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We consider the prescribed scalar curvature equation on an open set of ޒ n , -u = V u (n+2)/(n-2) + u n/(n-2) with V ∈ C 1,α (0 < α ≤ 1), and we prove the inequality sup K u × inf u ≤ c where K is a compact set of .

In dimension 4, we have an idea on the supremum of the solution of the prescribed scalar curvature if we control the infimum. For this case we suppose the scalar curvature C 1,α (0 < α ≤ 1).

Introduction and main result

In our work, we denote by = ∇ i ∇ i the Laplace-Beltrami operator in dimension n ≥ 2.

Without loss of generality, we suppose = B = B 2 (0) the ball of radius 2 centered at 0 of ޒ n .

Here, we study some a priori estimates of type sup × inf for a perturbed prescribed scalar curvature equation in all dimensions n ≥ 4.

We have a counterexample to the sharp sup × inf inequality for the prescribed scalar curvature [Chen and Lin 1997, Proposition 4.3]. In our work the perturbation by a subcritical term is a sufficient condition to obtain such an inequality.

The sup × inf inequality is characteristic of those equations as the usual Harnack inequalities are for harmonic functions.

Note that the prescribed scalar curvature equation was studied a lot. We can find -see, for example, [START_REF] Aubin | Some nonlinear problems in Riemannian geometry[END_REF]Bahoura 2004;Brezis and Merle 1991;Brezis et al. 1993;Chen and Lin 1997;1998;Li 1993;1995;1996;1999;Li and Shafrir 1994;Li and Zhang 2004;Li and Zhu 1999;Shafrir 1992] -many results about uniform estimates in dimensions n = 2 and n ≥ 3.

In dimension 2, the corresponding equation is

(E 0 ) -u = V e u .
Note that Shafrir [1992] obtained an inequality of type sup u + C inf u < c with only an L ∞ assumption on V .

To obtain exactly the estimate sup u + inf u < c, Brezis, Li and Shafrir [Brezis et al. 1993] assumed that the prescribed scalar curvature V is Lipschitz continuous. Later, Chen and Lin [1998] proved that, if V is uniformly Hölder continuous, we can obtain a sup + inf inequality.

In dimension n ≥ 3, the prescribed curvature equation on general manifold M is -2) . Li [1993;1995;1996] proved a priori estimates for the solutions of the previous equation. He used the notion of simple isolated points and some flatness conditions on V .

(E 0 ) -u + R g u = V u (n+2)/(n
When M = ޓ n ,
If we suppose n = 3, 4, we can find in [Li and Zhang 2004;Li and Zhu 1999] a uniform bound for the energy and a sup × inf inequality. Note that Li and Zhu [1999] proved the compactness of the solutions to the Yamabe problem using the positive mass theorem.

In [Bahoura 2004], we can see (on a bounded domain of ޒ 4 ) that we have a uniform estimate for the solutions of (E 0 ) (n = 4 and Euclidean case) by assuming that those solutions are bounded below by a positive constant; in this case we have assumed that the prescribed scalar curvature V is only Lipschitz.

Here we extend some result of [Bahoura 2004] to equations with nonlinear terms or with minimal condition on the prescribed scalar curvature.

For the Euclidean case, Chen and Lin [1997] got some a priori estimates for general equations

(E 0 ) -u = V u (n+2)/(n-2) + g(u)
with some assumption on g and the Li-flatness conditions on V .

Here, we give some a priori estimates with some minimal conditions on the prescribed curvature, for perturbed scalar curvature equation, in all dimensions n ≥ 4.

In our work, we use the blow-up analysis, the moving-plane method and a flatness condition (of order 1) for the prescribed scalar curvature. Note that the flatness condition which we use is also obtained by a moving-plane argument of Chen and Lin [1997]. The method of moving plane was developed in particular by [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF] and Serrin [1971].

First, consider the equation

(E 1 ) -u = V u (n+2)/(n-2) + u n/(n-2) with 0 < a ≤ V (x) ≤ b and V C 1,α ≤ A, 0 < α ≤ 1.
We have:

Theorem 1. For all a, b, A, α > 0 (0 < α ≤ 1), and all compact sets K of of dimension n ≥ 4, there is a positive constant c = c(a, b, A, α, K , , n) such that

sup K u × inf u ≤ c
for all solutions u of (E 1 ) relative to V .

