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In sexually reproducing isogamous species, syngamy between gametes is gener-
ally not indiscriminate, but rather restricted to occurring between complementary
self-incompatible mating types. A longstanding question regards the evolutionary
pressures that control the number of mating types observed in natural popula-
tions, which ranges from two to many thousands. Here, we describe a population
genetic null model of this reproductive system and derive expressions for the
stationary probability distribution of the number of mating types, the establish-
ment probability of a newly arising mating type and the mean time to extinction
of a resident type. Our results yield that the average rate of sexual reproduc-
tion in a population correlates positively with the expected number of mating
types observed. We further show that the low number of mating types predicted
in the rare-sex regime is primarily driven by low invasion probabilities of new
mating type alleles, with established resident alleles being very stable over long
evolutionary periods. Moreover, our model naturally exhibits varying selection
strength dependent on the number of resident mating types. This results in higher
extinction and lower invasion rates for an increasing number of residents.

1 Introduction

In isogamous species, the gamete size differentiation that defines the sexes in anisogamous
species is absent (Lehtonen et al., 2016). Despite their morphological similarity, the gametes
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of isogamous species are typically not interchangeable, but rather fall into one of a number of
genetically determined self-incompatible gamete classes, termed mating types. Syngamy can
only occur between gametes of distinct and complementary mating types.

The evolutionary explanation for this self-incompatibility, which limits the number of po-
tential mates available to an isogamous organism, has been the subject of debate, with a
number of competing hypotheses proposed (Billiard et al., 2011). These include theories that
such self-incompatibility alleles limit inbreeding depression (Charlesworth and Charlesworth,
1979), increase encounter rates between gamete pairs (Hoekstra, 1982; Hadjivasiliou et al.,
2015; Hadjivasiliou and Pomiankowski, 2019), allow for ploidy level detection and the instiga-
tion of the zygote developmental program (Haag, 2007; Perrin, 2012), or manage cytoplasmic
conflict by promoting uniparental inheritance of organelles (UPI) (Hurst and Hamilton, 1992;
Hadjivasiliou et al., 2012).

Empirical observations of the number of mating types vary between species, ranging from 2
to many thousands (Kothe, 1996). For example, intermediate numbers of mating types are
reported in ciliates of the Tetrahymena-species (3−9 different mating types (Doerder et al.,
1995; Phadke and Zufall, 2009)) and slime molds (2−13 mating types (Bloomfield et al., 2010;
Clark and Haskins, 2010)). Larger numbers can be found in fungal populations; in Coprinellus
disseminatus the global population is estimated to contain 123 different mating types (James
et al., 2006), while Schizophyllum commune has a staggering 23,328 distinct types (Kothe,
1999). This naturally leads to the question which type of evolutionary pressures govern this
diversity in mating type number? This has been the subject of much debate, motivated in part
by a discrepancy between these empirical observations and simple evolutionary reasoning.

From a theoretical standpoint, one might naïvely expect to see a very large number of mating
types within any given species, due to the “rare sex advantage” of novel types (Iwasa and Sasaki,
1987). Since mating types are self-incompatible, rare types have more opportunities for mating
and thus each type experiences negative-frequency dependent selection. Therefore, each
novel mating type produced by mutation should establish in the population and the number
of mating types should consistently grow. However, this prediction stands in stark contrast to
what is observed in the natural world. Although isogamous species with hundreds, or even
thousands, of mating types are possible (Kothe, 1996), examples of such species are very rare;
the vast majority have very few (typically two) mating types (Hadjivasiliou, 2014). Explaining
this discrepancy between theory and empirical observation has been the focus of much work,
and multiple theories have been proposed (Billiard et al., 2011).

One prominent hypothesis is that UPI drives the evolution of two mating types (Hadjivasil-
iou et al., 2012), with larger mating type numbers becoming less stable with the increased
complexity of coordinating an organelle donor-receiver program (Hurst and Hamilton, 1992).
While recent modelling work has shown that when the frequency-dependent effects of UPI are
accounted for, an invading donor-receiver program does not reduce the expected number of
mating types (Hadjivasiliou et al., 2013), perceived empirical support for the theory comes
from the fact that many species with more than two mating types have developed mechanisms
to ensure homoplasmy without such a program. For instance, in Paramecium bursaria, with
up to eight mating types (Phadke and Zufall, 2009), and S. commune, sexual reproduction is
achieved following the exchange of nuclei between cells without cytoplasmic mixing (Birky,
1995). However this in turn leads to an opposing question; if it really is only a donor-receiver
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program that limits the number of mating types, why do ciliates and Agaricomycetes, with
these alternative methods for ensuring homoplasmy, still feature species with very few types
(as low as two and three respectively, see James (2015))?

A further hypothesis (Hoekstra, 1982; Hoekstra et al., 1991), with renewed attention (Hadji-
vasiliou and Pomiankowski, 2016), suggests that it is cell-cell signalling between gametes that
limits the number of mating types. Here co-evolution between two resident types has been
shown to potentially limit the evolutionary success of a third mutant mating type. If derived
from a resident type, this new mutant must essentially cross a fitness valley before it can
develop encounter rates with the residents comparable to their current pairwise encounter
rate, limiting its invasion potential (Hadjivasiliou and Pomiankowski, 2016).

In each of these hypotheses, a biologically plausible emergent mechanism is sought that
generates a selective advantage to a pair of mating types, thus limiting their number to two. A
notable exception can be found in Iwasa and Sasaki (1987). Here it was demonstrated that
under certain dynamics for the mating type encounter rate, the advantage to rare mating types
could be suppressed. In the limit of infinitely long-lived gametes (that can always survive until
a suitable partner becomes available) selection for mating type numbers greater than two
could be eliminated entirely. It was verbally suggested that under such a scenario, genetic drift
would purge new mating types, limiting their number. This led to a bimodal prediction for the
number of types; populations would either have two (given a particular set of encounter rate
dynamics and immortal gametes), or have infinitely many otherwise (with each at infinitely
low frequency).

While the conditions required for two mating types in Iwasa and Sasaki (1987) were stringent
(and indeed, the possibility of intermediate numbers of mating types impossible) it was
notable for suggesting that genetic drift may have a key role to play in determining mating type
number. In a similar vein, recent work has emphasized the relevance of finite population size
null models (i.e. models in which all mating types are phenotypically similar) for addressing
the distribution of mating type numbers observed in nature (Constable and Kokko, 2018;
Czuppon and Rogers, 2019). These studies stress that even in the absence of species-specific
biological processes, the number of mating types in any real finite population cannot be
infinite. Instead the expected number of types will arise from balance between mutations
(which introduce new mating types) and extinctions (which decrease the number of types),
leading to a number of mating types well below the studied population size.

As an explanation for the low number of mating types often observed in isogamous species,
this mutation-extinction balance hypothesis may seem at first improbable, particularly in
the light of a number of classic population genetic studies of self-incompatibility (SI) al-
leles in plants (Wright, 1939, 1960, 1964; Ewens, 1964; Nagylaki, 1975; Yokoyama and Nei,
1979; Yokoyama and Hetherington, 1982), see also Clark and Kao (1994) for a review. From
a modelling perspective, the dynamics of SI alleles in gametophytic species, those where SI
is determined at the haploid pollen stage (Bod’ová et al., 2018), closely resemble those of SI
mating type alleles in isogamous species. (A comparison with the dynamics of SI alleles in
sporophytic species, in which SI of the haploid pollen is determined by the diploid parent, can
be more complicated due to the complex dominance relationships that regulate SI in some
of these species (Thompson and Taylor, 1966; Prigoda et al., 2005; Billiard et al., 2007).) In a
seminal paper (Wright, 1939), Wright predicted that for the model plant Oenothera organensis,
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a population of around 500 individuals could sustain approximately 13 SI alleles (see also
Crosby (1966)). As the number of predicted SI alleles would rise with increasing effective
population size (which intuitively reduces genetic drift and hence extinction rates), many
more SI mating type alleles might naïvely be expected in isogamous species, for which effective
population sizes can be of the order 106 (Baranova et al., 2015).

While in the above context the plausibility of the mutation-extinction balance hypothesis
might seem doubtful, an important biological feature of isogamous species with less promi-
nence in plants is the potential to reproduce asexually. In many isogamous species, long
periods of asexual reproduction are punctuated by rare bouts of facultative sex. For instance,
in the single celled green algae, Chlamydomonas reinhardtii (with two mating types (Good-
enough et al., 2007)), recent genomic estimates have placed the rate of sexual reproduction
to be once in every 770 asexual generations (Hasan and Ness, 2018). Sex in yeast, which also
typically have two mating types (Butler, 2007), appears to be rarer still, with estimates of once
in every thousand to three thousand asexual generations reported in some species (Tsai et al.,
2008).

In Hadjivasiliou et al. (2016), a computational model was used to show that long periods
of asexual reproduction would lead to substantial drift in mating types frequencies. Using
a population genetic model, Constable and Kokko (2018) demonstrated further that as sex
becomes increasingly rare, the relative strength of genetic drift over selection for novel mating
types is amplified. This leads to a lower expected number of mating types in mutation-
extinction balance (a similar observation has been made of Solanaceae gametophytic SI
alleles (Vallejo-Marín and Uyenoyama, 2008)). This was true even in the absence of any
species-specific selective mechanisms. A survey of available empirical data further supported
the view that the rate of facultative sex is a key predictor of the number of mating types in
isogamous species.

