
RISC-V design using FOSS
Jean-Paul CHAPUT

LIP6, Sorbonne Université
CIAN Team

Marie-Minerve LOUËRAT, Roselyne CHOTIN, Jean-Paul CHAPUT, Adrian SATIN
Jean-Paul.Chaput@lip6.fr

Paris, October 2nd, 2019
This work is licensed under a Creative CommonsAttribution-NonCommercial-ShareAlike 4.0 International License

J.-P. CHAPUT (SU-LIP6) RISC-V design using FOSS Oct 2nd , 2019 1 / 19



Plan
1 Goals
2 A First Try at RISC-V
3 Design Flow
4 Introduction to Symbolic Layout
5 Description of the Design Flow
6 Demo

J.-P. CHAPUT (SU-LIP6) RISC-V design using FOSS Oct 2nd , 2019 2 / 19



Goals

/ Taking the next step for an open processor.
/ Give the ability to publish, share and modify the hardware designdown to the layout.
/ Increase security.
/ Ensure the continued existence of the hardware.

J.-P. CHAPUT (SU-LIP6) RISC-V design using FOSS Oct 2nd , 2019 3 / 19



Goals

/ Taking the next step for an open processor.
/ Give the ability to publish, share and modify the hardware designdown to the layout.
/ Increase security.
/ Ensure the continued existence of the hardware.

201
9-0

9-2
9 RISC-V design using FOSSGoals

Goals

• It seems only natural for a free and open processor to be built using freetools.
• By checking the layout, we can better detect hardware trojan and ensurethe chip is exactly what it is.
• We expect FOSS to have the same effect of community building.
• NASA was forced to scavenge 8086 on eBay for the space shuttle around2002.



Implemented RISC-V ISA

/ RV32I user-space ISA only.
/ Target node will be AMS 350nm, 4metal layers.

J.-P. CHAPUT (SU-LIP6) RISC-V design using FOSS Oct 2nd , 2019 4 / 19



Implemented RISC-V ISA

/ RV32I user-space ISA only.
/ Target node will be AMS 350nm, 4metal layers.

201
9-0

9-2
9 RISC-V design using FOSSA First Try at RISC-V

Implemented RISC-V ISA

• We choose to start with as small possible a component. Always betterfor debugging...
• Use of amature node so not too expensive and not too much features toimplement in the tools.



Architecture of our RISC-V

J.-P. CHAPUT (SU-LIP6) RISC-V design using FOSS Oct 2nd , 2019 5 / 19



Architecture of our RISC-V

201
9-0

9-2
9 RISC-V design using FOSSA First Try at RISC-V

Architecture of our RISC-V

• A simple five stage pipeline.
• Based on our experience over the design of the MIPS R3000.
• I’m not the architect, so I couldn’t answer tricky design questions...



General Outline of a VLSI Design Flow

vhdl

vlog

ap gds
synthesis

Physical s2r

validation

HDLs

validation validation

synthesis

Logical

J.-P. CHAPUT (SU-LIP6) RISC-V design using FOSS Oct 2nd , 2019 6 / 19



General Outline of a VLSI Design Flow

vhdl

vlog

ap gds
synthesis

Physical s2r

validation

HDLs

validation validation

synthesis

Logical
201

9-0
9-2

9 RISC-V design using FOSSDesign Flow
General Outline of a VLSI Design Flow

• A word about HDL languages, for now we did it the old way in VHDL.CHISEL and SPINALHDL have a logic more suited for programmers thancomputer scientists or electronic people. MIGEN is better and written inPython but do not generate VHDL (yet ?). All of them are difficult toextend if an unsupported feature occurs.
• The LIP6 contribution to the flow is mostly focused on the physicaldesign stage.
• More tools exists for the stage before because they can also target FPGAs.
• The equal size of the boxes do not reflect on the hardness of eachstage...
• The last step, with S2R will be explained shortly thereafter.



A brief history of symbolic layout (1/2)

2λ

4
λ

metal2METAL2

λ

λ
1λ = 0.5 µ

µm

µ1

µ
m

µ
2

Mead & Conway

metal2 metal2

GDSIIap

Symbolic

J.-P. CHAPUT (SU-LIP6) RISC-V design using FOSS Oct 2nd , 2019 7 / 19



A brief history of symbolic layout (1/2)

2λ

4
λ

metal2METAL2

λ

λ
1λ = 0.5 µ

µm

µ1

µ
m

µ
2

Mead & Conway

metal2 metal2

GDSIIap

Symbolic

201
9-0

9-2
9 RISC-V design using FOSSIntroduction to Symbolic Layout

A brief history of symbolic layout (1/2)

• Invented in 1980 by MEAD & CONWAY. Draw your layout using a specialdimension unit, the λ. Then scale to the target node. Assume that theshrink rate is almost the same for all layers.
• Designed to cross the boundaries of foundries and nodes.
• Allows a drastic reduction in the number of design rules.
• Main drawback : the area loss, about 10%.
• At the origin of MOSIS.
• Simple shrink finally proven a little bit too rigid.



