
HAL Id: hal-02321444
https://hal.sorbonne-universite.fr/hal-02321444v1

Submitted on 21 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalability of TTool’s AMS extensions: a case study
Daniela Genius

To cite this version:
Daniela Genius. Scalability of TTool’s AMS extensions: a case study. International Workshop on Re-
configurable and Communication-centric Cyber-Physical Systems (ReCoCyPS 2019), Jul 2019, York,
United Kingdom. �hal-02321444�

https://hal.sorbonne-universite.fr/hal-02321444v1
https://hal.archives-ouvertes.fr

Scalability of TTool’s AMS extensions: a
case study

Daniela Genius
Sorbonne Université, LIP6, CNRS UMR 7606, daniela.genius@lip6.fr

Abstract—Embedded cyber-physical systems (CPS)
are commonly built upon heterogeneous digital and
analog integrated circuits, including sensors and ac-
tuators. Less common is their deployment on par-
allel, NoC based designs based on general purpose
processor cores of a Multi-processor System-on-chip
(MPSoC). Application code has to be run on the
MPSoC for the digital part, and interact with the
analog sensors. We recently proposed a major ex-
tension to the design and exploration tool named
TTool, now allowing the design of CPS on a high
level of abstraction and the generation of cycle-bit
accurate simulations. We explore the scalability of our
approach with an automotive case study.

I. INTRODUCTION

Many applications e.g. from robotics, automo-
tive and autonomous systems require heterogeneous
modeling - including modeling of analog/mixed
signal (AMS) and radio frequency (RF) features.
In very early design phases, rapid but less pre-
cise exploration of the design space is required.
Co-simulation of heterogeneous embedded systems
then requires a high-level representation that in-
cludes high-level models of AMS and RF compo-
nents. In the approach we presented in [9] software
is run on the digital multiprocessor system on
chip (MPSoC) platform, but has to communicate
with the analog part. Whereas that work took as a
starting point an analog application where only the
controller was defined as a task running on a SoC,
[13] presented a full methodology on a toy example.
The present paper explores a far more complex case
study, where a lot more functionality resides in the
software tasks.

The next section presents the ways in which the
design problems problems are addressed in similar
research work. Section III presents the bases. Some

of the questions raised when modeling larger appli-
cations are listed in Section IV; Section V illustrates
them by a larger case study, Section VI concludes
the paper.

II. RELATED WORK

Well established tools in analog/mixed signal
design, like Ptolemy II, [18] [22], based upon a
data-flow model, address heterogeneous systems
by defining several sub domains using hierarchical
models. Instantiation of elements controlling the
time synchronization between domains is left to the
responsibility of designers.

Metropolis [4] is based on a high level model and
facilitates the separation of computation from com-
munication concerns. Metro II [10] introduces hier-
archy and allows Adaptors for data synchronization
as a bridge between the semantics of components
belonging to different MoCs; the model designer
still has to implement time synchronization. As
a common simulation kernel handles all process
execution, MoCs are not well separated.

Discrete Event System Specification (DEVS [7]),
a modular and hierarchical formalism for modeling
and analyzing general systems that can be discrete
event or continuous state systems.

SystemC [16] is a C++ class library which makes
it possible to model (digital) hardware on multiple
levels of abstraction. Among the frameworks based
on SystemC are HetSC [15], HetMoC [26] and
ForSyDe [20], all having the disadvantage that
instantiation of elements and controlling the syn-
chronization have to be managed by the designer.

SystemC-AMS extensions [1] is a standard de-
scribing an extension of SystemC with AMS and
RF features [24]. The usual approach for modeling

the digital part of a heterogeneous system with
SystemC is to rely on the Discrete Event (DE)
part of SystemC AMS extensions. The Timed data
Flow (TDF) part adds support for signals where data
values are sampled with a constant time step.

In the scope of the project BeyondDreams [5], a
mixed analog-digital systems proof-of-concept sim-
ulator has been developed, based on the SystemC
AMS extension standard. Another simulator is pro-
posed in the H-Inception project [14]. All of these
approaches rely on SystemC AMS code i.e. they
don’t provide a high-level interface for specifying
the application. Integration with software code for
general-purpose CPUs and with an operating system
is however not yet addressed in these approaches.

III. CONTEXT

A. TTool

Our modeling framework is the free and open-
source software called TTool [3]. TTool relies on
SysML to propose two abstract modeling levels: (i)
HW/SW partitioning and (ii) software design and
deployment [21]. Software tasks for the partitioning
model are captured within the functional abstraction
level, and software tasks used in deployments are
captured in the software design abstraction level.
In both levels, the computation part of tasks is
then deployed to processors and hardware acceler-
ators, and the communication and storage parts are
deployed to buses and memories. In the software
deployment level, so-called deployment diagrams
are used to capture the allocation of software com-
ponents onto a MPSoc platform. The tool chain
which generates a cycle/bit accurate MPSoC virtual
prototype built from SoCLib [23] components is
explained in [12]. Figure 1, stemming from [13],
shows the overall design flow. TTool was recently
extended with support for modeling CPS [13], and
validated for smaller examples but not yet whether
the methodology scales to larger case studies.