Analytic bounds on the number of expected mating types under a mutation-extinction
balance were calculated in Constable and Kokko (2018), using the stationary distribution
of a simple Moran-type model of mating type dynamics. In Czuppon and Rogers (2019) an
approximation of the expected number of mating types was calculated under the assumption
that sex is obligate. Muirhead and Wakeley (2009) used a similar model to calculate the
stationary distribution of the frequency spectrum of mating type alleles, however estimates on
the number of expected mating types were not explicitly calculated. In addition, facultative
sex was not modelled (although the mathematical analysis employed can account for this
factor).

While such estimates of the number of mating type alleles in the stationary distribution are
informative, they obscure the dynamical processes that drive and maintain this equilibrium,
the establishment and extinction of alleles. These quantities are important for two reasons.

Firstly, they are both independent of the arrival rate of new SI alleles. Null models of mating
type dynamics often equate the arrival rate of new SI alleles with an effective mutation rate,
and in doing so take a course grained approach to the genetic, molecular and physiological
mechanisms underlying mating type determination. However this effective mutation rate
is a confounding parameter, as it is difficult to estimate empirically. (A similar problem was
encountered by Wright, who conceded that there could be argument about what a “reasonable”
rate should be (Wright, 1939)). In contrast, the effective mutation rate affects neither the
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establishment probability of a mutant mating type nor the expected extinction time of a
resident type. These quantities thus provide mutation rate independent measures of the
evolutionary dynamics of mating types, that can be used to test the feasibility of the mutation-
extinction hypothesis.

Secondly, whereas the stationary distribution of mating type number can only be observed
over evolutionary time periods, the establishment probability of new mating types and the
mean extinction time of mating types can be observed over significantly shorter time periods.
These quantities are thus important for providing empirically testable insight into the evolution
of mating type number.

Extinction rates have previously been studied in related systems featuring negative frequency
dependent selection, which results in high levels of polymorphism. In Takahata (1990) a
one-dimensional stochastic diffusion was used to identify the dynamics of the polymorphic
major histocompatibility complex (MHC) system with a time re-scaled neutral coalescent.
This allowed for estimating the extinction rates of MHC alleles. These results were verified
numerically in Takahata and Nei (1990) and later in Slatkin and Muirhead (1999). The same
theoretical approach was adapted to gametophytic SI in plants obtaining results showing that
the time to the most recent common ancestor of a sex allele might even exceed the speciation
time (Vekemans and Slatkin, 1994). In the specific context of mating type alleles, such results
have thus far been absent. However recently in Czuppon and Rogers (2019) the establishment
probability of newly arising mating type was calculated for populations in which sex is obligate.
We will rely on this quantity to obtain our estimate on the mean extinction time of resident
mating types.

In this paper we complement this literature by exploring scenarios of self-incompatibility
under facultative sex. We begin by calculating an analytic expression for the stationary distri-
bution of the number of mating types, extending the results of Constable and Kokko (2018)
(where only bounds of the mode of this distribution were calculated). We then provide an
expression for the establishment probability of a novel mating type in facultatively sexual
populations, generalizing the results of Czuppon and Rogers (2019). Finally, combining these
expressions, we calculate the mean time to extinction of a resident mating type allele in a novel
way. To be more precise, instead of relying solely on the one dimensional dynamics of a focal
mating type (in mating type frequency space) we make use of the dynamics on the number
of mating types (in mating type number space). We conclude by discussing the biological
implications of these results.

2 Model

We consider a population in which the self-incompatible mating type of an individual is
determined by one of an infinite set of potential alleles at a single locus. Such single locus
determination systems are for example found in the social amoebae Dictyostelium discoideum
(with three mating types (Bloomfield et al., 2010)) and Didymium squamulosum (with up
to 12 mating types (Clark and Haskins, 2010)). The evolutionary dynamics are determined
by a Moran process; generations are overlapping and the population is assumed to be at an
ecological equilibrium at which the number of individuals, N , is constant over time. We denote
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the number of individuals carrying mating type i by ni , such that
∑∞

i=1 ni = N .
Asexual reproduction happens with probability c ∈ [0,1]. In this case a randomly chosen

individual produces a clone which replaces one of the individuals in the population, also
chosen uniformly at random.

During sexual reproduction, which occurs with probability 1− c, two randomly chosen
individuals mate if they express different mating types. In the case of a successful mating, an
offspring individual is produced that replaces one of the other individuals in the population.
The mating type of the offspring is chosen at random from among the two parental alleles.

Additionally, we consider the emergence of novel mating types through mutations which
occur at rate m. We implement mutations according to the infinitely many alleles model
(Kimura and Crow, 1964), where the mutated individual expresses a completely new mating
type not previously present in the population. For simplicity we consider the case in which
mutation events are decoupled from reproduction. Mutants possess the same characteristics
as any other mating type in the population; that is they are self-incompatible and mate with
non-self types at the same per-capita rate as the resident types.

Mathematically implementing the model described above, the probability per unit time for
a type i to increase by one and a type j to decrease by one through a birth-death event is given
by

Ti j =
(
c

ni

N
+ (1− c)

2

ni

N

∑
k 6=i nk

N

)
︸ ︷︷ ︸

reproduction

(n j

N

)
︸ ︷︷ ︸
death

, for ni > 0. (1)

The reproduction term is split into an asexual component (the first term) and a sexual compo-
nent (the second term). We note, that the sum in the sexual reproduction term goes over all
non-i mating types present in the population, generating a reproductive advantage to rare
mating types. The probability per unit time that a novel mating type i is generated from an
ancestral mating type j is given by

Ti j ∝ m
n j

N
, for ni = 0, (2)

which can only occur when type i is not already present in the population. As described in
Eq. (S6) in the Supplementary Information, the full expression for the probability transition
rate given in Eq. (2) features an additional normalization constant, included to ensure that the
mutation rate is independent of the population composition (i.e. that

∑∞
i=1 Ti j |ni=0 = m).

The deterministic limit (N →∞) of this model is described by a system of ordinary differ-
ential equations where the dynamics (neglecting mutations) of a the i th mating type, with
frequency xi = limN→∞ ni

N , is given by

d xi

d t
= (1− c)

2
xi

∑
j 6=i

x j (x j −xi ) . (3)

This system has been studied in Iwasa and Sasaki (1987) (see their Mating kinetics I). The
dynamical system possesses an internal stable fixed point where all mating types are present
at equal frequencies. Analogous finite population size models lead to stochastic differential
equations and have been analyzed in Czuppon and Rogers (2019). Note that in that paper
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mutation was implemented in a distinct manner, with the assumption that mutation occurs
with reproductive events. While that implementation is biologically more reasonable, the
choice leads to only minor quantitative differences in the dynamics.

Data availability: The code and simulation outputs can be found on github:
https://github.com/gwaconstable/InvExtDynMatTypes.

3 Results

In this section we mathematically analyze the null model just presented. We begin by charac-
terizing the long-time equilibrium behavior of the model, which is described by its stationary
distribution. This allows us to answer the key question of how many mating types, M , are
predicted by the null model as a function of the population size N , mutation rate m and,
importantly, relative rate of asexual reproduction, c. However, while this results in an im-
portant benchmark for the expected number of mating types in real populations, it provides
little insight into the dynamics of mating type number. To this end we further calculate the
probability that a novel mutant mating type establishes in the population and the expected
extinction time of a resident mating type allele. These quantities provide a deeper insight into
the ongoing dynamics of mating type number in real populations.

3.1 The stationary distribution of individuals carrying each mating type
allele

We denote by P st
n the stationary distribution of the number of individuals of each mating type.

In Constable and Kokko (2018) it was shown that an analytic solution for P st
n is accessible as

the probability transition rates Ti j in Eqs. (1-2) can be decomposed into the product of a birth
function b(ni ) and death function d(n j ) that each depend only on the number of each mating
type reproducing and dying respectively;

Ti j = b(ni )d(n j ) , (4)

where

b(ni ) = c
ni

N
+ (1− c)

2

ni

N

N −ni

N
, if ni ≥ 1,

b(ni ) ∝ m , if ni = 0, (5)

d(n j ) = n j

N
, for all n j .

Under this decomposition, the stationary distribution of mating type alleles takes the exact
form

P st
n = 1

N

M−1∏
i=1

n↓
i −1∏

k=0

b(k)d (Φi −k)

b (Φi − (k +1))d(k +1)
(6)
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where n↓ is the vector n reordered with its largest entries first, N is a normalization constant
that enforces

∑
n P st

n = 1 and Φi is defined as

Φi = N −
i−1∑
j=1

n↓
j . (7)

The full derivation of Eq. (6) is given in Constable and Kokko (2018). In terms of birth-death
processes, it is interesting to note that Eq. (6) is the product of standard stationary distributions
obtained for a two-allele (single variable) population (Karlin and Taylor, 1975), moderated by
a series of effective population sizes. A similar observation has been made in a related model
of multi-allelic selection (Muirhead and Wakeley, 2009).

3.2 The stationary distribution of the number of mating type alleles

The stationary distribution of populations with M mating types is defined as P st
M . This gives

the probability of finding a population with a given set of parameters (N , c and m) in a state
with M mating types at long times. P st

M is related to the distribution P st
n through the following

summation;

P st
M = ∑

n∈S(M)

P st
n , (8)

where S(M) is the set of all vectors n that represent a population with M present mating types
(that is, all vectors n with M non-zero elements).

While Eq. (8) can be expressed neatly, evaluating this quantity is problematic as it involves
summations of Eq. (6) over sets of the infinite vector n. To make analytic progress we note
that when the population size N is large and the per-generation mutation rate mg = mN is
small, at intermediate times the population resides in a quasi-stationary distribution in the
region of a fixed point of the dynamics in the deterministic limit. More precisely, when the
population is comprised of M mating types, this fixed point is given by ni ≈ N /M for each of
the i present mating types, and ni = 0 otherwise. Following an extinction or mutation event
(which changes the number of mating types in the population) the population quickly relaxes
to a new quasi-stationary distribution in the region of an alternate fixed point with M ±1
mating types, i.e. ni ≈ N /(M ±1). Within the limit of large N and small mg then, P st

n can be
approximated by a superposition of these quasi-stationary distributions.

