From filters to transistors

A library of analog schematic with automated sizing

LIP6 Laboratory, Sorbonne Université - CNRS CIAN Team: FOSS EDA for analog and mixed circuit design

Contact: Jacky Porte, jacky.porte@lip6.fr Marie-Minerve Louërat, marie-minerve.louerat@lip6.fr

16 March 2019

- 2 Sizing and characterizing a Miller amplifier
- 3 Sizing and characterizing an elliptic Filter

2 Sizing and characterizing a Miller amplifier

3 Sizing and characterizing an elliptic Filter

Analog Design : biasing, sizing and characterizing the MOS transistor

MOS calculator

FIGURE: MOS transistor with its 4 terminals : gate, drain, source, bulk.

- ► MOS models (equations) : BSIM, ...
- + process parameters (foundry, technology nodes)
- ► analysis : I_{DS} is computed I_{DS} = f_{(model,process})(W, L, V_{GS}, V_{DS}, V_{BS}, temp)
- MOS regime : $V_{OV} = V_{GS} - V_{TH}$, overdrive voltage, inversion mode $V_{Dsat} = V_{GS} - V_{TH}$, saturation/linear
- sizing : W, L or V_{GS} are computed set V_{OV}, W, L ⇒ I_{DS}, V_{GS} set V_{OV}, I_{DS}, L ⇒ W, V_{GS} set V_{OV}, I_{DS}, W ⇒ L, V_{GS}

- 本間 と えき と えき とうき

MOS transistor calculator

Analyzing the MOS transistor : $I_{DS}(V_{DS})$ and $\frac{G_m}{I_{DS}}(V_{GS})$

FIGURE: MOS transistor. Drain current I_{DS} versus drain source voltage V_{DS} . $I_{DS} = f(W, L, V_{GS}, V_{DS}, V_{BS}, temp)$ FIGURE: G_m over I_{DS} versus V_{GS} , for various V_{BS} . Image of the overdrive voltage $(2/V_{OV})$.

MOS transistor calculator

Sizing the transistor for the optimal overdrive voltage V_{OV} :

FIGURE: Transconductance Gm versus V_{GS} , for different temperatures in the range $[-55^{\circ}C, 125^{\circ}C]$. Selection of the optimal point : $V_{OV} \sim 0.2V$, according to temperature variation.

MOS transistor calculator within Oceane

FIGURE: Oceane MOS transistor sizing (i.e. set V_{OV} , I_{DS} , $L \Rightarrow W$, V_{GS}) and characterizing cockpit. Oceane and **nspice** results are equal.

J. Porte & M.-M. Louërat (SU-LIP6)

イロト イポト イヨト イヨト

Behind the MOS transistor cockpit

• Oceane/COMDIAC built-in MOS transistor models

FIGURE: Small signal equivalent schematics.

- Complete MOS transistor model (as in simulator)
- Official parameters of the BSIM3/4 models (NDA)

- all parameters are taken into account :
 - layout dependent parameters
 - Stress effect
 - ▶ multi V_{TH}
- **ngspice** simulator is called to validate each design
- a library of configurable test benches is available
- DC operating point, transient analysis, and AC analysis can be performed.

2 Sizing and characterizing a Miller amplifier

3 Sizing and characterizing an elliptic Filter

J. Porte & M.-M. Louërat (SU-LIP6)

→ 3 → 4 3

< 67 ▶

Analog Design : biasing, sizing and characterizing the Miller amplifier

FIGURE: 2 stage Miller amplifier. Several topological alternatives are provided.

- Selection of topology, with several alternatives
 - Differential pair : NMOS/PMOS
 - Cascode
 - Compensation : C alone, R and C
 - Common mode rejection circuit for differential structures

• • • •

- Specifications (a small set)
- Computation (fast to be iterated)
 - Launched from GUI
 - or C file
 - $\blacktriangleright \Rightarrow$ W,L, R and C
- Computed performances (Maxima, building symbolic transfer functions)
- Simulated performances (validation)

Sizing Principle : Amplifier case study.

