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SOME UNIFORM ESTIMATES
FOR SCALAR CURVATURE TYPE EQUATIONS

SAMY SKANDER BAHOURA

We consider the prescribed scalar curvature equation on an open set �
of Rn, −1u = V u(n+2)/(n−2) + un/(n−2) with V ∈ C1,α (0 < α ≤ 1), and we
prove the inequality supK u× inf� u ≤ c where K is a compact set of �.

In dimension 4, we have an idea on the supremum of the solution of the
prescribed scalar curvature if we control the infimum. For this case we
suppose the scalar curvature C1,α (0< α ≤ 1).

1. Introduction and main result

In our work, we denote by 1= ∇ i
∇i the Laplace–Beltrami operator in dimension

n ≥ 2.
Without loss of generality, we suppose � = B = B2(0) the ball of radius 2

centered at 0 of Rn .
Here, we study some a priori estimates of type sup× inf for a perturbed prescribed

scalar curvature equation in all dimensions n ≥ 4.
We have a counterexample to the sharp sup× inf inequality for the prescribed

scalar curvature [Chen and Lin 1997, Proposition 4.3]. In our work the perturbation
by a subcritical term is a sufficient condition to obtain such an inequality.

The sup× inf inequality is characteristic of those equations as the usual Harnack
inequalities are for harmonic functions.

Note that the prescribed scalar curvature equation was studied a lot. We can
find — see, for example, [Aubin 1998; Bahoura 2004; Brezis and Merle 1991;
Brezis et al. 1993; Chen and Lin 1997; 1998; Li 1993; 1995; 1996; 1999; Li and
Shafrir 1994; Li and Zhang 2004; Li and Zhu 1999; Shafrir 1992] — many results
about uniform estimates in dimensions n = 2 and n ≥ 3.

In dimension 2, the corresponding equation is

(E0) −1u = V eu .

Note that Shafrir [1992] obtained an inequality of type sup u+C inf u < c with
only an L∞ assumption on V .
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To obtain exactly the estimate sup u+ inf u < c, Brezis, Li and Shafrir [Brezis
et al. 1993] assumed that the prescribed scalar curvature V is Lipschitz continuous.
Later, Chen and Lin [1998] proved that, if V is uniformly Hölder continuous, we
can obtain a sup+ inf inequality.

In dimension n ≥ 3, the prescribed curvature equation on general manifold M is

(E ′0) −1u+ Rgu = V u(n+2)/(n−2).

When M =Sn , Li [1993; 1995; 1996] proved a priori estimates for the solutions
of the previous equation. He used the notion of simple isolated points and some
flatness conditions on V .

If we suppose n = 3, 4, we can find in [Li and Zhang 2004; Li and Zhu 1999]
a uniform bound for the energy and a sup× inf inequality. Note that Li and Zhu
[1999] proved the compactness of the solutions to the Yamabe problem using the
positive mass theorem.

In [Bahoura 2004], we can see (on a bounded domain of R4) that we have a
uniform estimate for the solutions of (E ′0) (n = 4 and Euclidean case) by assuming
that those solutions are bounded below by a positive constant; in this case we have
assumed that the prescribed scalar curvature V is only Lipschitz.

Here we extend some result of [Bahoura 2004] to equations with nonlinear terms
or with minimal condition on the prescribed scalar curvature.

For the Euclidean case, Chen and Lin [1997] got some a priori estimates for
general equations

(E ′′0 ) −1u = V u(n+2)/(n−2)
+ g(u)

with some assumption on g and the Li-flatness conditions on V .
Here, we give some a priori estimates with some minimal conditions on the

prescribed curvature, for perturbed scalar curvature equation, in all dimensions
n ≥ 4.

In our work, we use the blow-up analysis, the moving-plane method and a flatness
condition (of order 1) for the prescribed scalar curvature. Note that the flatness
condition which we use is also obtained by a moving-plane argument of Chen and
Lin [1997]. The method of moving plane was developed in particular by Gidas, Ni
and Nirenberg [Gidas et al. 1979] and Serrin [1971].

