical thickness h, see Methods. From
Eq. (3), we obtain ∣∣∣∣ΓmΓν

∣∣∣∣ ∼ 4π

9q4/3

(
m− 1

m

)5/3 (R
h

)2

A2
m. (6)

Using h ∼ 10 m (see Methods) and z ∼ 5 km we get |Γ−2/Γν | ∼ 3 × 10−2 for m = −2 (2/3
outer LR). Thus, a 5-km feature is too weak to open a cavity, but not by much owing to the
steep dependence of A2

m ∝ µ2 ∝ z6. In contrast, the torque exerted by an ellipsoid with ε = 0.20
is overwhelming (by six orders of magnitude) at the 2/3 LR compared to Γν . Since A−2 ∝ ε
(see Methods), ellipsoids with A−B as small as 0.1 km are actually able to carve a cavity inside
the 2/3 LR.

Chariklo and Haumea’s elongations considered here are large enough to strongly perturb a
ring near the 1/2 resonance, although no torque formula is available at that resonance in the
ellipsoid case, because it is of second order nature (it must actually be noted 2/4, and is not
a LR, see Methods). This said, the final radius of the cavity depends on processes that are
not considered here, since our friction law is an oversimplification of actual collisions. More
importantly, accretion into satellites takes over as the Roche limit is approached, leading to
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complex ring-satellites interaction like shepherding. Nevertheless, our results show that either
due to mass anomalies or body elongation, rings should not exist inward of the 1/2 resonance
at a1/2 = 22/3acor. This is consistent with what is observed for Chariklo and Haumea.

In fact, the ring existence requires that a space exists between a1/2 and the Roche limit aRoche,
to prevent the ring accretion into satellites. From aRoche ∼ (3/γ)1/3(M/ρ′)1/3, where ρ′ is the
density of the ring particles, and γ is a factor describing the particle shape24, the condition
a1/2 < aRoche reads

γρ′ <∼
3

4

Ω2

G
. (7)

Thus, a non-axisymmetric body must rotate fast enough and/or the particles be underdense
enough for a ring to exist. Although γ and ρ′ are poorly known, we can consider the pre-
ferred value γ = 1.6 that describes particles filling their lemon-shaped Roche lobes25, and
ρ′ ∼ 450 kg m−3, typical of the small moons orbiting near Saturn’s rings26, and a good proxy of
ring particle densities. Eq. (7) then requires rotation periods shorter than about 7 h, a condition
met by both Chariklo and Haumea.

Our model predicts that the inner part of the disk may be deposited on the equator of the
body, forming a ridge akin to that of the Saturnian satellite Iapetus. It has been proposed that
this ridge is due to the presence of a transient ring that rained down onto Iapetus’ equator due
to the torque from of a former subsatellite27–29. This may happen on short time scales. For
instance Eq. (4) shows that a 10 km-radius satellite orbiting at 500 km pushes an initial disk
extending from the surface to 400 km in less than 1 Myr. In our case, the disk decay is caused
by the body itself. The infall time scales being of many years (Fig. 2), impact angles on the
surface are very shallow, with velocities less than a km s−1, ensuring that the material piles up
as a ridge instead of forming craters. Future stellar occultations might detect such ridges on
Chariklo or Haumea.

In a broader and more speculative perspective, it is interesting to consider the orbital distri-
bution of satellites of asteroids and Trans-Neptunian Objects. Supplementary Fig. 1 displays
the histogram of the satellite orbital periods, expressed in units of the rotation periods of the
primaries. Apart from a conspicuous peak corresponding to synchronous, tidally evolved orbits,
this histogram indicates a clearing between the corotation radius and the outer 1/2 resonance,
followed by a steady increase beyond this resonance. This distribution might be the signature of
satellite formation proceeding from an initial collisional disk that has been pushed away by the
resonant mechanism described here.
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Table 1 - Chariklo and Haumea’s adopted parameters(a)

Parameters Chariklo Haumea

Rotation period, Trot (h) (refs. 30, 31) 7.004 3.915341

Mass M (kg) (refs. 12, 32) 6.3× 1018 4.006× 1021

Rotational parameter q(b) 0.226 0.268

Semi-axes A×B × C (km) (refs. 2, 12) 157× 139× 86 1161× 852× 513

Reference radius R(c) (km) 115 712

Elongation parameter(d) ε = (A2 −B2)/2R2 0.20 0.61

Oblateness parameter(d) f = (A2 +B2 − 2C2)/4R2 0.55 0.76

Height of topographic feature z(e) (km) 5 n.a.