A brief history of symbolic layout (2/2)

2λ

4
λ

metal2METAL2

λ

λ
1λ = 0.5 µ

µm

µ
m

δ
e

δw

Alliance

metal2

ap GDSII

Symbolic

J.-P. CHAPUT (SU-LIP6) RISC-V design using FOSS Oct 2nd , 2019 8 / 19



A brief history of symbolic layout (2/2)

2λ

4
λ

metal2METAL2

λ

λ
1λ = 0.5 µ

µm

µ
m

δ
e

δw

Alliance

metal2

ap GDSII

Symbolic

201
9-0

9-2
9 RISC-V design using FOSSIntroduction to Symbolic Layout

A brief history of symbolic layout (2/2)

• Refined by BULL, to give ALLIANCE symbolic. Add cap and widthextensions to give more slack in the transformation process.
• BULL is fabless and did not want to be tied to one foundry but didn’twant to develop twice it’s designs.
• Has a big advantage unforeseen at the time, it is NDA free but still veryclose the the real layout.
• So, layout is publishable and can be verified against what comes backfrom the foundry. Can be critical for security.



symbolic vs. real layout

Under NDAFree

ap

layout

design rules

rds

GDSII

layout

s2r

J.-P. CHAPUT (SU-LIP6) RISC-V design using FOSS Oct 2nd , 2019 9 / 19



symbolic vs. real layout

Under NDAFree

ap

layout

design rules

rds

GDSII

layout

s2r

201
9-0

9-2
9 RISC-V design using FOSSIntroduction to Symbolic Layout

symbolic vs. real layout

• The translation from symbolic to real layout is ensured by the S2Rprogram. It needs a parametrisation for the target node.
• We are working for a way to provide this file (and some more) to otherusers through the MYCMP service.
• We keep as much as possible of the toolchain on the «left side»...
• This is more difficult when it comes down to timing informations andextraction.
• The other way around NDA has been taken by FREEPDK, which developfake but realistic design kits. Still they are made mainly for commercialtools.



Simulation Plateform with GHDL

badgood

0 1

1

32

32

32

1

1

1

1

RISC−V core

1

1

32

32

D−Cache

data_in

data_valid

data_out

data_adr

data_store_b

data_store_h

data_store_w

data_load_w

inst_in

inst_adr

inst_valid

inst_req

reset_n

ck

I−Cache

Memory

Code

Data

Stack

VHDL C

ELF

Data

Code

J.-P. CHAPUT (SU-LIP6) RISC-V design using FOSS Oct 2nd , 2019 10 / 19



Simulation Plateform with GHDL

badgood

0 1

1

32

32

32

1

1

1

1

RISC−V core

1

1

32

32

D−Cache

data_in

data_valid

data_out

data_adr

data_store_b

data_store_h

data_store_w

data_load_w

inst_in

inst_adr

inst_valid

inst_req

reset_n

ck

I−Cache

Memory

Code

Data

Stack

VHDL C

ELF

Data

Code201
9-0

9-2
9 RISC-V design using FOSSDescription of the Design Flow

Simulation Plateform with GHDL

• We provide the RISC-V VHDL model with a simple access to data andinstructions. D-Cache and I-Cache are a misnomer, they are just VHDLproxies for code and datas stored in the C part of the platform.
• Code and datas are loaded at runtime from an ELF file generated fromthe tests provided by the RISC-V fondation.
• The whole platform is compiled (both VHDL and C) as a binary.
• It is also used to validate the description after synthesis and place androute.



The NSXLIB Standart Cell Library

/ Portage by N. SHIMIZU from SXLIB.
/ Contains 89 cells. Logic gates, D flip-flop,multiplexers.
/ Well proven, designs have already beendone with it.

J.-P. CHAPUT (SU-LIP6) RISC-V design using FOSS Oct 2nd , 2019 11 / 19



The NSXLIB Standart Cell Library

/ Portage by N. SHIMIZU from SXLIB.
/ Contains 89 cells. Logic gates, D flip-flop,multiplexers.
/ Well proven, designs have already beendone with it.

201
9-0

9-2
9 RISC-V design using FOSSDescription of the Design Flow

The NSXLIB Standart Cell Library

• The symbolic rules needed to be adapted to better fit the deepsubmicron technologies (45nm and below).
• Automatic characterization procedure with a fake technology togenerate a liberty file .lib (SYNOPSYS).