First, consider the equation

(E1) −1u = V u(n+2)/(n−2)
+ un/(n−2)

with 0< a ≤ V (x)≤ b and ‖V ‖C1,α ≤ A, 0< α ≤ 1.
We have:



Theorem 1. For all a, b, A, α > 0 (0 < α ≤ 1), and all compact sets K of � of
dimension n ≥ 4, there is a positive constant c = c(a, b, A, α, K , �, n) such that

sup
K

u× inf
�

u ≤ c

for all solutions u of (E1) relative to V .

Now, if we suppose V ∈ C1(�) and V ≥ a > 0, we have:

Theorem 2. For all a > 0, V and all compact K of � of dimension n ≥ 4, there is
a positive constant c = c(a, V, K , �, n) such that

sup
K

u× inf
�

u ≤ c

for all solutions u of (E1) relative to V .

Now, we suppose n=4, and we consider the equation (prescribed scalar curvature
equation)

(E2) −1u = V u3 on �⊂ R4

with 0< a ≤ V (x)≤ b and ‖V ‖C1,α ≤ A, 0< α ≤ 1. We have:

Theorem 3. For all a, b,m, A, α > 0 (0< α ≤ 1) and all compact K of �, there
is a positive constant c = c(a, b,m, A, α, K , �) such that

sup
K

u ≤ c if min
�

u ≥ m

for all solutions u of (E2) relative to V .

If we suppose n = 4 and V ∈ C1(�) and V ≥ a > 0 on �, we have:

Theorem 4. For all a,m> 0, V ∈C1(�) and all compact K ∈�, there is a positive
constant c = c(a,m, V, K , �) such that

sup
K

u ≤ c if min
�

u ≥ m

for all solutions u of (E2) relative to V .

2. Proofs of the theorems

Proof of Theorems 1 and 2.

Proof of Theorem 1. Without loss of generality, we suppose �= B1 the unit ball
of Rn . We want to prove an a priori estimate around 0.

Let (ui ) and (Vi ) be sequences of functions on � such that

−1ui = Vi ui
(n+2)/(n−2)

+ un/(n−2)
i , ui > 0,

with 0< a ≤ Vi (x)≤ b and ‖Vi‖C1,α ≤ A.



We argue by contradiction, and we suppose that the sup× inf is not bounded.
We have that for all c, R > 0 there exists uc,R a solution of (E1) such that

(H ) Rn−2 sup
B(0,R)

uc,R × inf
M

uc,R ≥ c.

Proposition (blow-up analysis). There is a sequence of points (yi )i , yi → 0, and
two sequences of positive real numbers (li )i and (L i )i (see below), li → 0 and
L i →+∞, such that, if we set vi (y)= ui (y+ yi )/ui (yi ), we have

0< vi (y)≤ βi ≤ 2(n−2)/2,

βi → 1,

vi (y)→
(

1
1+ |y|2

)(n−2)/2

uniformly on all compact sets of Rn,

l(n−2)/2
i ui (yi )× inf

B1
ui →+∞,

Proof. We use the hypothesis (H ); we take two sequences Ri > 0, Ri → 0, and
ci →+∞ such that

Ri
(n−2) sup

B(0,Ri )

ui × inf
B1

ui ≥ ci →+∞.

Let xi ∈ B(x0, Ri ) be a point such that supB(0,Ri )
ui = ui (xi ) and si (x) =

(Ri − |x − xi |)
(n−2)/2ui (x), x ∈ B(xi , Ri ). Then xi → 0.

We have

max
B(xi ,Ri )

si (x)= si (yi )≥ si (xi )= Ri
(n−2)/2ui (xi )≥

√
ci →+∞.

We set

li = Ri−|yi−xi |, ui (y)=ui (yi+y), vi (z)=
ui [yi + (z/[ui (yi )]

2/(n−2))]

ui (yi )
.

Clearly, we have yi → x0.
We take

L i =
li

(ci )1/2(n−2) [ui (yi )]
2/(n−2)

=
[si (yi )]

2/(n−2)

c1/2(n−2)
i

≥
c1/(n−2)

i

c1/2(n−2)
i

= c1/2(n−2)
i →+∞.