Corotation radius acor
(f) (km) 189 1104

Outer 1/2 (or 2/4) resonance radius a1/2
(g) (km) 300 1752

Classical Roche limit aRoche
(h) (km) 280 2400

Ring radii (km) (refs. 1, 2) 390 and 405 2287

(a) No error bars are considered here, the adopted parameters being representative of typical
cases examined in this work.
(b) See Eq. (1).
(c) Defined as R =

√
3(1/A2 + 1/B2 + 1/C2)−1/2, see Methods Eq. (16).

(d) See Methods Eq. (18).
(e) Assuming a spherical body of radius Rsph = 129 km (ref. 12). This corresponds to a mass
anomaly µ ∼ (z/2Rsph)

3 ∼ 10−5.
(f) Using acor = Rq−1/3, from Eq. (1) and Kepler’s third law.
(g) Using a1/2 = 22/3acor, from Kepler’s third law.
(h) Using the classical expression aRoche ∼ (3/γ)1/3(M/ρ′), with γ = 0.85 and icy ring particles
with density ρ′ = 1000 kg m−3. More realistic values of γ and ρ′ are discussed in the text.
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Figure legends

Figure 1 | Corotation and Lindblad resonances around Chariklo. In both panels (topo-
graphic feature on the left, elongated body on the right), the red (resp. blue) circles correspond
to inner (resp. outer) m/(m − 1) Lindblad resonance (LR) radii with m>1 (resp. m<0), see
Eq. (2). The black lines show isopotential curves in a frame corotating with Chariklo, and the
gray lines outline the limb of the body. The dots C1, ...C4 mark the corotation fixed points. The
points C2 and C4 are local potential maxima and are linearly stable if the mass anomaly or the
elongation of the body are not too large, see Methods. Left - A topographic feature of height
z = 5 km (gray half dome, not on scale) is sitting at the surface a body of radius Rsph = 129 km,
and corresponds to a mass anomaly µ ∼ 10−5. For better viewing, the isopotential black lines
have been radially stretched by a factor of 50 with respect to the corotation radius. A few inner
(m = 2, 3, 4, 5) and outer (m = −1,−2,−3,−4) LR radii are shown. Right - The same for a
Chariklo shape solution with elongation ε = 0.20. The limb of the body and the isopotential
lines are plotted on scale. Only LRs with m even are now allowed, the inner one corresponding
to m = 6, and the two outer ones corresponding to m = −2,−4. The green curve is an orbit
that starts at C2 without applying any friction (conservative case). It is unstable because the
elongation ε is larger than the critical value εcrit = 0.16 (see Methods), leading to a collision
with the body after three months in the example shown here.

Figure 2 | Torques strengths at Lindblad Resonances around Chariklo and migration
time scales. a, The dimensionless coefficients A2

m providing the torque value at m/(m − 1)
Lindblad resonances (Eq. (3)) vs. the resonant radii on each side of the corotation radius (dotted
line). The values of Am are evaluated from Supplementary Table 1, using a Chariklo equatorial
topographic feature of height z = 5 km, corresponding to a mass anomaly µ = 10−5 (blue
squares), or a difference of semi-axes A−B = 18 km (Table 1), corresponding to an elongation
parameter ε = 0.20 (red squares). Note the steep decrease of the torques as the corotation
radius is approached, due to the exponential decrease of A2

m as |m| increases, see Methods. The
light gray region at left encloses Chariklo’s largest semi-axis A = 157 km, inside which particles
collide with the body in the ellipsoidal case, while the dark gray region encloses Chariklo’s radius
Rsph = 129 km in the spherical case (Table 1). b, Solid lines: migration times (Eq. (4)) of an
outer annulus of width 100 km that extends outside the corotation (see a), either due to the
topographic features (blue) of heights z or ellipsoids with various A − B (red). Dotted lines:
the same for an inner annulus of width 20 km in the ellipsoidal case, and 60 km in the spherical
case, see a.

Figure 3 | Migration of ring particles around Chariklo. The particles are submitted to
Chariklo’s gravitational field (topographic feature on the left, elongated body on the right),
plus a radial Stokes-like friction with η = 0.01 (Eq. (5)). The radii of the corotation point C2