- level 1 MOS transistor model, used to illustrate the main steps : $I_{DS} = \frac{\mu}{2} C_{ox} \frac{W}{L} (V_{OV})^2 (1 + \lambda \cdot V_{DS}), \text{ with } V_{OV} = (V_{GS} - V_{TH}) (1)$
- **2** Specification of the power $\Rightarrow I_{DS}$, the biasing current or Unity Gain Frequency : $F_U \sim \frac{g_m}{2\Pi C_l}$
- **③** The inversion level : $V_{OV} \Rightarrow g_m = \frac{2I_{DS}}{V_{OV}}$, the transconductance
- **Gain** specification : $A_{d0} \sim \frac{g_m}{g_{ds}} \sim \frac{L \cdot V_E}{V_{OV}} \Rightarrow L$ since $\lambda = \frac{1}{L \cdot V_E}$
- Transistor sizes, computed from Eq. 1 (step 1)
- Secondary performances : input thermal noise ~ K·Temp/gm, possible iteration (step 4)
- **②** Test benches for performance simulation (\sim computed ones)

Oceane

Complete MOS transistor models are used instead of Eq. 1 in Step 1, so that a perfect matching between Oceane and **ngspice** is achieved.

J. Porte & M.-M. Louërat (SU-LIP6)

From filters to transistors

11 / 27

Analog Design : sizing the Miller amplifier GUI with input and output files :

VP1 VP3

MN9 = 16 . 1.6000

tension d'alimentation superieure (VDD en V):				3.3					
tension d'alimentation inferieure (VSS en V):				0.0					
gain statique (A0 en dB):				70					
marge de phae	e (MP en d	76.0							
courant de po	larisation I	50.0	۲						
frequence de transition (FT en MHz):				5.0					
capacite de charge (CL en pF):				3.0					
resistance de charge (RL en KOhm):				1000000.0					
nombre de dispositifs en parallele :				1					
tens tens	ion d'entre ion de sorti om du disp	e de mode come e de mode com - ositif: netlist.,	nun (VEMC mun (VSMC — OTACST	en V) = 1. en V) = 1. (2_D1	15				
label VDD:	evdd	label VSS:	6535						
label IP:	op	label EM:	em	label VEMC:	emc				
label EPD:	epd	label EMD:	end						
label SP:	яp	label SM:	805	label VSMC:	SIE				
label VBN:	evba	label VBP:	esbp	label VGMC1:	evgl				
label VP 1 :	ovp1	label VP3:	Eqra	label VGMRC:	evgnee				
label VP5:	evp5	Jabel VP6:	espő	label VP7	evp7				
label VC1:	ove l	label VC3:	evr.2	label VC5:	ere5				
label VSMC1:	smc1	label NMC1:	nmcl	label NMC2:	nmc2				
label NMCar	BIDCA.	label NMCb:	nmcb	label VGMC2:	evg2				
CALCUL LECTURE SORTIE									

VSMCI 2.36589 Cc 2.530738e-12 9.083894e+02 Rc м L MNI = 2.5750 0.6250 MN2 -2.5750 0.6250 MD3 -3.7500 0.6250 MP4 =3.7500 0.6250 MN5 = 2.7750 0.6250 3.7500 MP6 =20 0.6250 MN7 = 16 1.6000 0.6250 MD8 -20 3.7500 0.6250

0.6250

0.74765

2.35770

FIGURE: Miller amplifier specifications, input file

FIGURE: Miller amplifier MOS sizing, output file

$\label{eq:FIGURE: Miller amplifier performances, output file} FIGURE: Miller amplifier performances, output file$

.∃ >

< 67 ▶

Validation of the Miller design with **ngspice** simulation

FIGURE: Gain (dB) versus frequency, **ngspice** simulation results, same as computed performances.

< 4 ► >

Layout of the Miller design with Coriolis

FIGURE: Shape Function, computed by varying the number of transistor folds, for each transistor, of a netlist sized with Oceane.

Layout of the Miller design with Coriolis

FIGURE: Layout of the square shape, transistor part, sized with Oceane.