If |z| ≤ L i , then y= [yi+z/[ui (yi )]
2/(n−2)

] ∈ B(yi , δi li ) with δi = 1/(ci )
1/2(n−2)

and |y− yi |< Ri − |yi − xi |; thus, |y− xi |< Ri and si (y)≤ si (yi ). We can write

ui (y)(Ri − |y− yi |)
(n−2)/2

≤ ui (yi )(li )
(n−2)/2.



But |y− yi | ≤ δi li , Ri > li and Ri −|y− xi | ≥ Ri −|xi − yi |− δi li > li − δi li =

li (1− δi ). We obtain

0< vi (z)=
ui (y)
ui (yi )

≤

[
li

li (1− δi )

](n−2)/2

≤ 2(n−2)/2.

We set βi = (1/(1− δi ))
(n−2)/2; clearly, we have βi → 1.

The function vi satisfies

−1vi = Ṽivi
(n+2)/(n−2)

+
v

n/(n−2)
i

[ui (yi )]2/(n−2) ,

where Ṽi (y)=Vi [y+y/[ui (yi )]
2/(n−2)

]. Without loss of generality, we can suppose
that Ṽi → V (0)= n(n− 2).

We use the elliptic estimates of the Ascoli and Ladyzhenskaya theorems to have
the uniform convergence of (vi ) to v on a compact set of Rn . The function v satisfies

−1v = n(n− 2)vN−1, v(0)= 1, 0≤ v ≤ 1≤ 2(n−2)/2, N =
2n

n− 2
.

By the maximum principle, we have v>0 on Rn . If we use the result of Caffarelli,
Gidas and Spruck [Caffarelli et al. 1989], we obtain v(y)= (1/(1+ |y|2))(n−2)/2.
We have the same properties as in [Bahoura 2004]. �

Remark. When we use the convergence on compact sets of the sequence (vi ), we
can take an increasing sequence of compact sets and we see that we can obtain a
sequence (εi ) such that εi → 0 and after we choose (R̃i ) such that R̃i →+∞ and
finally

R̃n−2
i ‖vi − v‖B(0,R̃i )

≤ εi .

We can say that we are in the case of [Chen and Lin 1997, step 1 of the proof of
Theorem 1.2].

Fundamental point (a consequence of the blow-up). According to the work of
Chen and Lin [1997, step 2 of the proof of Theorem 1.3], in the blow-up point, the
prescribed scalar curvature V is such that

(P0) lim
i→+∞

|∇Vi (yi )| = 0.

Polar coordinates (moving-plane method). Now we must use the same method as
in [Bahoura 2004, Theorem 1]. We will use the moving-plane method.

We must prove [Bahoura 2004, Lemma 2].
We set t ∈ ]−∞,− log 2] and θ ∈ Sn−1:

wi (t, θ)= e(n−2)t/2ui (yi + etθ) and V i (t, θ)= Vi (yi + etθ).



We consider the operator L=∂t t+1σ−(n−2)2/4, with1σ the Laplace–Beltrami
operator on Sn−1.

The function wi satisfies

−Lwi = V iwi
N−1
+ et
×wi

n/(n−2), N =
2n

n− 2
.

Remark. Here wi is a solution to the previous equation with a perturbed term
which contains et . The term et is fundamental in the computations; it corrects the
variation of Vi .

For λ≤ 0, we set

tλ = 2λ− t, wλi (t, θ)= wi (tλ, θ), V λ
i (t, θ)= V i (tλ, θ).

First, like in [Bahoura 2004], we have the following lemma.

Lemma 5. Let Aλ be the property

Aλ = {λ≤ 0 | there exists (tλ, θλ) ∈ ]λ, ti ]×Sn−1, wi
λ(tλ, θλ)−wi (tλ, θλ)≥ 0}.

Then there is ν ≤ 0 such that, for λ≤ ν, Aλ is not true.

Remark. Here we choose ti = log
√

li , where li is chosen as in the proposition.

Like in proof of the Theorem 1 of [Bahoura 2004], we want to prove the following
lemma.