Now, if we suppose V ∈ C 1 ( ) and V ≥ a > 0, we have:

Theorem 2. For all a > 0, V and all compact K of of dimension n ≥ 4, there is

a positive constant c = c(a, V, K , , n) such that sup K u × inf u ≤ c
for all solutions u of (E 1 ) relative to V . Now, we suppose n = 4, and we consider the equation (prescribed scalar curvature equation)

(E 2 ) -u = V u 3 on ⊂ ޒ 4 with 0 < a ≤ V (x) ≤ b and V C 1,α ≤ A, 0 < α ≤ 1. We have: Theorem 3. For all a, b, m, A, α > 0 (0 < α ≤ 1) and all compact K of , there is a positive constant c = c(a, b, m, A, α, K , ) such that sup K u ≤ c if min u ≥ m
for all solutions u of (E 2 ) relative to V .

If we suppose n = 4 and V ∈ C 1 ( ) and V ≥ a > 0 on , we have:

Theorem 4. For all a, m > 0, V ∈ C 1 ( ) and all compact K ∈ , there is a positive constant c = c(a, m, V, K , ) such that sup K u ≤ c if min u ≥ m
for all solutions u of (E 2 ) relative to V .

Proofs of the theorems

Proof of Theorems 1 and 2.

Proof of Theorem 1. Without loss of generality, we suppose = B 1 the unit ball of ޒ n . We want to prove an a priori estimate around 0. Let (u i ) and (V i ) be sequences of functions on such that

-u i = V i u i (n+2)/(n-2) + u n/(n-2) i , u i > 0, with 0 < a ≤ V i (x) ≤ b and V i C 1,α ≤ A.
We argue by contradiction, and we suppose that the sup × inf is not bounded.

We have that for all c, R > 0 there exists u c,R a solution of (E 1 ) such that

(H ) R n-2 sup B(0,R) u c,R × inf M u c,R ≥ c.

Proposition (blow-up analysis).

There is a sequence of points (y i ) i , y i → 0, and two sequences of positive real numbers (l i ) i and (L i ) i (see below), l i → 0 and L i → +∞, such that, if we set v i (y) = u i (y + y i )/u i (y i ), we have

0 < v i (y) ≤ β i ≤ 2 (n-2)/2 , β i → 1, v i (y) → 1 1 + |y| 2 (n-2)/2
uniformly on all compact sets of ޒ n ,

l (n-2)/2 i u i (y i ) × inf B 1 u i → +∞,
Proof. We use the hypothesis (H ); we take two sequences R i > 0, R i → 0, and

c i → +∞ such that R i (n-2) sup B(0,R i ) u i × inf B 1 u i ≥ c i → +∞. Let x i ∈ B(x 0 , R i ) be a point such that sup B(0,R i ) u i = u i (x i ) and s i (x) = (R i -|x -x i |) (n-2)/2 u i (x), x ∈ B(x i , R i ). Then x i → 0.
We have max

B(x i ,R i ) s i (x) = s i (y i ) ≥ s i (x i ) = R i (n-2)/2 u i (x i ) ≥ √ c i → +∞.
We set

l i = R i -|y i -x i |, u i (y) = u i (y i +y), v i (z) = u i [y i + (z/[u i (y i )] 2/(n-2) )] u i (y i ) .
Clearly, we have y i → x 0 . We take