Briefly, the quasi-stationary distribution of the population in the region of a fixed point can
be calculated by conducting a diffusion approximation on the underlying Moran model and lin-
earizing the resultant advection-diffusion equation about a deterministic fixed point (the van
Kampen approximation). The full calculation is conducted in the Supplementary Information,
where we show that these quasi-stationary distributions are Gaussian (see Eqns. (S18)-(S22)).

Each of the quasi-stationary distributions can now be renormalized, using Eq. (6) to ‘pin’
the height of each quasi-stationary distribution to the height of Eq. (6) in the region of the
deterministic fixed point (see Hufton et al. (2016) and Vasconcelos et al. (2017) for similar
approaches). The full calculation is detailed in Section S3 in the Supplementary Information.

8



5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Stationary distribution of mating types, P st
M . For any given rate of asexual reproduc-

tion, c, larger populations (larger N ) contain more mating types on average. Mean-
while increasing the rate of asexual to sexual reproduction (increasing c) decreases
the expected number of mating types. Analytic results (solid lines) are obtained by
evaluating Eq. (9). Simulation results (corresponding shaded regions) are obtained
using the Gillespie algorithm (Gillespie, 1976), averaged over 5×106 generations,
sampled every 102 generations and following a relaxation period of 103 generations
from initial conditions with one more mating type than the mode number predicted
analytically by the model (see Eq. (9)). The mutation rate is m = 10−8 in all plots. The
analytic description can be seen to capture the simulated behavior of the model with
very high accuracy.

Substituting the resulting approximation for P st
n into Eq. (8) and taking the limit of large N we

find

P st
M ≈ (2π)

M
2 −1

M

(
2m

1+ c

)M−1 M M− 1
2

M !

[
θM−1

θ−M−1

]1/2

×

N (M−1)/2

[(
θ−M−1)( θ

θ−M−1

)Mθ
]N

, (9)

where M is a normalization constant such that
∑∞

M=1 P st
M = 1 and

θ = 1+ c

1− c
. (10)

Note that when sexual reproduction is obligate (c = 0), θ = 1, while when sex is facultative and
rare θ becomes large.

Comparing our approximate expression for the distribution of the number of mating types,
Eq. (9), against the results of stochastic simulation of the population, we find excellent agree-
ment (see Figure 1). We note that in a facultatively sexual population, where the role of genetic
drift is amplified by high clonal reproduction rates, c , extinctions can even lower the number of
mating types to one (see Supplementary Information, Section S8). In this scenario no further
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sexual reproduction events can take place, and the population reproduces purely asexually
until a new mating type is generated by mutation.

3.2.1 The mode number of mating types

Since the distribution P st
M is unimodal, obtaining an estimate for its mode is straightforward

numerically. We define by rM the ratio of probabilities of having M and M −1 mating types;

rM = P st
M

P st
M−1

. (11)

For any given set of parameters, this ratio is independent of the normalization constant
M . Substituting Eq. (9) into Eq. (11), we obtain a simplified analytic expression for rM (see
Supplementary Information, Eq. (S42)). Since the distribution P st

M is unimodal, finding its
mode is equivalent to finding the value of M for which P st

M starts to decrease. The approximate
mode of P st

M , which we denote Mo, can then be obtained as the solution to the equation

rMo = 1. (12)

The function rM −1 has a single root, and thus solving rMo = 1 for Mo is numerically straight-
forward.

In Figure 2 we plot the mode number of mating types as a function of the per-generation
mutation rate, mg and the population size, N , for four different rates of asexual to sexual
reproduction. Here we see that facultative sex has a strong influence over the number of
mating types, with even a ratio of 9 : 1 asexual to sexual divisions (panel (b)) reducing the
expected number of mating types by an order of magnitude compared to the obligately sexual
scenario (panel (a)).

3.3 The establishment probability of a new mating type allele

Having approximated the mode of the number of mating types we now proceed to study the
evolutionary dynamics of the number of mating types. We begin by computing the probability
of a successful establishment, QEst

M , of a newly arising mutant in a population of M resident
mating types. We define QEst

M as the probability that this novel mating type allele (initially at a
frequency 1/N ) reaches the new stationary frequency of mating types (1/(M +1)) before any
of the resident mating types goes extinct.

For c < 1 the deterministic equilibrium is an internal fixed point. This is crucial for our
approximation of the establishment probability since we will identify it by the survival proba-
bility of a corresponding branching process (see Section S5 in the Supplementary Information).
Furthermore, we assume that N À M , i.e. the population size is sufficiently large that the
resident mating types are not quickly lost through genetic drift. Under these assumptions we
can extend the computation from Czuppon and Rogers (2019) for obligate sexual reproduction
and find

QEst
M =

(
1− c

1+ c

)
1

M
. (13)
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Figure 2: Analytic results on the mode number of mating types, Mo , as a function of the
population size, N and the per-generation mutation rate, mg = N m, under differing
rates of asexual reproduction, c. As the rate of sexual to asexual reproduction is
decreased [panels (a-d)] so too does the expected number of mating types. When sex
is obligate [panel (a)], of the order of hundreds of mating types are expected. When
sex is facultative and very rare, occurring approximately once to every thousand
asexual reproduction events [panel (d)] far fewer mating types are observed. Results
are obtained by numerically solving Eq. (12).

In the case of obligate sex (c = 0), QEst
M reduces to 1/M , recovering the result found in

Czuppon and Rogers (2019). For facultative sex (0 < c < 1) we see that the establishment
probability is reduced. Since asexual reproduction increases the time to reach the stationary
state in the deterministic system (i.e. the selection strength for even mating type ratios is
reduced, see also Eq. (3)), newly arising mutants spend more time at low frequencies where
they are susceptible to purging by genetic drift. This is reflected by QEst

M decreasing with c (see
Figure 3). Our definition of the establishment probability includes that none of the resident
mating types become extinct during the invasion process. This impedes a straightforward
comparison with the case of obligate asexual reproduction, c = 1 (i.e. a neutral Moran model).
The corresponding establishment probability might naïvely be assumed to be 1/(M + 1);
however this value ignores the survival of all resident mating types and therefore overestimates
the actual establishment probability.
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Figure 3: Establishment probability of a novel mating type as a function of M for varying
rates of asexual reproduction, c. Analytic results are obtained by evaluating Eq. (13).
Simulation results are obtained from Gillespie simulations; in each plot N = 105 and
results are averaged over 103 runs (c = 0), 104 runs (c = 0.9 and c = 0.99), and 105 runs
(c = 0.999). Error bars are ±2 times the standard-deviation of the sample binomial
distribution.

3.4 The mean time until the extinction of a mating type allele

Our final goal is to calculate the mean extinction time of a mating type allele. We assume that
initially the population is close to its equilibrium (i.e. all mating types are approximately at
equal frequencies). We then model the arrival of mating types (through mutation events) and
their extinction (due to genetic drift) as a birth-death process on the number of mating types.
Let βM be the probability per unit time that a population with M resident mating types gains
a new mating type, and δM be the probability per unit time that a mating type goes extinct.

Although we are interested in calculating the time between extinction events, we first turn
our attention to the stationary probability distribution of this effective ‘birth-death’ process in
the number of mating types; P st

M . Solving the equations for the stationary distribution of the
effective birth-death process, we obtain the well-known result (see for instance (Allen, 2011,
Chapter 6))

P st
M = βM−1

δM
P st

M−1 . (14)

Rearranging for δM , we find

δM =βM−1
P st

M−1

P st
M

= βM−1

rM
, (15)

where we have used the definition of rM given in Eq. (11). The mean time between extinction
events is the inverse of this effective death rate, i.e.

T Ext
M = 1

N

1

δM
= rM

NβM−1
, (16)
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where the factor N accounts for the fact that we are measuring the time until an extinction
event in time units of generations. Further, we note that since T Ext

M is determined using
P st

M (which itself accounts for covariances in allelic frequencies in the stationary state), our
expression for T Ext

M captures the effect of allele frequency fluctuations in all M types.
As we have already analytically calculated rM (see Eq. (11)), all we now need to evaluate the

mean time until the extinction of a mating type allele is an expression for βM (see Eq. (16)).
We assume that the effective ‘probability birth rate’, βM (the probability per unit time that the
number of mating types in the system increases) is given by the product of the mutation rate
and the establishment probability of a mutant allele (see Eq. (13)):

βM ≈ mQEst
M = m

(
1− c

1+ c

)
1

M
. (17)

This approximation relies on the frequencies of the resident types being close to their
deterministic equilibrium (an assumption made in the derivation of QEst

M ). In general this will
be true if the state containing M types is sufficiently stable and if mutations are occurring
sufficiently infrequently that the population has time to relax to this quasi-stationary state.
If these conditions are not met, it is possible that a new mutant mating type may arise in a
population with a highly uneven mating type distribution, where QEst

M will no longer provide
an accurate estimate of the establishment probability. We discuss these points further below.

Inserting this effective birth rate into Eq. (16) and substituting rM from Eq. (11) (see Eq. (S42)),
we can express the mean extinction time as

T Ext
M =p

2π
2(M −1)

1+ c
θ

3
2

(
M

M −1

)M− 3
2

(
θ− 1

M

θ− 1
M−1

)− 1
2

× 1

N
3
2

θθ (
θ− 1

M

θ− 1
M−1

)1−Mθ (
θ− 1

M −1

)−θN

.