Logical Synthesis
NSXLIB

Memory

core

RISC−V

D−Cache

I−Cache

GHDL

.lib

vasy blif2vst

Yosys

vhdl

vlog

vstblif
RISC−V

RISC−V

RISC−V RISC−V

J.-P. CHAPUT (SU-LIP6) RISC-V design using FOSS Oct 2nd , 2019 12 / 19



Logical Synthesis
NSXLIB

Memory

core

RISC−V

D−Cache

I−Cache

GHDL

.lib

vasy blif2vst

Yosys

vhdl

vlog

vstblif
RISC−V

RISC−V

RISC−V RISC−V

201
9-0

9-2
9 RISC-V design using FOSSDescription of the Design Flow

Logical Synthesis

• We use YOSYS to perform the logical synthesis.
• This is a nightmare of format translation between, VHDL, Verilog, blifand vst... (give some details about those formats).
• Color code: cian for ALLIANCE, blue for CORIOLIS.
• The GHDL platform is used to check that the generated netlist (RTL) isconsistent with the behavioral description.



Physical Synthesis

vst

cts_r.vst

cts_r.ap

Memory

core

RISC−V

D−Cache

I−Cache

GHDL
connect DFFs to leafs

place standard cells

create H−Tree

global route

detailed route

route

route

CTS

place

CTS

place
I/O pads & core

py

py

C++

py

C++

C++

Hurricane

Database

doChip.py

J.-P. CHAPUT (SU-LIP6) RISC-V design using FOSS Oct 2nd , 2019 13 / 19



Physical Synthesis

vst

cts_r.vst

cts_r.ap

Memory

core

RISC−V

D−Cache

I−Cache

GHDL
connect DFFs to leafs

place standard cells

create H−Tree

global route

detailed route

route

route

CTS

place

CTS

place
I/O pads & core

py

py

C++

py

C++

C++

Hurricane

Database

doChip.py

201
9-0

9-2
9 RISC-V design using FOSSDescription of the Design Flow

Physical Synthesis

• Scan-path is inserted in the netlist just after the logical synthesis. Itchains the FIFOs, the DECOD & and IFECTH state. Not the register file.
• All tools works in memory using the HURRICANE database, this allow atight integration between the tools. In particular, notice the interleavingbetween CTS and standard cell placement, this way we can easilyconnect the DFFs to the nearest clock-tree leaf.
• Another feature of importance is seamless integration between Pythonand C++ parts. Here again, we can mix them almost any way we want.
• This is so true that there isn’t event a CORIOLIS binary. It is only Pythonscripts that we can tailor to whatever we want.
• As we modify the netlist when inserting the clock tree, we check againwith the GHDL platform.
• The placer is analytical, based on SIMPL.



Validation
Under NDAFree

HiTas

STA

lvx

LVS

Extractor

cougar

cougar

Extractor

druc

DRC

GDSII

layout

design rules

rds

trans.

al

vst

netlist

s2r

vst

layout

ap

extract

rds

cmos

J.-P. CHAPUT (SU-LIP6) RISC-V design using FOSS Oct 2nd , 2019 14 / 19



Validation
Under NDAFree

HiTas

STA

lvx

LVS

Extractor

cougar

cougar

Extractor

druc

DRC

GDSII

layout

design rules

rds

trans.

al

vst

netlist

s2r

vst

layout

ap

extract

rds

cmos201
9-0

9-2
9 RISC-V design using FOSSDescription of the Design Flow

Validation

• The STA HiTas is an old but industry proven tool.
• For the cougar extractor to work it needs technological informations. Wesupply a fake technology.



Design Flow Automation

/ Alliance Check Toolkit provides a set of GNU Makefiles to fullyautomate the flow.
/ Only one top level Makefile is needed to build a design.
/ A regression suite for the tools.
/ Various example designs of blocks or whole chips.

J.-P. CHAPUT (SU-LIP6) RISC-V design using FOSS Oct 2nd , 2019 15 / 19



Design Flow Automation

/ Alliance Check Toolkit provides a set of GNU Makefiles to fullyautomate the flow.
/ Only one top level Makefile is needed to build a design.
/ A regression suite for the tools.
/ Various example designs of blocks or whole chips.

201
9-0

9-2
9 RISC-V design using FOSSDescription of the Design Flow

Design Flow Automation

• Alliance Check Toolkit contains a lot of paraphernalia.
• We are at the limit to what can be done with even evolved GNU
Makefiles. In the future we may write an integrated Python script.