L i = l i (c i ) 1/2(n-2) [u i (y i )] 2/(n-2) = [s i (y i )] 2/(n-2) c 1/2(n-2) i ≥ c 1/(n-2) i c 1/2(n-2) i = c 1/2(n-2) i → +∞. If |z| ≤ L i , then y = [y i + z/[u i (y i )] 2/(n-2) ] ∈ B(y i , δ i l i ) with δ i = 1/(c i ) 1/2(n-2) and |y -y i | < R i -|y i -x i |; thus, |y -x i | < R i and s i (y) ≤ s i (y i ). We can write u i (y)(R i -|y -y i |) (n-2)/2 ≤ u i (y i )(l i ) (n-2)/2 . But |y -y i | ≤ δ i l i , R i > l i and R i -|y -x i | ≥ R i -|x i -y i | -δ i l i > l i -δ i l i = l i (1 -δ i ). We obtain 0 < v i (z) = u i (y) u i (y i ) ≤ l i l i (1 -δ i ) (n-2)/2 ≤ 2 (n-2)/2 .
We set

β i = (1/(1 -δ i )) (n-2)/2 ; clearly, we have β i → 1. The function v i satisfies -v i = V i v i (n+2)/(n-2) + v n/(n-2) i [u i (y i )] 2/(n-2) , where V i (y) = V i [y + y/[u i (y i )] 2/(n-2)
]. Without loss of generality, we can suppose that

V i → V (0) = n(n -2).
We use the elliptic estimates of the Ascoli and Ladyzhenskaya theorems to have the uniform convergence of (v i ) to v on a compact set of ޒ n . The function v satisfies

-v = n(n -2)v N -1 , v(0) = 1, 0 ≤ v ≤ 1 ≤ 2 (n-2)/2 , N = 2n n -2
.

By the maximum principle, we have v > 0 on ޒ n . If we use the result of Caffarelli, Gidas and Spruck [Caffarelli et al. 1989], we obtain v(y) = (1/(1 + |y| 2 )) (n-2)/2 . We have the same properties as in [Bahoura 2004].

Remark. When we use the convergence on compact sets of the sequence (v i ), we can take an increasing sequence of compact sets and we see that we can obtain a sequence ( i ) such that i → 0 and after we choose

( R i ) such that R i → +∞ and finally R n-2 i v i -v B(0, R i ) ≤ i .
We can say that we are in the case of [Chen and Lin 1997, step 1 of the proof of Theorem 1.2].

Fundamental point (a consequence of the blow-up). According to the work of Chen and Lin [1997, step 2 of the proof of Theorem 1.3], in the blow-up point, the prescribed scalar curvature V is such that

(P 0 ) lim i→+∞ |∇V i (y i )| = 0.
Polar coordinates (moving-plane method). Now we must use the same method as in [Bahoura 2004, Theorem 1]. We will use the moving-plane method. We must prove [Bahoura 2004, Lemma 2]. We set t ∈ ]-∞, -log 2] and θ ∈ ޓ n-1 :

w i (t, θ) = e (n-2)t/2 u i (y i + e t θ) and V i (t, θ) = V i (y i + e t θ).
We consider the operator L = ∂ tt + σ -(n-2) 2 /4, with σ the Laplace-Beltrami operator on ޓ n-1 .

The function w i satisfies

-Lw i = V i w i N -1 + e t × w i n/(n-2) , N = 2n n -2 .
Remark. Here w i is a solution to the previous equation with a perturbed term which contains e t . The term e t is fundamental in the computations; it corrects the variation of V i .

For λ ≤ 0, we set

t λ = 2λ -t, w λ i (t, θ ) = w i (t λ , θ ), V λ i (t, θ) = V i (t λ , θ).
First, like in [Bahoura 2004], we have the following lemma.

Lemma 5. Let A λ be the property

A λ = {λ ≤ 0 | there exists (t λ , θ λ ) ∈ ]λ, t i ] × ޓ n-1 , w i λ (t λ , θ λ ) -w i (t λ , θ λ ) ≥ 0}.
Then there is ν ≤ 0 such that, for λ ≤ ν, A λ is not true.

Remark. Here we choose t i = log √ l i , where l i is chosen as in the proposition.

Like in proof of the Theorem 1 of [Bahoura 2004], we want to prove the following lemma.