(acor), the 2/3 and 1/2 outer Lindblad Resonances (LRs) between the particle mean motions
and Chariklo’s rotation period are marked at the bottom, together with the location of Chariklo’s
main ring1 C1R. a, b, c, d, The effect of an equatorial topographic feature (black dot) with
mass µ = 5 × 10−3 relative to Chariklo. Initially, 701 particles are regularly placed between
0.7acor and 2.2acor. In all panels, each particle is plotted over twenty regular time steps spanning
40,000 years. a, After 40,000 years, the clearing of the corotation region is ongoing; b, After
2.5× 105 years, some particles remain near C2, while others are pushed outside the 2/3 LR; c,
After 2.5×106 years, all the particles inside the corotation radius and near C2 have collided with
Chariklo; d, After 6.3 × 106 years, all the remaining particles are now outside the 1/2 LR. e,
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f, g, h, Effect of an ellipsoid with elongation ε = 0.20, displayed with its longest axis face on.
The particles now start between 1.1acor and 2.2acor (particles inside 1.1acor collide with Chariklo
after a few days). e, After three months, most of the particles have been pushed outside the
2/3 LR; f, g and h, After one, five and twelve years, respectively, all the particles have either
collapsed onto Chariklo, or continue their outward migration at decreasing pace outside of the
2/4 resonance. Note that time scales of same order (but shorter) would be obtained for particles
orbiting around Haumea, which has a larger elongation ε = 0.61.

Supplementary Figure 1 | Distribution of orbital periods of satellites around asteroids
and Trans-Neptunians Objects. The orbital period Ps of 179 satellites known around binary or
multiple asteroids and Trans-Neptunians Objects (taken from http://www.johnstonsarchive.net/
astro/astmoontable.html as of April 2018) are plotted in units of the rotation period Pp of their
primaries. The resulting histogram of Ps/Pp shows a peak near unity, corresponding to tidally
evolved systems, in which the primary rotates synchronously with the satellite orbital period. The
vertical dotted line correspond to the outer 1/2 resonance, where the satellite completes one
revolution while the primary completes two rotations. The steady increase of satellite presence
beyond that resonance is in line with the model presented in the text, i.e. satellite formation in
a primordial collisional disk that has been pushed outwards by the resonant torque of the 1/2
resonance.

Supplementary Figure 2 | Phase portrait of the 2/4 outer spin-orbit resonance. The
phase portrait of the 2/4 resonance is shown for an ellipsoidal Chariklo with elongation ε = 0.20
(Table 1), with X = e cos(φ2/4) and Y = e cos(φ2/4), where e is the particle eccentricity,
φ2/4 = 2λ − λA − $ is the resonant angle, and the various other angles are defined in the
Methods. All the trajectories share the same Jacobi constant, see Murray & Dermott, Solar
system dynamics, Cambridge University Press (1999) for details. This constant has been chosen
so that the particle that starts at the origin (X, Y ) = (0, 0) is at exact resonance, i.e. with
semi-major axis a2/4 = a1/2, see Main Text. The origin is then an unstable hyperbolic point
that forces particles initially on a circular orbit to acquire high eccentricities of the order of
e ∼ 0.2, see Methods. This kind of topology occurs for a narrow semi-major axis range of
a1/2(1− 0.25ε) <∼ a <∼ a1/2(1 + 0.25ε) around the resonance.
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Methods

We calculate the potential outside a body in two simple cases: a topographic feature located at
the equator of a spherical object and a homogeneous triaxial ellipsoid. Calculations are restricted
to the equatorial plane of the body, where a collisonal disk is expected to settle.

Topographic feature

We consider a spherical body of mass M , radius Rsph and center C with an equatorial topo-
graphic feature of mass µ relative to the mass of the body, that rotates with period Trot and
angular velocity Ω = 2π/Trot. We denote O the center of mass of the body plus the topographic
feature, r the position vector of the particle, measured from the center of the body, r = ||r||,
θ = L − LA, where L is the true longitude of the particle, and LA = Ωt is the orientation
angle of the topographic feature, counted from an arbitrary origin. Finally, R is the vector that
connects the center of mass O to the topographic feature and ∆ = r-R The potential acting
on the particle at position r in a frame fixed at C is:

U(r) = −GM
r
− µGM

∆
+ Ω2(CO · r), (8)

where the last term is the indirect part stemming from the motion of C around O. Using
CO = µR and the definition of the rotational parameter q (Main Text Eq. (1)), we obtain

U(r) = −GM
r
−GMµ

[
1

∆
− qR · r

R3
sph

]
=

−GM
r
− GM

2Rsph
µ

{[
+∞∑

m=−∞
b
(m)
1/2 (r/Rsph) cos(mθ)

]
− 2q

(
r

Rsph

)
cos(θ)

}
,

(9)

where the b
(m)
1/2 ’s are the classical Laplace coefficients.