Lemma 6. For λ≤ 0 we have

wi
λ
−wi ≤ 0 =⇒ −L(wi

λ
−wi )≤ 0

on ]λ, ti ]×Sn−1.

Like in [Bahoura 2004], we have:

A useful point. Let ξi = sup{λ≤ λi = 2+ log ηi |wi
λ
−wi < 0 on ]λ, ti ]×Sn−1}.

The real ξi exists.

First,

wi (2ξi − t, θ)= wi [(ξi − t + ξi − log ηi − 2)+ (log ηi + 2)].

Proof of Lemma 6. In fact, for each i we have λ = ξi ≤ log ηi + 2, where ηi =

[ui (yi )]
(−2)/(n−2).

Note that

wi (2ξi − t, θ)= wi [(ξi − t + ξi − log ηi − 2)+ (log ηi + 2)];



if we use the definition of wi , then for ξi ≤ t ,

wi (2ξi − t, θ)

= e[(n−2)(ξi−t+ξi−log ηi−2)]/2en−2vi [θe2e(ξi−t)+(ξi−log ηi−2)
] ≤ 2(n−2)/2en−2

= c.

We know that

−L(wξi
i −wi )

= [V ξi
i (w

ξi
i )
(n+2)/(n−2)

− V iwi
(n+2)/(n−2)

] + [etξi (w
ξi
i )

n/(n−2)
− etwi

n/(n−2)
].

We denote by Z1 and Z2 the terms

Z1 = (V
ξi
i − V i )(w

ξi
i )
(n+2)/(n−2)

+ V i [(w
ξi
i )
(n+2)/(n−2)

−wi
(n+2)/(n−2)

]

and
Z2 = etξi

[(w
ξi
i )

n/(n−2)
−wi

n/(n−2)
] +wi

n/(n−2)(etξi
− et).

Like in the proof of Theorem 1 of [Bahoura 2004], we have

wi
ξi ≤ wi and w

ξi
i (t, θ)≤ c for all (t, θ) ∈ [ξi ,− log 2]×Sn−1,

where c is a positive constant independent of i and wξi
i for ξi ≤ log ηi + 2.

The (P0) hypothesis. Now we use (P0) (this hypothesis is the same hypothesis as in
the first part of the paper: |∇Vi (yi )| → 0). We write

|∇Vi (yi + etθ)−∇Vi (yi )| ≤ Aeαt ,

Thus,∣∣Vi (yi+etξi θ)−Vi (yi+etθ)−〈∇Vi (yi ) | θ〉(etξi
−et)

∣∣≤ A
1+α

[e(1+α)t
ξi
−e(1+α)t ].

Then
|V ξi

i − Vi | ≤ |o(1)|(et
− etξi ).

Thus, Z1 ≤ |o(1)|(w
ξi
i )
(n+2)/(n−2)(et

− etξi ) and Z2 ≤ (w
ξi
i )

n/(n−2)
× (etξi

− et).
Then

−L(wξi
i −wi )≤ (w

ξi
i )

n/(n−2)
[(|o(1)|wξi

i
2/(n−2)

− 1)(et
− etξi )] ≤ 0.

The lemma is proved. �

We set

ξi = sup{µ≤ log ηi + 2 | wµi (t, θ)−wi (t, θ)≤ 0 for all (t, θ) ∈ [µ, ti ]×Sn−1},

with t0 small enough.



Like in the proof of Theorem 1 of [Bahoura 2004], the maximum principle implies

min
θ∈Sn−1

wi (ti , θ)≤ max
θ∈Sn−1

wi (2ξi − ti ).

But

wi (ti , θ)= eti ui (yi + eti θ)≥ eti min ui and wi (2ξi − ti )≤
c0

ui (yi )
;

thus,
li
(n−2)/2ui (yi )×min ui ≤ c.

The proposition is contradicted. �

Proof of Theorem 2. The proof of Theorem 2 is similar to the proof of Theorem 1.
Only the “fundamental point” changes.

According to the work of Chen and Lin [1997, step 2 of the proof of Theorem 1.1],
in the blow-up point, the prescribed scalar curvature V is such that

∇V (0)= 0.