The Chip

/ 11K gates.
/ 144 I/O pad.
/ Chip is core limited.
/ Size is 5×5mm (25mm2)

J.-P. CHAPUT (SU-LIP6) RISC-V design using FOSS Oct 2nd , 2019 16 / 19



The Chip

/ 11K gates.
/ 144 I/O pad.
/ Chip is core limited.
/ Size is 5×5mm (25mm2)

201
9-0

9-2
9 RISC-V design using FOSSDescription of the Design Flow

The Chip

• Precisely 11348 gates with YOSYS 0.7.
• As we are not finished yet, those results will slightly evolve still.
• The core is symbolic but we use the I/O pad supplied by AMS. This is apart that we cannot make symbolic due to foundry constraints.



Features Checklist

Implemented :
/ Basic scan-path (CORIOLIS).
/ Clock-tree (H-Tree).
To be implemented (december 2019):

/ Smart scan-path (post-placement path optimization).
/ Improve power plan to control IR-drop.
/ Check for hold-violations.
/ Net high fanout synthesis (HFS).

J.-P. CHAPUT (SU-LIP6) RISC-V design using FOSS Oct 2nd , 2019 17 / 19



Features Checklist

Implemented :
/ Basic scan-path (CORIOLIS).
/ Clock-tree (H-Tree).
To be implemented (december 2019):

/ Smart scan-path (post-placement path optimization).
/ Improve power plan to control IR-drop.
/ Check for hold-violations.
/ Net high fanout synthesis (HFS).201

9-0
9-2

9 RISC-V design using FOSSDescription of the Design Flow
Features Checklist

• Of courses, we are talking about features besides classic place and route.
• Our middle term goal is to implement features allowing us to usesmaller and smaller nodes.



References
/ GHDL, Tristan GRINGOLD, http://ghdl.free.fr/.
/ YOSYS, Clifford WOLF, http://www.clifford.at/yosys/.
/ ALLIANCE, SU-LIP6

http://www-soc.lip6.fr/git/alliance.git/.
/ CORIOLIS, SU-LIP6

http://www-soc.lip6.fr/git/coriolis.git/.
/ Alliance Check Toolkit, SU-LIP6

http://www-soc.lip6.fr/git/alliance-check-toolkit.git/Provide the NSXLIB symbolic standard cells library.
/ RISC-V RV32I, SU-LIP6,

http://www-soc.lip6.fr/git/RISC-V.git/

J.-P. CHAPUT (SU-LIP6) RISC-V design using FOSS Oct 2nd , 2019 18 / 19

http://ghdl.free.fr/
http://www.clifford.at/yosys/
http://www-soc.lip6.fr/git/alliance.git/
http://www-soc.lip6.fr/git/coriolis.git/
http://www-soc.lip6.fr/git/alliance-check-toolkit.git/
http://www-soc.lip6.fr/git/RISC-V.git/


References
/ GHDL, Tristan GRINGOLD, http://ghdl.free.fr/.
/ YOSYS, Clifford WOLF, http://www.clifford.at/yosys/.
/ ALLIANCE, SU-LIP6

http://www-soc.lip6.fr/git/alliance.git/.
/ CORIOLIS, SU-LIP6

http://www-soc.lip6.fr/git/coriolis.git/.
/ Alliance Check Toolkit, SU-LIP6

http://www-soc.lip6.fr/git/alliance-check-toolkit.git/Provide the NSXLIB symbolic standard cells library.
/ RISC-V RV32I, SU-LIP6,

http://www-soc.lip6.fr/git/RISC-V.git/201
9-0

9-2
9 RISC-V design using FOSSDescription of the Design Flow

References

Pas de notes pour ce transparent.

http://ghdl.free.fr/
http://www.clifford.at/yosys/
http://www-soc.lip6.fr/git/alliance.git/
http://www-soc.lip6.fr/git/coriolis.git/
http://www-soc.lip6.fr/git/alliance-check-toolkit.git/
http://www-soc.lip6.fr/git/RISC-V.git/


And now, let’s have a demo...

J.-P. CHAPUT (SU-LIP6) RISC-V design using FOSS Oct 2nd , 2019 19 / 19



And now, let’s have a demo...

201
9-0

9-2
9 RISC-V design using FOSSDemo

And now, let’s have a demo...

• Run the logical synthesis stage on the console, then switch to graphicalmode for the physical synthesis.
• Commands:
ego@home:RISC-V> cd PlaceAndRoute
ego@home:PlaceAndRoute> make scan
ego@home:PlaceAndRoute> cgt -V –cell=riscv_core_scanGenerate the chip from the pads using AMS pads.Place chip (with clock tree).Do not forget to go down the corona.Global then detail route the corona / core.

• Comment on Etesian analytical placer (force directed).


	Goals
	A First Try at risc-v
	Design Flow
	Introduction to Symbolic Layout
	Description of the Design Flow
	Demo