(18)

We first note that as we would expect, Eq. (18) is independent of the mutation rate of novel
mating type alleles (the mean time until the extinction of a mating type allele should not
depend on the time until a new mating type allele arrives). Further, we can see that when the
population size, N , is large the mean time to extinction is dominated by the term raised to
the power of N in Eq. (18) (explaining the linear growth of log(T Ext

M ) for large N in Figure 4).
Although Eq. (18) is lengthy, it is useful as it allows us to quickly evaluate the mean extinction
time for arbitrary parameter values. We can then rapidly explore parameter regimes that would
be prohibitively time consuming to simulate (see Figure 5).

The expression derived in Eq. (18) becomes increasingly accurate with increasing population
size, N , decreasing rates of asexual reproduction, c, and smaller numbers of initial mating
types, M . The approximation can break down however when either N is small, or c or M are
large. In this latter range, as the population dynamics become increasingly dominated by
genetic drift, various assumptions involved in the derivation of Eq. (18) can become invalid.
Most importantly the Gaussian approximation for the quasi-stationary distribution of a focal
mating type breaks down. The true distribution becomes increasingly flat, while the Gaussian
approximation does not respect the boundary conditions requiring non-negative number of
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Figure 4: Mean extinction time of the first mating type allele, TM , as a function of N for
populations with initially M = 2, M = 3 and M = 4 mating types. Analytic results (see
Eq. (20)) are plotted as solid lines. Simulation results are averaged over 103 Gillespie
simulations, with error bars indicating the standard deviation of results. Vertical
dashed lines indicate the transition between the approximation of Eq. (18) (right of
dashed line) and the neutral limit of Eq. (19) (left of dashed line), defined by Eq. (20).
As the rate of asexual reproduction is increased (from c = 0.1 in panel (a) to c = 0.9 in
panel (b)), the mean extinction time drops rapidly (note differing scales on x-axis).

mating types ni . Since this results in erroneous approximations of P st
M , (the crucial ingredient

calculating Eq. (14)) when the number of mating types is highly unstable (i.e. when M À Mo),
we do not expect our analytically derived mean extinction time to provide reasonable results
in this regime. This reasoning is assessed in more detail and validated in the Supplementary
Information (see Section S6).

We now seek a more quantitative measure of when we expect Eq. (18) to remain valid. We
first note that naturally T Ext

M should increase monotonically with the population size, and
decrease monotonically with the rate of asexual reproduction and the number of resident
mating types. However, on evaluating Eq. (18), we find that these expectations are violated as
the relative strength of genetic drift increases (i.e. as the initial number of mating types, N /M ,
becomes small) or, conversely, as the strength of selection for equal numbers of mating types
decreases (i.e. c becomes large). In these regimes, the dynamics of the mating type alleles
approach neutrality, and the extinction time is better approximated by standard results on the
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Figure 5: Analytic predictions for the mean extinction time of a resident mating type allele
as a function of N and M (see Eq. (20)). The blue dashed line indicates the parameter
regime in which extinction rates become approximately neutral (Eq. (19)). Extinction
times in the gray shaded region exceed 1011 generations. As these time are approx-
imately longer than the evolutionary history of fungi, they have been omitted for
clarity.

neutral multi-allelic Moran model Baxter et al. (2007) (see also Eq. (S51) in the Supplementary
Information);

T Neutral
M =−N

M−1∑
s=1

(−1)s−1

(
M

s

)
s

M
log

( s

M

)
. (19)

Combining T Ext
M and T Neutral

M , the mean time to extinction of a mating type allele can then be
approximated by

TM =
{

T Ext
M while

∂T Ext
M

∂N > 0,
∂T Ext

M
∂c < 0,

∂T Ext
M

∂M < 0,
T Neutral

M otherwise.
(20)

In Figure 4, we can see that this captures the results of simulations very well.
In Figure 5 we plot predicted extinction times for regions of parameter space that are

prohibitively time consuming to investigate numerically. The gray regions which dominate
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the parameter space for low asexual reproduction rates depict extinction rates larger than
1011 generations. To set this into context, we compare this to the evolutionary history of fungi.
Fungi first evolved around 1.5 billion years ago (Wang et al., 1999). Assuming approximately
100 generations a year, a conservative estimate considering the doubling time of yeast which
is around 90 minutes, this leads to an order of magnitude guess of 1011 generations for the
entire evolutionary history of fungi. Hence, in the context of obligate sex (see Figure 5 top-left
panel), mating types alleles are expected to remain fixed in a population while their number
remains less than 6. This condition is severely relaxed in populations in which sex is facultative
(see for example Figure 5 bottom-right panel). Even though extinction times remain high for
realistic effective population sizes, some turnover of mating types might be expected over long
time periods, e.g. the evolutionary history of fungi. Moreover, this observation indicates that
mating types loss is most likely be driven by extreme population bottlenecks decreasing the
effective population size N .

4 Discussion

The evolutionary mechanisms that drive the number of mating type alleles observed across
species has been the topic of numerous theoretical studies. Our analysis in the context of
haploid self-incompatibility adds new results and perspectives on the evolutionary dynamics
of this type of balancing selection.

A specificity of mating type SI, as studied here, when compared to gametophytic SI, as
prevalent in plants, is the possibility to reproduce asexually. Our findings support and extend
the previous result that switching between an asexual and a sexual life cycle significantly
reduces the number of mating types in a population (Constable and Kokko, 2018). Empirically,
available data appears to support the view that more frequent sex is correlated with more
mating types (see Table 1 and again Constable and Kokko (2018)). However we are hampered
from making any strong empirical claims in this area as a result of a paucity of empirical
estimates of rates of sex in natural populations. In most species such estimates are absent,
however with new methodologies and understanding for estimating the rate of sex arising
increasingly frequently (Nieuwenhuis et al., 2018; Ennos and Hu, 2018; Hartfield et al., 2018), it
is our hope that this gap in the literature will soon be filled.

In Table 1 we test our model quantitatively against four species where estimates for the rate
of sex are available. We compare the number of mating types observed empirically with the
mode number predicted theoretically. Since estimates for the mutation rate of new mating
type alleles and the effective population size parameters are difficult to obtain, we considered
a range of values. We find that while facultative sex explains much of the variation in mating
type number, there are quantitative disagreements. In particular, for a range of parameters
(particularly large effective population size) the number of mating types is overestimated in
Saccharomyces cerevisiae, C. reinhardtii and Tetrahymena, while it is underestimated in S.
commune.

Given the simplicity of the model that we have proposed, these quantitative disagreements
are not unexpected. An interesting open problem is to explore other null models that are
capable of explaining these discrepancies. Essentially this task translates to identifying ad-
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Species Estimated c Empirical M Null model Mo QEst
M TM (Generations)

S. cerevisiae ∗ 1−1/2000 [1] 2 [5] 9 ≥ Mo ≥ 1 QEst
2 = 1.25×10−4 10274 ≥ T2 ≥ 106

C. reinhardtii 1−1/770 [2] 2 [6] 14 ≥ Mo ≥ 1 QEst
2 = 3.25×10−4 10707 ≥ T2 ≥ 109

Tetrahymena † 1−1/100 [3] 3−9 [7] 38 ≥ Mo ≥ 4 QEst
3 = 1.68×10−3 101822 ≥ T3 ≥ 1020

QEst
9 = 5.58×10−4 10153 ≥ T9 ≥ 104

S. commune 0 [4] 23,328‡ [8] 510 ≥ Mo ≥ 48 QEst
23,328 = 4.29×10−5 41?≥ T23,328 ≥ 0.5?

QEst
288 = 3.47×10−3 1026 ≥ T288 ≥ 58?

QEst
81 = 1.23×10−2 10337 ≥ T81 ≥ 104

∗ Considering only strains of S. cerevisiae that do not feature mating type switching, for which our model is appropri-
ate.
† Considering only Tetrahymena species with synclonal inheritance, for which our model is appropriate.
‡ Tetrapolar with mating type compatibility determined by genetic complexes A (with 288 variants) and B (with 81
variants).
? Lower-bound extinction time is effectively neutral (see Eq. (20)).

Table 1: A comparison of empirical values for the number of mating types in various isogamous
species with the predictions of the null model. We assume an effective population
size of between 107 ≥ N ≥ 105 in our calculations of M and TM (note that QEst

M is
independent of N ). In our calculation for M , we further assume a per-generation
mutation rate, mg = mN , of 10−6 ≥ mg ≥ 10−8. For references to empirical data,
see the list at the end of the manuscript. For a visualization of the full theoretical
distributions of M , P st

M , for each parameter set, see Section S8 in the Supplementary
Information.

ditional mechanisms that decrease selection for more mating types (where their number is
overestimated) or increase this selection strength (where their number is underestimated).
There exist a number of biologically reasonable potential candidates.

In Eq. (1) we have assumed mass action encounter rate dynamics between gametes, leading
to a linear relationship between a mating type’s frequency and its probability of finding a
sexual partner (i.e (1− xi )). This implementation neglects active mate search. In reality, in
species such as C. reinhardtii or the diatom Ditylum brightwellii, that have developed active
methods to increase the encounter rate between complementary mating types (Snell and
Goodenough, 2009; Waite and Harrison, 1992), this term might be more accurately described
by a decreasing concave up function (see for example Ashby and Gupta (2014)). This would
qualitatively recapitulate the results of Iwasa and Sasaki (1987) (Mating Kinetics 3 and 4) and
lead to a decrease in the predicted number of mating types.