Lemma 6. For λ ≤ 0 we have

w i λ -w i ≤ 0 = ⇒ -L(w i λ -w i ) ≤ 0 on ]λ, t i ] × ޓ n-1 .
Like in [Bahoura 2004], we have:

A useful point. Let ξ i = sup{λ ≤ λ i = 2 + log η i | w i λ -w i < 0 on ]λ, t i ] × ޓ n-1 }. The real ξ i exists. First, w i (2ξ i -t, θ ) = w i [(ξ i -t + ξ i -log η i -2) + (log η i + 2)].
Proof of Lemma 6. In fact, for each i we have λ = ξ i ≤ log η i + 2, where

η i = [u i (y i )] (-2)/(n-2) .
Note that

w i (2ξ i -t, θ) = w i [(ξ i -t + ξ i -log η i -2) + (log η i + 2)];
if we use the definition of w i , then for ξ i ≤ t,

w i (2ξ i -t, θ) = e [(n-2)(ξ i -t+ξ i -log η i -2)]/2 e n-2 v i [θ e 2 e (ξ i -t)+(ξ i -log η i -2) ] ≤ 2 (n-2)/2 e n-2 = c.
We know that -L(w

ξ i i -w i ) = [V ξ i i (w ξ i i ) (n+2)/(n-2) -V i w i (n+2)/(n-2)
] + [e t ξ i (w

ξ i i ) n/(n-2) -e t w i n/(n-2)
].

We denote by Z 1 and Z 2 the terms

Z 1 = (V ξ i i -V i )(w ξ i i ) (n+2)/(n-2) + V i [(w ξ i i ) (n+2)/(n-2) -w i (n+2)/(n-2)
] and Z 2 = e t ξ i [(w

ξ i i ) n/(n-2) -w i n/(n-2) ] + w i n/(n-2) (e t ξ i -e t ).
Like in the proof of Theorem 1 of [Bahoura 2004], we have

w i ξ i ≤ w i and w ξ i i (t, θ) ≤ c for all (t, θ ) ∈ [ξ i , -log 2] × ޓ n-1 ,
where c is a positive constant independent of i and w ξ i i for ξ i ≤ log η i + 2. The (P 0 ) hypothesis. Now we use (P 0 ) (this hypothesis is the same hypothesis as in the first part of the paper: |∇V i (y i )| → 0). We write

|∇V i (y i + e t θ) -∇V i (y i )| ≤ Ae αt , Thus, V i (y i +e t ξ i θ)-V i (y i +e t θ)-∇V i (y i ) | θ (e t ξ i -e t ) ≤ A 1 + α [e (1+α)t ξ i -e (1+α)t ].
Then

|V ξ i i -V i | ≤ |o(1)|(e t -e t ξ i ).
Thus, Z 1 ≤ |o(1)|(w

ξ i i ) (n+2)/(n-2) (e t -e t ξ i ) and Z 2 ≤ (w ξ i i ) n/(n-2)
× (e t ξ i e t ). Then -L(w

ξ i i -w i ) ≤ (w ξ i i ) n/(n-2) [(|o(1)|w ξ i i 2/(n-2) -1)(e t -e t ξ i )] ≤ 0.
The lemma is proved.

We set

ξ i = sup{µ ≤ log η i + 2 | w µ i (t, θ ) -w i (t, θ ) ≤ 0 for all (t, θ) ∈ [µ, t i ] × ޓ n-1 },
with t 0 small enough.

Like in the proof of Theorem 1 of [Bahoura 2004], the maximum principle implies min

θ∈ޓ n-1 w i (t i , θ ) ≤ max θ ޓ∈ n-1 w i (2ξ i -t i ).

But

w i (t i , θ ) = e t i u i (y i + e t i θ ) ≥ e t i min u i and w

i (2ξ i -t i ) ≤ c 0 u i (y i ) ; thus, l i (n-2)/2 u i (y i ) × min u i ≤ c.
The proposition is contradicted.

Proof of Theorem 2. The proof of Theorem 2 is similar to the proof of Theorem 1. Only the "fundamental point" changes.

According to the work of Chen and Lin [1997, step 2 of the proof of Theorem 1.1], in the blow-up point, the prescribed scalar curvature V is such that

∇V (0) = 0.
The function ∇V is continuous on B r (0) (with r small enough), so it is uniformly continuous and we write (because y i → 0)

|∇V (y i + y) -∇V (y i )| ≤
for |y| ≤ δ r for all i.