Homogeneous triaxial ellipsoid

We now consider a homogeneous triaxial ellipsoid of mass M and semi-axes A>B>C. The
potential U(r) can again be expanded in a series in cos(mθ), where θ is now the difference
between the true longitude of the particle and the orientation of the largest axis of the ellipsoid.
Only even values of m must appear to ensure the invariance of the potential under a rotation of
π radians. Thus, posing m = 2p,

U(r) =
+∞∑
p=−∞

U2p(r) · cos (2pθ) . (10)

In the 3-D case, we use the Eq. (64) of ref. 33, where the m index used by this author is replaced
by p in our version. Correcting for the typo of ref. 33, in which the index m should vary from 0
to l (and not from 1 to l):

U(r) = −GM
r


+∞∑
p=0

cos (2pθ)

+∞∑
l=p

(
R

r

)2l

C2l,2pP2l,2p (sinϕ)

 , (11)

where ϕ is the latitude. The coefficient Pl,p is the associated Legendre polynomial, whose
classical expression is

Pl,p(u) = (−1)p
(1− u2)p/2

2ll!

dl+p

dul+p

[
(u2 − 1)l

]
. (12)
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Note that the factor (−1)p is absent in Eq. (2) of ref. 33, but is transfered to the coefficient Klp

used by this author (his Eq. (3)).

Here we consider particles moving in the equatorial plane of the body, i.e. ϕ = 0. Using the
binomial expansion of (u2 − 1)l, we obtain:

P2l,2p(0) = (−1)(l−p)
(2l + 2p)!

22l(l + p)!(l − p)!
(13)

Moreover, from the last equation of ref. 34, we have:

C2l,2p =
3

R2l

l! (2l − 2p)!

22p (2l + 3) (2l + 1)!

(
2− δ(0,p)

)
×

int( l−p
2 )∑

i=0

(A2 −B2)
p+2i

[
C2 − 1

2
(A2 +B2)

]l−p−2i
16i (l − p− 2i)! (p+ i)!i!

,

(14)
where δ(0,p) is the Kronecker delta function. Because we want both negative and positive values
of p in Eq. (10), it is convenient to modify Eq. (11) so that p varies from −∞ and +∞. This
can be accommodated by replacing the factor (2− δ(0,p)) by 1 in Eqs. 14, and replacing p by |p|
when calculating P2l,2p and C2l,2p. Thus,

U2p(r) = −GM
r

+∞∑
l=|p|

(
R

r

)2l

Q2l,2|p|, (15)

where Q2l,2|p| = C2l,2|p|P2l,2|p|(0). Moreover, the reference radius R is defined by

3

R2
=

1

A2
+

1

B2
+

1

C2
. (16)

Finally, a closed form of U(r) outside the body that depends on A, B and C can be derived,
with

Q2l,2|p| =
3

2l+2|p|(2l + 3)

(2l + 2|p|)!(2l − 2|p|)!l!
(l + |p|)!(l − |p|)!(2l + 1)!

×
int( l−|p|

2 )∑
i=0

1

16i
ε|p|+2i

(|p|+ i)!i!

f l−|p|−2i

(l − |p| − 2i)!
.

(17)
The dimensionless parameters ε and f measure the elongation and oblateness of the body,
respectively:

ε =
A2 −B2

2R2
and f =

A2 +B2 − 2C2

4R2
. (18)

Note that in the limiting case where ε tends to zero, ε ∼ (A−B)/A. In the limiting case where
f tends to zero and the body is axisymmetric (ε = 0), f ∼ (A− C)/A, the usual definition of
oblateness.

The term Q2l,2|p| is of order l in (εf). For evaluating the effect of Lindblad resonances, it
is enough to consider the term of lowest order in R/r in Eq. (15), corresponding to l = |p|.
Defining the sequence S|p| = Q2|p|,2|p|/ε

|p| and from m = 2p, we obtain

U(r) = −GM
r

+∞∑
m=−∞

(
R

r

)|m|
S|m/2|ε

|m/2| cos (mθ) (m even), (19)

where S|p| is recursively given by

S|p|+1 = 2
(|p|+ 1/4)(|p|+ 3/4)

(|p|+ 1)(|p|+ 5/2)
× S|p| with S0 = 1. (20)
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The potential (19) has been implemented in numerical schemes to integrate the motion of
particles around an elongated body (adding the Stokes-like friction of Main Text Eq. (5)). We
have truncated the expansion of the potential above |m| > 10, which is justified by the fact that
the resonance strength rapidly decreases as m increases (Fig. 2). In the numerical integrations,
the initial velocities assigned to the particles is simply the local circular keplerian velocity around
a body of mass M . The Stokes-like friction rapidly damps any radial motions caused by this
choice, over a transient time scale 1/ηΩ. Taking η = 0.01 (see below), this corresponds to about
15 revolutions around the body, a short time compared to the integrations performed here.