B. SystemC Extensions for AMS

SystemC [16] relies on a Discrete Event (DE)
simulation kernel. Timed Data Flow (TDF) is one
of the (main) MoC of SystemC-AMS. It adds to
SystemC support for signals where continuous data

values are sampled with a constant time step. A
TDF module is described by an attribute represent-
ing a time step and a so-called processing function.
The time step is associated to a time period during
which the processing function should be executed.
The processing function corresponds to a math-
ematical function depending on both inputs and
internal states. TDF modules interact with discrete
parts using converter ports and have the following
attributes:

1) Module Timestep (Tm) denotes the period dur-
ing which the module is activated. A module
will be activated only if there are enough
samples available at its input ports.

2) Rate (R). Each module will read or write a
fixed number of data samples each time it is
activated, annotated to the port as port rate.

3) Port Timestep (Tp) denotes the period during
which each port of a module will be activated.
It also denotes the time interval between two
samples being read or written.

4) Delay (D). A delay can be assigned to a port
and will make the port handle a fixed number
of samples at each activation, and read or write
them in the following activation of the port.

Figure 2 shows a cluster, where the DE modules
are represented as white blocks, TDF modules as
gray blocks, TDF normal ports as black squares,
TDF converter ports as black and white squares, DE
ports as white squares and TDF signals as arrows.

A B Y
R= 1
D= 1

Tm= 6 ms Tm= 4 ms

Tp= 4 ms

R= 3

Tp= 2 ms
D= 0

R= 2
D= 0

Tp= 2 ms

TDF Cluster

Fig. 2. TDF Cluster

C. MPSoC Virtual Prototype

In case software code is also deployed, an MPSoc
platform containing processors / buses / memories
must also be generated, as well as a description
of mapping of tasks and other software objects

Final
software
code

Refinements

VHDL/Verilog

SystemC-
AMS

Virtual Prototype

Deployment

Hardware
design

Hardware
Abstractions

Simulation
 and
Verification

Micro Kernel
MPSoC
Model

HW/SW Partitioning

Functional

Software Design Hardware
model

Fig. 1. Hardware/Software partitioning and Code generation for MPSoC platforms [13]

provided. SoCLib offers a way to describe Multi-
Processor System-on-Chip platforms with seman-
tics based on the shared memory paradigm. Com-
ponents can be initiators issuing requests (typically
CPUs and hardware accelerators), or targets an-
swering to requests (e.g. RAM).

In order to combine SoCLib specification
with SystemC-AMS components, we have defined
generic adaptor modules that can connect SystemC-
AMS components to Virtual Component Interface
(VCI) [25] interfaces. The main idea for the inte-
gration of SystemC-AMS and SoCLib components
into TTool is that analog components act as targets
for the SoCLib initiator digital components (CPUs,
DMA, . . .).

An adapter is modeled as a general-purpose
input/output (GPIO) target component, following
the modeling rules for writing cycle-bit precise
SystemC simulation models for SoCLib described
below. GPIO components are visible in the deploy-
ment diagram, and, like the other VCI components,
their interconnection to the central VCI interconnect
is represented by an arc. The generated top cell is
thus composed of SoCLib modules and interfaces
to the SystemC-AMS clusters.

D. Simulation

Due to their different Model of Computation,
AMS components require to execute their simulated
behavior apart from the rest of the system, but
regularly synchronize with the digital platform. The
SystemC kernel is thus controlling the AMS kernel
which runs continuously until it is interrupted by
access to a converter port by a TDF cluster. Since
model-driven approaches expect to ideally provide
model validation before code generation (and thus
simulation), we propose a way to statically identify
synchronization problems [8].

IV. QUESTIONS RAISED

Until now, applications modeled with the recent
extension of TTool ran basically on mono pro-
cessors, even if, as mentioned in [9], SoCLib is
designed for MPSoC virtual prototypes. But does
this also hold for multiple sensors connected by
multiple GPIO and for a MPSoC with multiple
processors? The rover application in [13] contained
only two sensors, each came with its GPIO with
one input and one output port, and a single proces-
sor. Larger applications feature several GPIO, more
ports, each accessing the central interconnect as a
target, generating additional traffic.

block

CSCU

block

ObjectListManagement

- obstacle = 0 : int;

~ in isObstacleAhead(int info)
~ out getInfoOnObstacle(int info)

block

PlausibilityCheck

- id : int;
- position : int;
- speed : int;
- obstacle : int;
- list : NodeList;
- currentPosition : int;