Further, our model assumes that a mating type is determined by a single locus. Thus,
our model is restricted to bipolar mating type systems, as opposed to tetrapolar systems
where the mating type is determined by alleles at two loci (Nieuwenhuis et al., 2013). We
expect that additional loci may lead to larger numbers of mating types maintained in the
population (as mating type allele combinations can be regenerated through recombination,
the extinction rate of mating types will be reduced). Indeed, this would be consistent with
the larger number of mating types empirically observed in the tetrapolar S. commune, as well
as the general observation that tetrapolarity is associated with an increase in mating type
diversity (Nieuwenhuis et al., 2013). While it is interesting to note that the number of alleles
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predicted by our model capture the number of A and B self-incompatibility complexes in S.
commune separately (see Table 1), theoretically addressing the mutation-extinction hypothesis
for tetrapolar systems in a systematic way, along with the effects of encounter rate dynamics,
will be interesting areas for future investigations.

Thus far we have focused on modelling considerations that may well strengthen the mutation-
extinction balance hypothesis. Of course, non-neutral differences between mating types must
be considered as well, and a pluralistic view that incorporates the remaining hypotheses for
observed mating type numbers may be necessary. For instance, we have not accounted for the
fact that newly arising mutants are unlikely to be fully compatible with (or equally as fit as)
resident mating types, a biologically important consideration (Power, 1976; Hadjivasiliou and
Pomiankowski, 2016; Krumbeck et al., 2019) that would lower the number of types relative to
our idealized estimate. In addition, we have not considered how forms of homothalism (i.e. the
evolution of self-compatibility) may affect our results. For instance most yeasts have evolved
the ability to switch mating types between sexual generations (Nieuwenhuis and Immler, 2016;
Nieuwenhuis et al., 2018), while among ciliates some species exhibit probabilistic mating
type expression (Paixao et al., 2011). Indeed, as demonstrated in Hadjivasiliou et al. (2016),
the rapid loss of mating type diversity when sex is rare and local population sizes are low
(see Figure 5) can drive selection for mating type switching in order to maintain the capacity
for sexual reproduction. Such factors make a comparison of our model with these species
problematic. Further mechanisms that may limit the number of mating types that are not
included in our model, including UPI and costly mate search are reviewed in Billiard et al.
(2011).

Our model for haploid SI is conceptually similar to extensively studied gametophytic SI
systems observed in plants. Yet we take a novel mathematical approach in estimating the
number of mating types supported by a finite population. Instead of using the extinction
boundaries of the one-dimensional diffusion approximation of a focal mating type as in most
previous studies (Wright, 1939, 1960, 1964; Ewens, 1964; Yokoyama and Nei, 1979; Yokoyama
and Hetherington, 1982; Vallejo-Marín and Uyenoyama, 2008), we study a birth-death process
on the total number of mating types. Utilizing just the local description of the stationary
distribution around an interior stable fixed point, we circumvent the problem of the diffusion
approximation for systems with a stable deterministic behavior being inaccurate at the bound-
aries (Assaf and Meerson, 2017). This leads to robust predictions for the stationary probability
distribution P st

M (Figure 1), and, importantly, the mean extinction time of a mating type allele,
TM (Figure 4).

In calculating this mean extinction time, we deviate from the approaches taken before which
rely on the one-dimensional dynamics of a focal mating type (Takahata, 1990; Vekemans
and Slatkin, 1994). This previous method compares the one-dimensional diffusion to a time-
rescaled neutral coalescent, thus obtaining estimates for the diversification rate (i.e. the
establishment rate of a novel mating type). This comparison is conducted by assuming
constant selective strength. In our model, this would be equivalent to assuming that the
term

∑
j xi x j is constant. However, with a varying number of present mating types (and

indeed, also with fluctuations in the mating type frequencies themselves) this value is not
constant in time. Hence, a comparison with a time-rescaled neutral coalescent does not seem
appropriate since the selection strength would need to be re-assessed after each coalescence
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event which is associated with a loss of a mating type. This variation in selection strength has
been empirically observed by analyzing the genome of various Coprinus cinereus (mushroom
fungus) populations worldwide that show that selective forces in the mating type dynamics
are dependent on the number of distinct lineages (May et al., 1999); see also Richman (2000)
for other examples in the context of balancing selection. Our technique, explicitly computing
the mean extinction time by the effective birth-death process on the number of mating types,
avoids this problem. Since the varying selective strength enters in both the establishment
probability and the stationary distribution, our computed extinction time accounts for the
fluctuating selective pressure.

These explicit estimates on establishment probabilities and typical extinction times yield
new insight into the dynamics that drive the low number of mating types predicted by our
model in the rare sex regime. One might initially suspect that these numbers are the result of a
high turnover of mating type alleles, i.e. frequent extinction and invasion events. However
we find that in fact they are a result of very low invasion probabilities for novel mating types,
combined with rapidly decreasing extinction times as a function of resident mating type
diversity. It is worth mentioning that although our approximations for the extinction time
break down when the resident state becomes highly unstable (i.e. when M À Mo), these
represent states that would be very short lived in nature, and thus are not relevant from a
biological perspective.

Finally, in Table 1 we link our theoretical observation of small numbers of mating type
alleles yielding very large extinction times (see Figure 4) to some species examples. Indeed,
the large extinction times found by the quantitative study are in line with previous empirical
observations of long terminal branches in allelic genealogies under negative-frequency de-
pendent selection, e.g. in fungi (May et al., 1999) and Solanaceae (Uyenoyama, 1997). Similar
to previous simulation studies (Slatkin and Muirhead, 1999; Gervais et al., 2011) we find that
the number of resident mating types strongly influences the diversification rate; the larger the
resident number, the lower the diversification rate. This slowdown is ubiquitously observed in
natural systems under balancing selection, such as self-incompatibility in fungi (May et al.,
1999) or Solanaceae (Uyenoyama, 1997) and MHC-systems (Solberg et al., 2008). We find
that long terminal branches in self-incompatibility systems, corresponding to old mating
type allele ages (with some being older than the corresponding species age (Richman, 2000))
emerge naturally under balancing selection for two reasons: (i) the stability of the internal
equilibrium can lead to extremely large extinction times of alleles thus enabling such long
branches and (ii) the lower establishment rate due to a large number of resident SI alleles
slows down the diversification rate and hence decreases the number of newly established
mating types.

In conclusion, we analyzed the evolutionary dynamics of self-incompatible mating types in
facultatively sexual isogamous species. Our results refine previous estimates on the number of
mating types maintained in a finite population as well as on the establishment probability of
a newly arising mating type allele. Furthermore, we have used these results to compute the
mean extinction time of a focal mating type via an effective birth-death process describing the
number of mating types. This estimate naturally incorporates variation in selection strength
due to varying numbers of resident mating types, a fact that previous studies have failed to
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incorporate. We are therefore able to qualitatively explain the empirically and numerically ob-
served slowdown of allelic diversification rates in populations under balancing selection. The
here presented methodology is theoretically extendable to other systems exhibiting negative-
frequency dependent selection.
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6 Citations for Table 1.

[1] As addressed within the discussion, our model is only strictly appropriate for populations
in which the mating type does not switch between generations. Mating type switching is
prevalent among many Saccharomyces, however most populations feature non-switching
strains (Nieuwenhuis et al., 2018). We assume S. cerevisiae has a similar ecology to S. paradoxus,
where sex has been estimated to occur between once every thousand and three thousand
generations (Tsai et al., 2008) (indeed, estimates for the rates of outcrossing in both species
are comparable).
[2] The rate of sex in C. reinhardtii has been estimated to once in every 770 generations (Hasan
and Ness, 2018).
[3] We assume that synclonal Tetrahymena species (such as T. americanis, see [7]) feature
similar rates of sex to T. thermophila. Our estimate on the rate of sex is based on a minimal
sexually immature period of 60−100 fissions in T. thermophila (Doerder et al., 1995). We note
however that the frequency of cellular conjugation events observed in other ciliates indicates
that lower rates of sex may be appropriate (Lucchesi and Santangelo, 2004).
[4] Molecular analysis suggests that S. commune features some of the highest rates of sex within
the fungal kingdom (Nieuwenhuis and James, 2016). In addition, most of the Agaricomycotina
(the class to which S. commune belongs) are known to be obligately sexual (Nieuwenhuis and
Aanen, 2012). We therefore assume a rate of asexual reproduction of c = 0 for S. commune.
We note however that the life-cycle of S. commune features more complicated dynamics than
accounted for by our model; it is multicellular and can exhibit vegetative growth as a haploid
mycelium.
[5] The mating type of Saccharomyces species is determined by one of two alleles at the
MAT locus, termed α and a (Butler, 2007). We note that often these variants are referred
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to as idiomorphs (rather than alleles) because of large differences in their size and genetic
composition (Butler et al., 2004).
[6] C. reinhardtii has two mating types, denoted mt+ and mt−, each determined by one of two
alleles at the MT locus. Similar mating type determination is found among other isogamous
algae (Hamaji et al., 2013; Sekimoto, 2017).
[7] Tetrahymena species T. americanis, T. hegewischi, T. hyperangularis and T. pigmentosa
have mating type numbers nine, eight, four and three respectively (Phadke and Zufall, 2009).
We take care to focus only on these synclonal species, defined as those in which mating type
is inherited deterministically based on parental genotype. In caryonidal species, such as T.
thermophila, the mating type of progeny is determined stochastically (Phadke and Zufall,
2009), and thus a comparison of our model with these species is not appropriate.
[8] The mating type of haploid S. commune is determined by two complementary pathways,
controlled by unlinked genetic complexes A and B . Each of these regions consists of two
weakly recombining loci, leading to a total of four mating type loci. These loci, denoted Aα,
Aβ, Bα, and Bβ, have respectively 9, 32, 9 and 9 alleles (Stankis et al., 1992). Full compatibility
between two mating types is achieved when both the A and B complexes of the mates are of
different specificities; semi-compatibility occurs when the only one of these complexes is of
different specificity (Raudaskoski and Kothe, 2019).
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S1 Master equation of the null model

In this section we present the full mathematical description of the model. As
discussed in the main text, the function Tij (see Eq. (1) in the Main Text)
gives the probability per unit time that the number of individuals carrying
the mating type i allele in the population increases by one and that of type j
decreases by one from an initial state n = (n1, n2, . . . , ni, . . . , nj, . . .), e.g.