Moreover, Eq. (15) yields the axisymmetric part of the potential by making p = 0,

U0(r) = −GM
r

+∞∑
l=0

Q2l,0

(
R

r

)2l

, (21)

which in turns provides the particle mean motion and horizontal epicyclic frequency:

n2(r) =
1

r

dU0(r)

dr
and κ2(r) =

1

r3
d(r4n2)

dr
. (22)

In our numerical integrations, we have kept the lowest order term in R/r, corresponding to
l = 1, i.e. U0(r) = −(GM/r) [1 + (f/5)(R/r)2]. Identification with classical formulae shows
that this corresponds to a body with dynamical oblateness J2 = (2/5)f . This approximation
provides:

n2(r) ∼ GM

r3

[
1 +

3f

5

(
R

r

)2
]

and κ2(r) ∼ GM

r3

[
1− 3f

5

(
R

r

)2
]

(23)

Expansion of the disturbing function

The potential in Eq. (9) can be expressed as U(r) = −GM/r − R, where R is the classical
disturbing function:

R(r) =
GM

2Rsph
µ

{[
+∞∑

m=−∞
b
(m)
1/2 (r/Rsph) cos(mθ)

]
− 2q

(
r

Rsph

)
cos(θ)

}
(24)

It can be expressed in terms of the orbital elements of the particle, a, e, λ and $ (semi-
major axis, eccentricity, mean longitude and longitude of periapse, respectively), using e.g. the
formalism presented in Chapter 6 and Appendix B of ref. 37 to describe perturbations by a
satellite. This transformation uses operators fn that contain multiplications by powers of the
ratio β = a/Rsph and the differential operator D = d/dβ. The only difference with the case of
satellite perturbations is that the ratio a/Rsph replaces the ratio a/as, where as is the satellite
semi-major axis.

In the case of an ellipsoid, R is derived from Eq. (19),

R(r) =
GM

r

+∞∑
m=−∞(m6=0)

(
R

r

)|m|
S|m/2|ε

|m/2| cos (mθ) (25)

The same formalism as in ref. 37 can be applied, i.e. using exactly the same operators fn.
Identifications term by term in the summations above show that it is sufficient for that to
replace Rsph by R and µb

(m)
1/2 (r/Rsph) by 2(R/r)|m|+1S|m/2|ε

|m/2|.
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Corotation resonance

The potential near the corotation radius acor, as observed in a frame corotation with the body,
is

V (r) = U(r)−Ω2r2

2
∼ −3

2
Ω2a2cor

(
∆r

acor

)2

−GM
acor

f(θ) = −3

2
Ω2a2cor

(
∆r

acor

)2

−Ω2R2

q2/3
f(θ), (26)

where the azimuthal function f(θ) is given in Supplementary Table 1, and ∆r = r−acor � acor.
Examples of isopotential levels for the two cases examined here are displayed in Fig. 1. Note that
the corotation points associated with the mass anomaly mimic the Lagrange points L1, ...L5,
except that L1 and L2 have merged into a single saddle point C1 where the potential remains
finite. Also, the points C2 and C4 are close to but not at 60 degrees from C1. That angle
actually depends on q (see Supplementary Table 1) and is close to 70 deg in the particular
example displayed in Fig. 1.

Near acor, the particles follow the trajectory (3/8)(∆r/acor)
2 + f(θ) ∼ constant. They are

nothing else than the level curves of the potential in a frame corotating with the body (Fig. 1),
except for a dilation by a factor two with respect to acor (ref. 35). The full radial width of the

trajectory is then Wcor = 2
√

8∆f/3, where ∆f = fmax− fmin is the total variation of f(θ) over

[0,2π[.

For order of magnitude considerations, we note that ∆f ∼ µ for the case of the mass anomaly.
In the case of the ellipsoid, and for sake of estimation, we can simplify the expression (19) further
by taking the lowest orders p = 0 and |p| = 1, i.e. (noting that S1 = 0.15)

V (r) ∼ −3

2
Ω2a2cor

(
∆r

acor

)2

− 3

10
R2Ω2ε cos (2θ) , (27)

so that f(θ) ∼ (3/10)q2/3ε cos(2θ) and thus ∆f ∼ (3/5)q2/3ε, from which we derive

Wcor,µ ∼ 4Rq−1/3
√

2

3
µ and Wcor,ε ∼ 4R

√
2

5
ε. (28)

in each of the two cases examined here. For a typical Chariklo topographic feature (µ ∼ 10−5), we
obtain a narrow corotation region with Wcor,µ ∼ 2 km only, while for ε ∼ 0.20, Wcor,ε ∼ 130 km,
meaning that the corotation region fills in all the space between acor and Chariklo’s surface
(Fig. 1).