- emergencyIgnored()
- emergencyTakenIntoAccount()
- getListOfNodes(int position, NodeList list)

block

VehiculeDynamicsManagement

- speed : int;

~ in updateOnSpeed(int speed)
~ out getInfoOnSpeed(int speed)

block

BCU

block

DangerAvoidanceStrategy

- speed : int;
- position : int;
- currentPosition : int;
- carinfo : CarInfo;
- value : int;

~ in brake(int speed, int currentPosition, int position)
~ out reducePower(int value)
~ out brakePower(int value)
~ out forwardEmergency(int myID, int currentPosition)

block

BrakeManagement

- value : int;
- deltaBrake = 0 : int;
- brakeMaxDuration : int;

- applyBraking(int value)
- brakingDone()

~ in brake(int value)

block

PTC

block

DrivingPowerReductionStrategy

- value : int;
- minReducePowerTime = 10 : int;
- maxReducePowerTime = 20 : int;

- applyReducePower(int value)
- reducePowerDone()

~ in getReducePowerOrder(int value)

block

Communication

block

DSRSC_Management

- id : int;
- position : int;

- sendMessage(int id, int position)

~ in obstacleDetected(int id, int position)
~ in carPosition(int id, int position)
~ out setCarPosition(int id, int position)
~ out forwardEmergencyBrakingMessage(int i...
~ in broadcastEmergencyBrakingMessage(int i...

block

NeighbourhoodTableManagement

- id : int;
- position : int;
- time_id : int;
- listOfNodes : NodeList;
- currentPosition : int;

~ in addANode(int id, int position)
~ in setPosition(int currentPosition)

block

CorrectnessChecking

- id : int;
- position : int;
- canHaveInvalid = false : bool;

- checkingMessage()
- invalidMessage()
- validMessage()

~ in getEmergencyBrakingMessage(...
~ out toPlausibityCheckMessage(int...

block

TestBench

block

SpeedSensor

- minSpeedUpdate = 150 : int;
- maxSpeedUpdate = 150 : int;
- speed : int;
- carinfo : CarInfo;

~ out updateOnSpeed(int speed)

block

RadarSensor

- minRadarUpdate = 100 : int;
- maxRadarUpdate = 150 : int;
- obstacleAhead : int;

~ out obstacleAhead(int info)

block

GPSSensor

- minGPSUpdate = 100 : int;
- maxGPSUpdate = 100 : int;
- position : int;
- carinfo : CarInfo;

~ out setPosition(int currentPosition)

block

CarPositionSimulator

- carid : CarInfo;
- minCarPositionInterval = 200 : int;
- maxCarPositionInterval = 250 : i...
- id : int;
- position : int;

~ out carPosition(int id, int positio...

block

EmergencySimulator

- minEmergencyInterval = 1000 :...
- maxEmergencyInterval = 1000 ...
- carid : CarInfo;
- id : int;
- position : int;

~ out obstacleDetected(int id, int...

<<datatype>>
NodeList

- id0 : int;
- id1 : int;
- id2 : int;
- position0 : int;
- position1 : int;
- position2 : int;

<<datatype>>
CarInfo

- minID = 1 : int;
- maxID = 5 : int;
- minPosition = 3 : int;
- maxPosition = 10 : int;
- minSpeed = 1 : int;
- maxSpeed = 10 : int;
- myID = 11 : int;

Fig. 3. Automotive case study: software design block diagram [19]

Secondly, in the presence of multiple TDF clus-
ters, addressed by different parts of the software
running on the SoCLib MPSoC, read and write op-
erations between the digital and analog part must be
handled carefully. Not only must causality between
TDF and DE be respected as shown in [2], [9],
also the semantics of accesses by several analog
blocks to the same digital block and vice versa
must be preserved. Thirdly, the GPIO interface
is to date limited to transmitting only one value
at a time, of a basic type. In SystemC-AMS, it
is quite complicated to pass structured data types
as parameters of a module. While TTool already
handles them issue when generating pure SystemC-
AMS code, GPIO interfaces do not yet take them
into account.

V. CASE STUDY

These problems and current attempts at their
solution are illustrated by an automotive embedded
system designed in the scope of a past European
project [11] and the code generation for which was
presented in [19].

Recent on-board Intelligent Transport (IT) archi-
tectures comprise a very heterogeneous landscape
of communication network technologies (e.g., LIN,
CAN, MOST, and FlexRay) that interconnect in-
car Electronic Control Units (ECUs). One of these

CarPositionSimulatorCluster

CarPositionSimulator

Tm = 1.0 ms

outoutinin

blockGPIO2VCI

inSoclibinSocliboutSocliboutSoclib

Fig. 4. CarPositionSimulator sensor

is automatic braking [17], which works essentially

as follows: an obstacle is detected by another auto-
motive system which broadcasts that information to
neighboring cars. A car receiving that information
has to decide whether or not it is concerned. This
decision includes a plausibility check function that
takes into account various parameters, such as the
direction and speed of the car, and also information
previously received from neighboring cars. Once the
decision to brake has been taken, the braking order
is forwarded to relevant ECUs. Also, the presence of
this obstacle is forwarded to other neighboring cars
in case they have not yet received this information.