Tij =

(
c
ni

N
+

(1− c)
2

ni

N

∑
k 6=i nk

N

)(nj

N

)
. (S1)

For ease of notation, we now introduce the probability transition rate T (n′|n),
which gives the probability per unit time that a population transitions to a
state n′ from a state n. For our model, the two quantities are related as

T (n′|n) = Tij if n′ = (. . . , ni + 1, . . . , nj − 1, . . .) ,

T (n′|n) = 0 otherwise . (S2)

The probability of being in a state n at time t, Pn(t), evolves according to
the master equation [Kam07], which can be compactly expressed as

dPn(t)

dt
=
∑

n′ 6=n

[T (n|n′)Pn′(t)− T (n′|n)Pn(t)] . (S3)

This equation can be intuitively understood as follows: The probability
of being in a state n increases with the probability that the population
transitions into state n from a state n′ but decreases with the probability
that the population was already in state n and transitioned out of it.

For arbitrary initial conditions, it is difficult to solve Eq. (S3), for Pn(t).
A simpler quantity is the stationary probability distribution P st

n , to which the
population relaxes on very long timescales. For a time-homogeneous process
P st
n is given by the solution to the set of difference equations

∑

n′ 6=n

[
T (n|n′)P st

n′ − T (n′|n)P st
n

]
= 0 . (S4)

In [CK18], it was shown that an analytic solution for P st
n was obtainable for

the model defined by Eq. (S2) (see also, [CK18]: Supplementary Information).
This is given in the Main Text, Eq. (6); denoting by n↓ the vector n reordered
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with its largest elements first, the stationary distribution of the population
composition can be expressed as

P st
n ∝

M−1∏

i=1

n↓i−1∏

k=0

b(k)d (Φi − k)

b (Φi − k − 1) d(k + 1)
, (S5)

where M is the number of non-zero elements of n (i.e. the number of mating
types in state n), and b(k) and d(k) are given by

b(ni) = c
ni

N
+

(1− c)
2

ni

N

N − ni

N
, if ni ≥ 1 ,

b(ni) =
m

Mmax −M
, if ni = 0 , (S6)

d(nj) =
nj

N
, for all nj ,

(see also, Eq. (4) in the Main Text) and

Φi = N −
i−1∑

j=1

n↓j . (S7)

The parameter Mmax marks the length of the vector n (i.e. Mmax is the
number of distinct possible mating types in the model, which may exceed N).
The factor 1/(Mmax −M) in the mutation term (which is suppressed in the
main text) is an accounting term that ensures that the total population level
mutation rate is m, i.e.

Mmax∑

i=1

b(ni)δ(ni − 0) = m, (S8)

where δ(ni − 0) is the Dirac delta function. As we take the limit Mmax →∞
(see Section S3), the appearance of this factor in our transition rates does not
alter our results. The validity of Eq. (S5) as a solution can be demonstrated
by its direct substitution into Eq. (S4).
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S2 Approximation of the quasi-stationary dis-

tribution of a focal mating type

In this section we will calculate an approximate expression for the quasi-
stationary distribution of mating type alleles around one of the fixed points
(deterministic equilibria). We expect this approximation to be valid on
timescales shorter than those of mutation or extinction events.

The approximation that we will use is equivalent to the Linear Noise
Approximation (LNA) or a central limit theorem for Markov processes, see
[EK86, Kam07]. The procedure is as follows: First we apply a diffusion
approximation to Eq. (S3), to obtain a non-linear advection-diffusion equation
for the frequency of mating type alleles. Second we will linearize this resultant
equation about its fixed point value, to obtain a form of the equation that
is amenable to analytical simplifications. Since we are interested in the
distribution of mating type alleles close to the fixed point of a focal mating
type allele, we will assume both that m = 0 and that there are no extinctions
(so that M is fixed to its initial value) for the remainder of this section.

We begin by applying the diffusion approximation to Eq. (S3); we introduce
variables xi = ni/N that measure the frequency of a given mating type allele
in the population. The variables xi are approximately continuous when the
population size N is large. We transform into these variables and conduct
a Taylor expansion of Eq. (S3) in the small parameter 1/N . Truncating at
next to leading order, we obtain the following non-linear advection-diffusion
equation, the Fokker-Planck equation (FPE),

∂p(x, t)

∂τ
= −

M∑

i=1

∂

∂xi
[Ai(x)p(x, t)] +

1

2N

M∑

i,j=1

∂2

∂xi∂xj
[Bij(x)p(x, t)] , (S9)

describing the time-evolution of the continuous probability distribution of
the variables x, p(x, t). The expressions for the advection vector A(x) and
diffusion matrix B(x) can be uniquely defined from the underlying probability
transition rates Eq. (S1) using well-practiced standard methods [Kam07].

In the current notation we find that the advection vector in Eq. (S9) is
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given by

Ai(x) =
M∑

j 6=i

Tij − Tji ,

=
M∑

j 6=i

xi

[
c+

(1− c)
2

(1− xi)
]
xj − xj

[
c+

(1− c)
2

(1− xj)
]
xi ,

=

(
1− c

2

) M∑

j=1

xixj(xj − xi) . (S10)

As ẋ = A(x) in the N →∞ limit (see [MBR14]), this vector essentially gives
the deterministic dynamics of the population. Therefore solving A(x∗) = 0
allows us to calculate the deterministic fixed point of the dynamics, which we
find lies at x∗i = 1/M for i = 1, . . . ,M . Meanwhile the diagonal elements of
the diffusion matrix are given by

Bii(x) =
M∑

j 6=i

Tij + Tji ,

=
M∑

j 6=i

xi

[
c+

(1− c)
2

(1− xi)
]
xj + xj

[
c+

(1− c)
2

(1− xj)
]
xi ,

=
M∑

j 6=i

xixj

[
2c+

(
1− c

2

)
(2− xi − xj)

]
, (S11)

while the off-diagonal entries are given by

Bij(x) = − (Tij + Tji) , ∀i 6= j ,

= −
{
xi

[
c+

(1− c)
2

(1− xi)
]
xj + xj

[
c+

(1− c)
2

(1− xj)
]
xi

}
,

= −xixj
[
2c+

(
1− c

2

)
(2− xi − xj)

]
. (S12)

With the non-linear FPE for p(x, t) now defined, we proceed to linearize the
system about its deterministic fixed point.

As addressed, the deterministic fixed point of the system with M mating
types is given by x∗i = 1/M for i = 1, . . . ,M . We assume that the population
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relaxes to the vicinity of this fixed point before any mutation or extinction
events have had time to occur. If N is large, the population will then approach
a quasi-stationary distribution around this fixed point on an intermediate
timescale. Fluctuations about the fixed point will be of order 1/

√
N due to

the central limit theorem for density dependent Markov processes [EK86].
The LNA [Kam07] utilizes this fact by making the change of variables

xi = x∗i +
1√
N
ξi (S13)

to linearize the FPE around the fixed point. Neglecting terms of order 1/N
or lower, we obtain the following FPE for φ(ξ, t), the probability distribution
of ξ (see [Kam07]; Eq. (6.4) and surrounding discussion):

∂φ(ξ, t)

∂τ
= −

M∑

i,j=1

Jij
∂

∂ξi
[ξjφ(ξ, t)] +

1

2

M∑

i,j=1

Bij(x
∗)

∂2

∂ξi∂ξj
[φ(ξ, t)] , (S14)

where J is the Jacobian matrix of A(x),

Jij =
∂Ai

∂xj

∣∣∣∣
x=x∗

(S15)

As addressed, we are interested in obtaining the stationary distribution
of fluctuations about the fixed point (the quasi-stationary distribution of x
around x∗). Our first step is to obtain the stationary distribution φst(ξ) that
is the solution to Eq. (S14) given a constant number of mating types M (the
quasi-stationarity assumption);

−
M∑

i,j=1

Jij
∂

∂ξi

[
ξjφ

st(ξ)
]

+
1

2

M∑

i,j=1

Bij(x
∗)

∂2

∂ξi∂ξj

[
φst(ξ)

]
= 0 . (S16)

Since Eq. (S16) is linear, φst(ξ) is normally distributed [Kam07], with
mean 0 and a covariance matrix, Σ, that is the solution to the following
Lyapunov equation (see [HJ91]);

JΣ + ΣJ +B(x∗) = 0 . (S17)

We now must determine the form of the matrices J and B(x∗), which can
be calculated from Eqs. (S10-S12). Substituting xM = 1−∑M−1

j=1 xj we find
that the Jacobian matrix is diagonal with

Jii = −
(

1− c
2

)
1

M
, ∀i , Jij = 0 , ∀i 6= j , (S18)
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Figure S1: Stochastic simulations (orange histograms) and analytic predictions
(blue lines) for the quasi-stationary marginal distribution of x1 in the model.
Simulation data is taken from stochastic simulations of a population sampled
once every generation for 105 generations. Analytic results are those predicted
by the linear Gaussian approximation, Eq. (S25). The population size of
N = 420 in each figure has been chosen so that the fixed point value Nx∗ is
integer in each plot. Histogram bin sizes are 1/N .

while the diffusion matrix evaluated at the fixed point is

Bii(x
∗) = (1− c)

(
M − 1

M2

)(
1− 1

M

)
+ 2c

1

M

(
1− 1

M

)
,∀i , (S19)

Bij(x
∗) = − (1− c) 1

M2

(
1− 1

M

)
− 2c

1

M2
, ∀i 6= j . (S20)

Since the Jacobian matrix can be expressed by

J (M) = −
(

1− c
2M

)
I , (S21)

where I is the identity matrix, Eq. (S17) can be simplified to

Σ =
M

(1− c)B(x∗) . (S22)

We also note that since the original model is a Moran type model in which the
number of individuals N is constant, J , B(x∗) and Σ are all (M−1)×(M−1)
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matrices. Therefore the determinant of Σ can be calculated to be

|Σ| = 1

M

(
1 + c

1− c −
1

M

)M−1

. (S23)

This can be verified by solving the matrix of interest, i.e. for a given M with
a computer algebra program, e.g. Mathematica.