If ring arcs are present near C2 and C4, they should be destroyed by viscous spreading time
scales tspread ∼ W 2

cor/ν, where ν is the kinematic viscosity. This quantity can be parametrized
as ν = h2n, where h typically represents, for a dense disk, the size of the largest particles, or
equivalently, the vertical thickness of the ring36. The local velocity field in Chariklo or Haumea’s
rings are comparable to those of Saturn1. Consequently, the collisional physics in those systems
is expected to be similar6, i.e. h ∼ 10 meters (ref. 36). From the expressions of Wcor derived
above, we obtain tspread,µ ∼ 2µ(R/h)2Trot for a mass anomaly µ, and tspread,ε ∼ ε(R/h)2Trot for
an ellipsoid. With µ ∼ 10−5, we obtain very short escape times (a few years) of the arc material
from the corotation region, if caused by a mass anomaly. The spreading time is longer, some
104 years, but still geologically short if the corotation is controled by an ellipsoid with elongation
ε ∼ 0.20.

The corotation points C2 and C4 are linearly unstable if the potential V (r) meets the condition(
4Ω2 + Vxx + Vyy

)2
≤ VxxVyy − V 2

xy, (29)
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where the indices x and y are short-hand notations for partial derivatives37.

For the classical L4 and L5 points (corresponding to q = 1), this condition leads to the
Gascheau-Routh criterium µ > 0.0385.... For the cases examined here, q is smaller than but of
order unity, so that the critical value of µ remains close to 0.04. This value is safely avoided for
Chariklo, as it would correspond to an unrealistic feature with z = 80 km.

In the case of the ellipsoid, it is found from Eqs. (27) and (29) that C2 and C4 are unstable
for:

ε > εcrit ∼
0.06

q2/3
. (30)

Using q = 0.226 for Chariklo implies εcrit ∼ 0.16, which is a bit smaller than to Chariklo’s
adopted elongation (Table 1), making the points C2 and C4 unstable, see Main Text. Haumea’s
elongation ε = 0.61 is well beyond the critical value, making C2 and C4 highly unstable.

Lindblad resonances

A particle revolving around the central body is submitted to a potential of generic form

U(r) =
+∞∑
−∞

Um(r) · cos (mθ) =
+∞∑
−∞

Um(r) · cos [m(L− λA)] . (31)

The quantities r and L can be expressed in terms of the keplerian elements of the particle, a,
e, λ and $. In doing so, terms with frequency jκ−m(n−Ω) appear in the expansion of U(r),
where κ is the particle horizontal epicyclic frequency and j is a non negative integer. Each term
for which

jκ ∼ m(n− Ω) (j integer > 0) (32)

describes a resonance between the mean motion of the particle and the spin rate of the body.
For bodies close to spherical, we have κ ∼ n, and the condition above reads

n

Ω
∼ m

m− j
, (33)

referred to as an orbit-spin m/(m− j) resonance. Its associated resonant critical angle is

φm,j = [mλA − (m− j)λ− j$]/j. (34)

In the case of an ellipsoid, the potential (19) contains only even terms of the form 2pθ, so that
the only resonances encountered have the form

n

Ω
∼ 2p

2p− j
. (35)

The classical d’Alembert’s rule implies that the term responsible for the m/(m − j) resonance
is of order ej. Consequently, the strongest resonances are those with j = 1, and are classically
referred to as Lindblad Eccentric Resonances, or simply Lindblad Resonances (LRs).

Note that we classically restrict the qualifier “Lindblad” to resonances of first order in e, i.e.
of the form κ = m(n− Ω). Lindblad resonances of higher orders k > 1 are possible when they
are forced by a satellite with eccentric orbit es. Then, the resonant term in the forcing potential
is proportional to eek−1s , i.e. still of first order in e, but of total order k in ees. In those cases, Ω
must be replaced by a pattern speed Ωpat that accounts for higer-order harmonics in the satellite
motion37. Those complications do not arise here because all the mass elements of the body
execute circular motions around the center of mass.
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The corresponding terms in the expansion of U(r) are easily obtained by using the first order
expansions, r ≈ a − ae cos(λ − $) and L ≈ λ + 2e sin(λ − $). Introducing them into∑+∞
−∞ Um(r) · cos [m(L− λA)], we obtain to first order in eccentricity

U(r) =
+∞∑

k=−∞
Uk(a) · cos [k(λ− λA)]− e

+∞∑
m=−∞

Am(a) · cos(φm), (36)

where
φm = mλA − (m− 1)λ−$ (37)

is the resonant angle associated with the m/(m− 1) LR and

Am(a) = [2m+ a(d/da)]Um(a). (38)