J. Porte & M.-M. Louërat (SU-LIP6)

From filters to transistors

FSIC 2019, 16 March 15 / 27

2 Sizing and characterizing a Miller amplifier

3 Sizing and characterizing an elliptic Filter

J. Porte & M.-M. Louërat (SU-LIP6)

Filter specification

់ ទន្	ecifications	de gabarit	\odot	×
	Type de gabarit Passe-bas Passe-haut Passe-bande Coupe-bande	Fonctions modeles Busterworth Tchebycheff Cthebycheff Cthebycheff Cthebycheff		
ordre amse en di amire ei di ge en i tz fa en i tz	Gabar data annna anna annna annna annna annna annna annna annna annna annna annna annnn annnn annnnnnn annnnnnnn	t standard passe-bas		
	CALCUL	SORTIE		

FIGURE: Filter specifications

- Type of filtering transfer function : Low-pass / band-pass / high-pass
- Specifications (a small set) :
 - Order of the transfer function (TF)
 - Frequency boundaries
 - Gain boundaries
 - Response shape :
 - Chebyshev
 - ★ Butterworth
 - ★ Bessel
 - ★ Elliptic filter or Cauer filter

Transfer function : Cauer, order 5

FIGURE: Transfer function of the filter : Gain (dB). Ideal models (OTA, R and C are used)

→ Ξ →

< 4 ► >

Filter design : cascade of 1st order cell and 2 biquad cells

FIGURE: Second cell of the cascade (order 2)

J. Porte & M.-M. Louërat (SU-LIP6)

From filters to transistors

FSIC 2019, 16 March

Image: A math a math

Filter design with 3 cascaded cells : amplifier specifications

FIGURE: Transfer function of the filter : Gain (dB). Macromodels (OTA) are used with stringent specifications to fulfill the filter specifications \Rightarrow high power consumption.

FIGURE: Transfer function of the filter : Gain (dB). Macromodels (OTA) are used with relaxed specifications to decrease the whole power consumption \Rightarrow Filter TF error.

< 67 ▶

20 / 27

Filter design : cascade of biquad cells, optimization

FIGURE: 2^{nd} cell of the cascade (order 2) modified to lower the filter power consumption. The low amplifier gain impact is corrected by resistors in series, (variant available).

J. Porte & M.-M. Louërat (SU-LIP6)

From filters to transistors

Transfer function : cascade of biquad cells, validation

FIGURE: Validation by **ngspice** simulation (macro models of the amplifiers with relaxed specifications and correction) \Rightarrow correction of the Filter TF.

J. Porte & M.-M. Louërat (SU-LIP6)

From filters to transistors

22 / 27

Filter : cascade of biquad cells, Miller amplifier at transistor level

Transistor Level and symbolic computation

Complete MOS transistor models are taken into account to compute the symbolic TF of the filter, to achieve a perfect matching between Oceane computed performances and **ngspice** simulation.

FIGURE: Miller amplifier, sized with specifications coming from the macro-model based biquad

FIGURE: Milller amplifier gain

Transfer function : cascade of biquad cells, transistor level

FIGURE: Validation by **ngspice** simulation (full transistor netlist.)

J. Porte & M.-M. Louërat (SU-LIP6)

From filters to transistors

< A

Sizing and characterizing a MOS transistor

2 Sizing and characterizing a Miller amplifier

3 Sizing and characterizing an elliptic Filter

★ ∃ >

< 67 ▶

Oceane

- Filter design : from specifications to transistor netlist.
- Accurate sizing, based on the same complete MOS transistor model (BSIM3/4, ...) than the simulator, to ensure accurate sizing.
- Transistor sizing is based on the overdrive voltage (independent of the process to ensure technology migration).
- Sizing validation performed with built-in test benches, using ngspice.
- Fast computation to ease interaction with the designer.
- Input and output results available through a GUI and input/output files.
- Coupled with **Coriolis** layout engine.
- Distributed as Free/Libre and Open Source Software FOSS.
- Goal : distributed on top of ngspice ?

- 3

- 4 同 6 4 日 6 4 日 6

Thank you for your attention! https://www-soc.lip6.fr/equipe-cian/logiciels/oceane/

J. Porte & M.-M. Louërat (SU-LIP6)

From filters to transistors

■ ・ 4 注 ト 4 注 ト 注 少 Q (FSIC 2019, 16 March 27 / 27