In summary, we find that the stationary distribution of ξ is given by

φst(ξ) = N (0,Σ) , (S24)

where 0 is the zero vector and Σ is given by Eq. (S22). Re-expressing this
distribution in terms of our x variables we find

pst(x) ≈ N (x∗,Σ/N) , (S25)

at intermediate times in the region of the fixed point, as illustrated in Figure S1.
Here we see that as the number of mating types in the population, M , increases,
the mean of the quasi-stationary PDF, x∗ = 1/M , approaches the extinction
boundaries. Simultaneously, increased M leads to increased variance in the
quasi-stationary PDF (see Eqs. (S19) and (S22)), though the co-variance
of the distribution decreased (fluctuations in each mating type frequency
become less correlated, see Eqs. (S20) and (S22)). The variance of the PDF
also increases as the rate of asexual to sexual reproduction increases, and
fluctuations around the fixed point frequency increase in magnitude (see
Eqs. (S19) and (S22)).

Our final step is to re-express Eq. (S25) in terms of the number of alleles
of each type in the population. Let η(M) be a vector giving an approximate,
potentially non-discrete, value of n in the region of a deterministic fixed point
with M mating types, e.g.

η(M) = Nx∗ ,

=




M elements︷ ︸︸ ︷
N

M
,
N

M
, . . . ,

N

M
, 0, 0, . . .


 . (S26)

For clarity, we choose to write this quasi-stationary distribution as

P qst(M)(n) = N (η(M), NΣ(M)) , (S27)

where the superscript (M) emphasizes that the form of this quasi-stationary
distribution and the covariance matrix change with the number of mating
types present at the fixed point.
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S3 Approximation of the stationary distribu-

tion of the number of mating types, P st
M

In the previous two sections, we provided a solution for P st
n , the stationary

distribution of the population composition, and for P qst(M)(n), the quasi-
stationary distribution of a focal mating type. We will need both of these
solutions to obtain an expression for the stationary distribution of the num-
ber of mating types, Pst

M - our actual object of interest. These stationary
distributions of the population composition and the stationary distribution
of the number of mating types are related by

Pst
M =

∑

n∈S(M)

P st
n , (S28)

where S(M) is the set of all vectors n with M non-zero elements. In other
words, to obtain Pst

M we need to sum our expression for P st
n over all the states

that contain M mating types. As this calculation is cumbersome, we seek an
analytic approximation.

We consider the biologically reasonable parameter regime in which the
population size, N , is large and the per-generation mutation rate, mg = mN , is
small. Under these conditions the population quickly relaxes to a distribution
in the region of a deterministic fixed point following an extinction or invasion
event. We will use the expression in Eq. (S27) to approximate this quasi-
stationary distribution in the region of the fixed point. By doing so, we can
replace the sum in Eq. (S28) by a sum of Gaussian distributions (see Figure
S2).

The calculation used to obtain Eq. (S27) is based on a linearization of
the population dynamics around a deterministic fixed point. As such the
expression contains no information about how much more likely the population
is to be in the region of a given fixed point with M mating types as opposed
to in the region of a fixed point M + 1 mating types. In order to renormalize
each of the normal distributions by the appropriate amount, we “pin” the
peak of each normal distribution (see Eq. (S27)) to the height of the full
distribution, P st

n from Eq. (S5), evaluated in the region of the relevant fixed
point. Therefore, we renormalize the height of the Gaussian distribution
Eq. (S27) to the height of P st

n at n = η(M) (see Eq. (S26)). Thus, the
probability distribution in the region of a deterministic fixed point with M

9
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Figure S2: Figure illustrating the analytic approximation used to estimate
the distribution of P st

n and thus simplify the calculation of Pst
M via Eq. (S28).

mating types can be described by the following function

P st
η(M) exp

[
− 1

2N

(
n− η(M)

)T [
Σ(M)

]−1 (
n− η(M)

)]
, (S29)

(see Eq. (S27)). Now, the probability of being in the region of a specific fixed
point with M mating types is simply the above function integrated over all n:

P st
η(M)

∫ ∞

−∞
. . .

∫ ∞

−∞
exp

[
− 1

2N

(
n− η(M)

)T [
Σ(M)

]−1 (
n− η(M)

)]

dn1 . . . dnM−1

= P st
η(M)

√
(2πN)M−1| [Σ(M)] |

= P st
η(M)

√
(2πN)M−1

1

M

(
1 + c

1− c −
1

M

)M−1

=
P st
η(M)√
M

[
2πN

(
1 + c

1− c −
1

M

)](M−1)/2
. (S30)

Eq. (S30) approximates the probability of being in the region of a particular
fixed point with M mating types. The probability of the population having
M mating types is therefore given by Eq. (S30) multiplied by the number
of fixed points with M mating types. Recall that we introduced Mmax as a
temporary parameter capturing the length of the vector n (we will shortly
take the limit Mmax → ∞). The number of ways of choosing a fixed point

10



containing M distinct present mating types from Mmax potential mating types
is then given by the Binomial coefficient, such that

Pst
M =

∑

n∈S(M)

P st
n

≈
(
Mmax

M

)
P st
η(M)√
M

[
2πN

(
1 + c

1− c −
1

M

)](M−1)/2
. (S31)

We now proceed to calculate P st
η(M) explicitly.

By substitution of the functions b(k) and d(k) into Eq. (S5), we find after
some algebraic simplification [see [CK18]: Eq. (S35)] that

P st
n ∝

{(
2mN

Mmax −M

) [(1+c
1−c

)
N
]
!

(1 + c)

}(M−1) [
2

(
c

1− c

)
N

]
!×

M∏

i=1

{
1

n↓i

}


1[(
1+c
1−c

)
N − n↓i

]
!



 .

It is therefore straightforward to show that

P st
η(M) ∝

(
1

Mmax −M

)M−1

ΩM (S32)

where

ΩM =

{
2mN

1 + c

[(
1 + c

1− c

)
N

]
!

}(M−1) [
2

(
c

1− c

)
N

]
!×

(
M

N

)M {[
N

(
1 + c

1− c −
1

M

)]
!

}−M
.

Upon substitution of Eq. (S32) into Eq. (S31), we find

Pst
M ∝

(
Mmax

M

)(
1

Mmax −M

)M−1
ΩM√
M

[
2πN

(
1 + c

1− c −
1

M

)](M−1)/2
.(S33)

As Pst
M is proportional to the function on the right hand side of Eq. (S33),

we can divide through this function by a constant. We choose the binomial

11



coefficient
(
Mmax

1

)
. The terms involving Mmax in Eq. (S33) can then be

considered separately, and the limit Mmax →∞ taken;
(
Mmax

1

)−1(
Mmax

M

)(
1

Mmax −M

)M−1

=
Mmax→∞

1

M !
. (S34)

Thus, for Mmax → ∞, our final expression for the approximate stationary
distribution of the number of mating types is

Pst
M =

1

M
1√
M

[
2πN

(
1 + c

1− c −
1

M

)](M−1)/2(
M

N

)M (
2mN

1 + c

)M−1

× 1

M !

{[
N

(
1 + c

1− c

)]
!

}M−1{[
N

(
1 + c

1− c −
1

M

)]
!

}−M
(S35)

where we have also absorbed any constant terms that do not involve M
(e.g. [2cN/(1− c)]!) into the normalization factorM, which is defined so that

N∑

M=1

Pst
M = 1 . (S36)

Eq. (S35) can be further simplified by noting that if N is large the terms
in the final two factorials are large when M ≥ 2. We may then express these
factorials using the Stirling approximation [AS65];

[
N

(
1 + c

1− c

)]
! ≈

[
2πN

(
1 + c

1− c

)]1/2 [
N

e

(
1 + c

1− c

)]N(1+c)/(1−c)

,

[
N

(
1 + c

1− c −
1

M

)]
! ≈

[
2πN

(
1 + c

1− c −
1

M

)]1/2
×

[
N

e

(
1 + c

1− c −
1

M

)]N( 1+c
1−c
− 1

M )
.

Substituting these expressions into Eq. (S35), we find after some algebra that
for M ≥ 2,

Pst
M ≈ (2π)

M
2
−1

M

(
2m

1 + c

)M−1
MM− 1

2

M !