In order to separate the effects of the physical parameters of the body (Ω, R, q) and the effects
of the resonances per se, we define a new dimensionless coefficient Am = −(q/Ω2R2)Am, so
that the potential can eventually be split into a corotation and a Lindblad resonance part,

U(r) =
+∞∑

k=−∞
Uk(a) · cos [k(λ− λA)] + e

Ω2R2

q

+∞∑
m=−∞

Am(a) · cos(φm). (39)

The coefficients Am are obtained from Eqs. 9, 19 and 38, and are listed in Supplementary
Table 1. For large values of |m|, Am has the exponential behaviour Am ∝ K |m| (K being
a constant depending on the problem considered). Using Chariklo’s parameters (q = 0.226),
we obtain asymptotically that Am ∝ 0.54|m|µ ∝ 0.54|m|z3 in the mass anomaly case, and
Am ∝ (1.93εq2/3)|m/2| = (0.72ε)|m/2| in the ellipsoid case, using q = 0.226 (Chariklo case).
Note that m is even in the latter case and that the 2/3 LR is the strongest of all (Fig. 2), with
A−2 ∝ ε.

Choice of the friction coefficient η

Main Text Eq. (5) introduces a dimensionless friction coefficient η that quantifies the drag
applied to the ring particles in our numerical integrations. Note that we do not consider any
other forces acting on the particles, such as radiation pressure or Poynting-Roberston (PR) drag.
This is justified by the fact that both Chariklo and Haumea’s rings probably contain mainly cm-
to m-sized particles, which are stable against PR drag over hundreds of millions years1, 6. This
said, the choice of η is rather arbitrary as it does not enter in the expression of the torque Γm
(Eq. (3)). However, it does define the typical width ∆am of the m/(m− 1) LR, defined as the
region over which most of the torque Γm is deposited around the resonance radius am. In order
to be as realistic as possible about ∆am, we choose the value of η to match the expected disk
properties.

Following the formalism of ref. 20, the dimensionless width α = ∆am/am of the resonance
is determined by the dominant physical process at work in the disk, which can be self-gravity,
viscosity or pressure. In the self gravity case, α is given by

αG =

√
2π|m− 1|GΣ0

3m2Ω2am
, (40)

where G is the gravitational constant and Σ0 is the disk surface density. Using Σ0 = 500-
1000 kg m−2 (ref. 6), a rotation period of 7 h (Table 1), we obtain a typical value αG ∼ 2×10−3.

If viscosity prevails, then α takes the form αν = [7ν/(9|m|Ωa2m)]1/3 = [7/(9|m−1|)]1/3(h/am)2/3.
Taking h ∼ 10 m and a typical am ∼ 250 km, we obtain αν <∼ 10−3, with similar values if the disk
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is pressure-dominated. This shows that Chariklo’s rings are likely to be dominated by self-gravity
near LRs. Finally, the coefficient α associated with a Stokes-like force as in Main Text Eq. (5)
is αη = 2η/3|m|, so that η ∼ 0.01 provides a realistic estimation of the LR widths in Chariklo’s
rings, i.e. αη ∼ αG. The same exercise can be performed for Haumea’s rings, yielding smaller
values of η, since both the spin rate Ω and the radii am are larger in this case. However, the
orders of magnitude remain the same and the main conclusions of this work are not altered.

Higher order resonances

Besides the first order LRs considered in the Main Text (Eq. (2)), higher order n/Ω =
m/(m− j) resonances appear, corresponding to j > 1 (as explained above, they are not Lind-
blad resonances). Being of order ej, they are weaker than the LRs. Nevertheless, they may have
significant effects in the ellipsoidal case, owing to the large values of Chariklo and Haumea’s
elongation parameters ε.

In that case, combining d’Alembert’s rule and Eq. (19), we see that a m/(m − j) resonance
is of global order ejε|m/2| (m even). For instance, while the outer 1/2 (first order) LR appears
in the case of a mass anomaly, it only exists in its second order version 2/4 (m = −2, j = 2)
in the case of the ellipsoid. Similarly, the outer 1/3 LR appears in its second order version with
a mass anomaly, but only in its fourth order version 2/6 (m = −2, j = 4) when caused by an
ellipsoid.

To our knowledge, no evaluation of the torque exerted at a m/(m−j) resonance with j > 1 has
been published. There are two reasons for that. First, the hydrodynamical equations describing
the disk must be expanded to jth order in the perturbations, a challenging task. Second, such
resonances cause streamline self-crossings. It can be shown (Sicardy et al. 2018, in preparation)
that near a m/(m − j) resonance, where m and j are relatively prime, a periodic resonant
streamline has j braids with |m|(j − 1) self-crossing points. This creates singularities in the
hydrodynamical equations (shocks), even for vanishingly small perturbations, thus requiring new
kinds of treatments.