Thus, 1)(e t e t ξ i ).

|V ξ i -V | ≤ o(
We see that we have the same computations as in the "polar coordinates" in the proof of Theorem 1.

Proof of Theorems 3 and 4. Here, only the "polar coordinates" change; the proposition of the first theorem stays true. First, we have:

Fundamental point (a consequence of the blow-up). According to the work of Chen and Lin [1997, step 2 of the proof of Theorem 1.3], in the blow-up point, the prescribed scalar curvature V is such that:

Case 1 (Theorem 3). lim i→+∞ |∇V i (y i )| = 0.
We write

|∇V i (y i + e t θ) -∇V i (y i )| ≤ Ae αt . Thus, |V ξ i i -V i | ≤ |o(1)|(e t -e t ξ i ).
Case 2 (Theorem 4). ∇V (0) = 0.

The function ∇V is continuous on B r (0) (for r small enough), so it is uniformly continuous and we write (because y i → 0)

|∇V (y i + y) -∇V (y i )| ≤ for |y| ≤ δ r for all i.
Thus,

|V ξ i -V | ≤ o(1)(e t -e t ξ i ),
Conclusion of the proofs of Theorems 3 and 4. Finally, we can note that we are in the case of Theorem 2 of [Bahoura 2004]. We have the same computations if we consider the function

w i (t, θ ) = w i (t, θ ) - m 2 e t .
We set L = ∂ tt + σ -1, where σ is the Laplace-Beltrami operator on ޓ 3 , and V i (t, θ) = V i (y i + e t θ ).

Like in [Bahoura 2004], we want to prove the following lemma.

Lemma 7. w ξ

i i -w i ≤ 0 = ⇒ -L(w ξ i i -w i ) ≤ 0. Proof of Lemma 7. We have -L(w ξ i i -w i ) = V ξ i i (w ξ i i ) 3 -V i w 3 i . Then -L(w ξ i i -w i ) = (V ξ i i -V i )(w ξ i i ) 3 + [(w ξ i i ) 3 -w 3 i ]V i .
For t ∈ [ξ i , t i ] and θ ∈ ޓ 3 , |V ξ i i (t, θ) -V i (t, θ)| = |V i (y i + e 2ξ i -t θ) -V i (y i + e t θ)| ≤ |o(1)|(e t e 2ξ i -t ).

The real t i = log √ l i → -∞, where l i is chosen as in the proposition of Theorem 1.

But if w ξ i i -w i ≤ 0, we obtain

w ξ i i -w i ≤ m 2
(e 2ξ i -t e t ) < 0.

Using the fact that 0 < w ξ i i < w i , we have (w

ξ i i ) 3 -w 3 i = (w ξ i i -w i )[(w ξ i i ) 2 + w ξ i i w i + (w i ) 2 ] ≤ 3(w ξ i i -w i ) × (w ξ i i ) 2 .
Thus, we have for t ∈ [ξ i , t i ] and θ ∈ ޓ 3 (w

ξ i i ) 3 -w i 3 ≤ 3 m 2 (w ξ i i )
2 (e 2ξ i -t e t ).

We can write ( * * ) -L(w

ξ i i -w i ) ≤ (w ξ i i ) 2 3 2 mV i -|o(1)|w i ξ i (e 2ξ i -t -e t ).
We know that, for t ≤ log(l i ) -log 2 + log η i , we have w i (t, θ) = e t × u i (y i + e t θ/u i (y i )) u i (y i ) ≤ 2e t .

We find w i ξ i (t, θ ) ≤ 2e 2 8 a , because ξ i -log η i ≤ 2 + 1 2 log(8/V (0)) and ξ i ≤ t ≤ t i . Finally, ( * * ) is negative and the lemma is proved. Now, if we use the Hopf maximum principle, we obtain min θ ޓ∈ 3 w i (t i , θ ) ≤ max θ ޓ∈ 3 w i (2ξ i -t i , θ), which implies that l i u i (y i ) ≤ c.

It is a contradiction.