[(
1+c
1−c

)M−1
1+c
1−c − 1

M

]1/2
×

N (M−1)/2



(

1 + c

1− c −
1

M

)( 1+c
1−c

1+c
1−c − 1

M

)M 1+c
1−c




N

, (S37)
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where we have again absorbed any terms independent of M into the normal-
ization factor M. We can see that Eq. (S37) matches the full expression in
Eq. (S35) very well (see also Figure 1 in the Main Text).
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S4 The mode of the stationary distribution

of the number of mating types

Since the distribution Pst
M is unimodal (see Figure 1, Main Text), determining

the mode of Pst
M , amounts to obtaining the first value of M for which

Pst
M+1 < Pst

M . (S38)

This can be obtained with a simple numerical algorithm. Alternatively, we
can assume that M is approximately continuous and solve

Pst
M+1 = Pst

M . (S39)

We introduce rM as

rM =
Pst

M

Pst
M−1

. (S40)

Solving Eq. (S39) is equivalent to finding the root of the following expression

rM − 1 = 0 . (S41)

To this end we seek to simplify our expression for rM .
Note that as rM involves the ratio of terms in Pst

M , the normalization
factor M cancels. We obtain

rM =
√

2π
2m

1 + c

(
1 + c

1− c

)N( 1+c
1−c)+

1
2
(
M − 1

M

) 3
2
−M
(

1+c
1−c − 1

M
1+c
1−c − 1

M−1

)− 1
2

×

1√
N



(

1+c
1−c − 1

M
1+c
1−c − 1

M−1

)−M( 1+c
1−c)+1(

1 + c

1− c −
1

M − 1

)− 1+c
1−c




N

. (S42)

Substituting Eq. (S42) into Eq. (S41), we find that a single root exists for
M that gives the mode number of mating types that is straightforward to
compute numerically with a standard root finding algorithm.
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S5 Establishment probabilities

In the following we compute the establishment probability of a novel mating
type in the population. We consider the case of facultative sex, i.e. the
probability for asexual reproduction is given by c ∈ (0, 1]. Since the internal
fixed point is stable in this case, see for example [IS87, Mating kinetics I], the
calculation of the survival probability of the invading type gives a reasonable
approximation of the establishment probability. Initially, when the mutant is
still rare, the mutant individuals evolve independently. Hence, the mutant
dynamics can be described by a branching process. For a general introduction
on branching processes we refer to [HJV05, All11].

The birth and death probability for a rare invading mating type in a
population of M resident mating types can be written in terms of the transition
probabilities given in Equation (S1). Assuming that the novel mating type
has the index M + 1 and is present in k copies we find that it increases by
one with rate

T+
k =

M∑

j=1

T(M+1)j =
M∑

j=1

(
c
k

N
+

(1− c)
2

k

N

∑M
i=1 ni

N

)(nj

N

)
, (S43)

and decreases by one with rate

T−k =
M∑

j=1

Tj(M+1) =
M∑

j=1

(
c
nj

N
+

(1− c)
2

nj

N

∑
i 6=j ni

N

)(
k

N

)
. (S44)

Assuming that the resident mating types are in the stationary state, i.e. setting
nj = N

M
for all resident mating types and therefore having

∑M
j=1 nj/N = 1 we

find

T+
k ≈ c

k

N
+

1− c
2

k

N
=

k

N

(1 + c)

2
(S45)

and

T−k ≈ c
k

N
+
k

N

(1− c)
2

M∑

j=1

nj

N

N − nj

N

≈ c
k

N
+
k

N

(1− c)
2

(
1− 1

M

)

=
k

N

(1 + c)

2

(
1− 1

M

)
+
k

N

c

M
.

(S46)
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Using the formula for the probability of extinction in a birth-death process
(see e.g. [All11, Theorem 6.2])

pext =

∑∞
k=1

T−1 ···T
−
k

T+
1 ···T

+
k

1 +
∑∞

k=1

T−1 ···T
−
k

T+
1 ···T

+
k

, (S47)

we see that it depends on the ratio of the rates given in equations (S45)
and (S46). We obtain

T−k
T+
k

=
k
2
(1 + c)

(
1− 1

M

)
+ kc

M
k
2
(1 + c)

=

(
1− 1

M

)
+

2c

M(1 + c)
= 1− 1− c

M(1 + c)
.

(S48)
Then equation (S47), using the geometric series, simplifies to

pext =

1

1−(1− 1−c
M(1+c))

− 1

1 +

(
1

1−(1− 1−c
M(1+c)

)
− 1

) = 1− 1− c
M(1 + c)

. (S49)

This results in a survival probability of

psurv = 1− pext =
1

M

(1− c)
(1 + c)

. (S50)

Since QEst
M equals the survival probability of this process we have found the

expression in Eq. (13) from the Main Text.
We note that for c = 1, i.e. exclusively clonal reproduction, our model

reduces to a multi-allelic Moran model. In this setting the establishment
probabilities can not be calculated via the here implemented approach.
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S6 Breakdown of the mean extinction time

calculation

In the main text, we calculate an approximation for the mean extinction
time as a function of the population size, N , rate of asexual reproduction
c and number of resident mating types, M (see Eq. (18)). We also show
that in certain regions of parameter space, this approximation breaks down
(see Eq. (20)). In these parameter regions, in which genetic drift dominates
the dynamics, the mean time to extinction of a resident allele is better
approximated by the neutral multi-allelic Moran model (see below).

In the following we show that it is the inaccuracies of our quasi-stationary
linear approximation for the distribution of mating type allele frequencies
about deterministic fixed points (see Section S2) that drives this break down.
This approximation assumes that a given fixed point of the deterministic
system is sufficiently stable that the distribution of allele frequencies around
this fixed point can be well captured by a Gaussian (normal) distribution
(see Eq. (S25)). Clearly this local description of the distribution does not
account for the behaviour of the system at the extinction boundaries. When
population sizes are high, rates of asexual reproduction low, and the number
of resident mating types small, the probability mass predicted by the Gaussian
approximation at these extinction boundaries is negligible. In this regime
our approximation continues to be accurate, as illustrated in Figure S1.
However, outside this range (i.e when N is low, c high, or M large), the
variance of the Gaussian approximation becomes sufficiently large that non-
negligible probability mass is predicted at the boundary (see Figure S3). These
parameter regions correspond to areas where drift dominates the dynamics.

In regions of parameter space where the Gaussian approximation becomes
inaccurate, we expect our expression for the distribution of mating types, Pst

M ,
(which relies on the Gaussian approximation, see Eq. (S28) and the subsequent
calculations) to also become inaccurate. However, as these inaccuracies occur
in biologically less interesting regions of parameter space where mating types
are frequently becoming extinct, they do not affect the dominant modes of
Pst

M (see Figure 1 in the Main Text). In contrast, in our investigation of
extinction times we are sometimes probing very unstable configurations of
the resident mating types (see Figure 5 in the Main Text), and thus the
approximation breaks down in these parameter regions.

We now show that it is indeed the Gaussian approximation for the quasi-
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Figure S3: Figure illustrating the breakdown in the quasi-stationary ap-
proximation for the distribution of alleles around a fixed point, P qst(n) (see
Eq. (S27)). We consider two mating types in a fairly small population, M = 2,
N = 200. For c = 0, the approximation remains physically reasonable. As c is
increased however, a non-negligible amount of probability mass builds up on
the boundary relative to that at the fixed point around which the distribution
is centered (that is, the ratio of P qst(2)(η(1)) to P qst(2)(η(2)) tends to one). A
similar pattern can be observed as N decreases and M increases.

stationary distributions of mating type allele frequencies about deterministic
fixed points that drives the breakdown of the extinction time calculation. In
Figure S4 we plot the probability mass predicted by the Gaussian distribution
at an extinction boundary relative to the distribution’s value at the corre-
sponding fixed point. This quantity should be very low for the approximation
to remain physically reasonable (i.e. there should be very little mass at the
extinction boundary), while it approaches one as the predicted distribution
becomes increasingly flat and inaccurate. We observe that high values of
predicted probability mass at the extinction boundary coincide with regions
where our prediction for the mean time to extinction, Eq. (18), break down,
and the neutral theory becomes more appropriate (see Eq. (20)).
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Figure S4: Figure illustrating the coincidence of the breakdown in the quasi-
stationary approximation for the distribution of alleles around a fixed point,
P qst(n) (see Eq. (S27)). The colorbar indicates the probability mass predicted
by the quasi-stationary distribution at the nearest extinction boundary, rela-
tive to the probability mass at the center of the quasi-stationary distribution
(i.e. at the deterministic fixed point). Low values (in white) are associated
with regions of parameter space where the quasi-stationary distribution re-
mains reasonable. High values (in deep blue) are associated with regions
where the quasi-stationary distribution becomes a poor approximation (see
Figure S3). Areas to the top left of the red dashed lines are those where the
conditions in Eq. (18) are violated (that is, our approximation for the mean
time to fixation breaks down).
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S7 Neutral mean extinction time

We derive an approximation for the neutral mean extinction time as given
in Eq. (19) in the Main Text. Therefore, we identify our process with the
multi-allelic neutral Moran model. This model has been analysed in detail
in [BBM07]. Using their Eq. (44) and plugging in our parameter values, i.e.
x(0) = x∗ = 1/M and r = 1 we find

τ = −N
M−1∑

s=1

(−1)s−1
(
M

s

)
s

M
log
( s
M

)
, (S51)

which is the result in Eq. (19) from the Main Text. Note, that there is a
time-scale difference of 1/2 between their model (Wright-Fisher diffusion) and
our implementation (Moran model) explaining. Furthermore, we consider the
dynamics on the original time-scale resulting in the factor N in front of the
sum (see also their comment preceding their Eq. (2)).
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S8 The stationary distribution P st
M for the pa-

rameters given in Table 1.
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Figure S5: Theoretical distributions for Pst
M (see Eq. (9) in the Main Text)

using parameter values from Table 1 in the Main Text. Panel top-left ((1−
c) = 1/2000): parameters estimated for S. cerevisiae. Panel top-right ((1−
c) = 1/770): parameters estimated for C. reinhardtii. Panel bottom-left
((1−c) = 1/100): parameters estimated for Tetrahymena. Panel bottom-right
((1 − c) = 1): parameters estimated for S. commune. Note that for clarity
the scale of the M axis changes between panels. Also note that for the final
panel (bottom-right) the region 100 ≤M ≤ 400 has been omitted.
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