This said, we see that although the 2/4 resonance (ellipsoid case) is of second order in the
particle eccentricity, it does not induce self-crossing streamlines since the ratio 2/4 can be
reduced to 1/2, resulting in | − 1|(1− 1) = 0 self-crossing points. Still, as mentioned above, no
expression of the resonance torque exists because of the second-order nature of that resonance.
A general behaviour can nevertheless be sketched. At second order in eccentricity, Eq. (39) is
replaced by

U(r) =
+∞∑

k=−∞
Uk(a) · cos [k(λ− λA)] + e2

Ω2R2

q

+∞∑
m=−∞

Bm(a) · cos(2φm), (41)

where now φm = [mλA − (m − 2)λ − 2$]/2 (with m even). The expression of Bm can be
retrieved from ref. 37. It involves the operator

f45 =
1

8

[
(4m2 − 5m) + 2(2m− 1)a

d

da
+ a2

d2

da2

]
(42)

that must be applied to each term of the expansion given in Eq. (19). This provides

Bm(a) = −1

4
S|m/2|ε

|m/2|
[
(4m2 − 5m)− 2(2m− 1)(|m|+ 1) + (|m|+ 1)(|m|+ 2)

] (R
a

)|m|+1

,

(43)

17



which reduces to B−2 = −2.55(R/a1/2)
3ε, where a1/2 is the radius of exact 2/4 resonance. The

phase portrait of this resonance is found in various works (e.g. ref. 37). Posing X = e cos(φ2/4)
and Y = e cos(φ2/4) (φ2/4 = 2λ − λA − $), it can be shown that the origin (X, Y ) = (0, 0)
is always a fixed point. It is stable, except for a narrow interval of initial semi-major axes
a1/2(1−0.25ε) <∼ a <∼ a1/2(1+0.25ε), the coefficient ∼0.25 stemming from the particular values
of R and q used here. In that interval (of width ∼25 km for Chariklo and ∼375 km for Haumea,
from Main Text Table 1), the origin (X, Y ) = (0, 0) is an unstable hyperbolic point, so that
ring particles initially orbiting on those circular orbits periodically acquire orbital eccentricities of
order e ∼

√
0.25ε, This shows that a Chariklo with elongation ε ∼ 0.20 forces large excentricities

(e ∼ 0.2) at the second-order 2/4 resonance (see an example in Supplementary Fig. 2), while
Haumea ε ∼ 0.61 forces even larger values (e ∼ 0.35) that lead to collisions with the body. The
2/4 resonant zone is thus a highly perturbed region where no ring is expected to survive.

Turning to the second order 1/3 (mass anomaly) and fourth order 2/6 (ellipsoid) resonances, we
see that it is the unique prograde resonant orbit with only one self-crossing point (corresponding
to m = −1 and j = 2, so that |m|(j − 1) = 1). Our numerical integrations show no significant
effect of the 2/6 resonance on the particle motion, even with an elongation as high as ε = 0.61
(Haumea’s case). This stems from the fourth-order nature of that resonance. It is noteworthy
that both Chariklo and Haumea’s rings are close to the 1/3 resonance configuration2, 12, possibly
leading to yet-to-be explicited more subtle confining effects of a narrow ring at that location.
This makes further investigations (in particular using collisional codes) highly desirable.
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Figure 3
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Supplementary Table 1:

Azimuthal variation f(θ) of the corotation potential (Methods Eq. (26))

Mass anomaly q−1/6

 1√
q1/3 + q−1/3 − 2 cos θ

− q1/2 cos θ

 · µ
Triaxial ellipsoid(a) 2

+∞∑
p=1

q2p/3Spε
p cos(2pθ)

Coefficients Am(a) of the m/(m− 1) Lindblad resonances (Main Text Eq. (3) and Methods Eq. (39))

Mass anomaly(b)
{[
m+

a

2

d

da

]
b
(m)
1/2 (a/Rsph) + q

(
a

2Rsph

)
δ(m,−1)

}
· µ

Triaxial ellipsoid(e) (with m even) [2m− (|m|+ 1)]S|m/2|

(
R

a

)|m|+1

· ε|m/2|

(a) The sequence Sp is defined by Eq. (20).
(b) Assuming a spherical body of radius Rsph. The terms b

(m)
1/2 are the Laplace coefficients and

δ(m,−1) is the Kronecker delta function.

Supplementary Figure 1:
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Supplementary Figure 2:
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