The function ∇V is continuous on Br (0) (with r small enough), so it is uniformly
continuous and we write (because yi → 0)

|∇V (yi + y)−∇V (yi )| ≤ ε for |y| ≤ δ� r for all i .

Thus,
|V ξi − V | ≤ o(1)(et

− etξi ).

We see that we have the same computations as in the “polar coordinates” in the
proof of Theorem 1. �

Proof of Theorems 3 and 4. Here, only the “polar coordinates” change; the propo-
sition of the first theorem stays true. First, we have:

Fundamental point (a consequence of the blow-up). According to the work of
Chen and Lin [1997, step 2 of the proof of Theorem 1.3], in the blow-up point, the
prescribed scalar curvature V is such that:

Case 1 (Theorem 3). limi→+∞|∇Vi (yi )| = 0.

We write
|∇Vi (yi + etθ)−∇Vi (yi )| ≤ Aeαt .

Thus,
|V ξi

i − Vi | ≤ |o(1)|(et
− etξi ).

Case 2 (Theorem 4). ∇V (0)= 0.



The function ∇V is continuous on Br (0) (for r small enough), so it is uniformly
continuous and we write (because yi → 0)

|∇V (yi + y)−∇V (yi )| ≤ ε for |y| ≤ δ� r for all i .

Thus,
|V ξi − V | ≤ o(1)(et

− etξi ),

Conclusion of the proofs of Theorems 3 and 4. Finally, we can note that we are in
the case of Theorem 2 of [Bahoura 2004]. We have the same computations if we
consider the function

wi (t, θ)= wi (t, θ)−
m
2

et .

We set L = ∂t t +1σ −1, where 1σ is the Laplace–Beltrami operator on S3, and
V i (t, θ)= Vi (yi + etθ).

Like in [Bahoura 2004], we want to prove the following lemma.

Lemma 7. w
ξi
i −wi ≤ 0 =⇒ −L(wξi

i −wi )≤ 0.

Proof of Lemma 7. We have

−L(wξi
i −wi )= V ξi

i (w
ξi
i )

3
− V iw

3
i .

Then
−L(wξi

i −wi )= (V
ξi
i − V i )(w

ξi
i )

3
+ [(w

ξi
i )

3
−w3

i ]V i .

For t ∈ [ξi , ti ] and θ ∈ S3,

|V ξi
i (t, θ)− V i (t, θ)| = |Vi (yi + e2ξi−tθ)− Vi (yi + etθ)| ≤ |o(1)|(et

− e2ξi−t).

The real ti = log
√

li → −∞, where li is chosen as in the proposition of
Theorem 1.

But if wξi
i −wi ≤ 0, we obtain

w
ξi
i −wi ≤

m
2
(e2ξi−t

− et) < 0.

Using the fact that 0<wξi
i <wi , we have

(w
ξi
i )

3
−w3

i = (w
ξi
i −wi )[(w

ξi
i )

2
+w

ξi
i wi + (wi )

2
] ≤ 3(wξi

i −wi )× (w
ξi
i )

2.

Thus, we have for t ∈ [ξi , ti ] and θ ∈ S3

(w
ξi
i )

3
−wi

3
≤ 3

m
2
(w

ξi
i )

2(e2ξi−t
− et).

We can write

(∗∗) −L(wξi
i −wi )≤ (w

ξi
i )

2( 3
2 mV i − |o(1)|wi

ξi
)
(e2ξi−t

− et).



 We know that, for t ≤ log(li ) − log 2 + log ηi , we 

have wi (t, θ)= et
×

ui (yi + etθ/ui (yi ))

ui (yi )
≤ 2et .

We find

wi
ξi (t, θ)≤ 2e2

√
8
a
,

because ξi − log ηi ≤ 2+ 1
2 log(8/V (0)) and ξi ≤ t ≤ ti .

Finally, (∗∗) is negative and the lemma is proved. �

Now, if we use the Hopf maximum principle, we obtain

min
θ∈S3

wi (ti , θ)≤max
θ∈S3

wi (2ξi − ti , θ),

which implies that
li ui (yi )≤ c.

It is a contradiction. �
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