The functional view comprises of a set of commu-
nicating tasks whose is described abstractly. Map-
ping then partitions the application into software
and hardware. A task mapped onto a processor will
be implemented in software, and a task mapped
onto a hardware accelerator is implemented in hard-
ware. Tasks destined to be implemented in hardware
are either digital or analog; each task is represented
on a separate panel. In the example, all sensors
obtaining information from the environment will be
modeled as analog blocks.

A. Software design

Once the partitioning is done, the user designs
the software, for which functional simulation and
formal verification are performed. Figure 3 shows
the block diagram from [19] with on top the five
sensors, modeled as software tasks. In the current
version, the five sensors in the TestBench block are
no longer modeled as software tasks. Remaining
software components are grouped according to their
destination ECU:

• Communication ECU manages communica-
tion with neighboring vehicles.

• Chassis Safety Controller ECU (CSCU) pro-
cesses emergency messages and sends orders
to brake to ECUs.

• Braking Controller ECU (BCU) contains two
blocks: DangerAvoidanceStrategy determines
how to efficiently and safely reduce the vehicle
speed, or brake if necessary.

• Power Train Controller ECU (PTC) enforces
the engine torque modification request.

To prototype the software components with the
other elements of the destination platform (hard-
ware components, operating system), we must map
them to a model of the target system. Mapping
can be performed using the deployment features
introduced in [12]: such a deployment diagram is
a SysML representation of hardware components,
their interconnection, tasks and channels.

B. Modeling sensors

Modeling the sensors by blocks of code translated
to Posix tasks running on the MPSoC, as was prac-
tice beforehand, oversimplified the problem. All five
sensors are thus replaced by more realistic analog
models: five independent TDF clusters (keeping in
mind that TDF still is a strong abstraction of analog
behavior).

Figure 4 shows an AMS panel with one of the
sensor clusters, the CarPositionSimulator sensor.
In further dialogues, not shown here, parameters
like rate and delay can be entered. From these
graphical information, TTool then infers, if possible,
missing parameters, calculates a coherent schedule
and generates SystemC-AMS code, comprising the
ports, delays and interfaces [8]. This cluster is
read by the DSRSC_Management block and gives
information on the car id and position. Often,
data structures or more than one parameter are
transmitted in the channels (here, id and position).
Currently, they have to be transmitted one by one,
basic type by basic type. Thus, id and position
require two sequential write operations to the out
port in the processing code and two corresponding
read operations in the entry code.

We can easily model the randomized choice of
an integer between 1 and 5 (id) and between 3 and
10 (position) stemming from the data type, on the
left of Figure 3. The code of this simple processing
function is shown on the right of the figure in a
separate window. The write primitive sends one
integer value to the out converter port.

C. Communication

A library named libsyscams has been provided
to contain read and write primitives on the side of
the MPSoC, the read_gpio2vci and write_gpio2vci

functions. As shown above, CarPositionSimulator
issues two random values from its output port,
EmergencySimulator does the same.

On the side of the MPSoC platform, according to
TTool’s semantics, the DSRSC_Management block
non-deterministically reads from either block, or
read a broadcastEmergencyBrakingMessage from a
third, the DangerAvoidanceStrategy block. In the
current version, the first two blocks being replaced
by sensors modeled in SystemC-AMS, this seman-
tics should be preserved.

In the following, we give an example of how
to use libsyscams to capture non-deterministic read
operations. Consider the finite state machine (FSM)
of the DSRSC_Management block (Figure 5). In
[13], we show how to use entry code that can
be contained in a state to call libsyscams. This
is the case of the WaitForEnvironmentInput state.
Non-deterministically, either the input from Car-
PositionSimulator or EmergencySimulator is read,
whenever values are available on either. This non-
determinism, which was in the past expressed by
the semantics of TTool’s channels between software
blocks, must now be reflected in the entry code
of the software block’s state machine. If there are
several parameters (here id and position), they must
currently be read sequentially.

Fig. 5. DSRSC_Management FSM containing entry code

D. Deployment

Finally, the extended deployment diagram (Fig-
ure 6) gives an overview of the mapping of soft-
ware tasks and channels. The former are mapped

<<CPU>>
CPU3

AVATAR Design::BCU

AVATAR Design::DangerAvoidanceStrategy

AVATAR Design::BrakeManagement

<<CPU>>
CPU2

AVATAR Design::PTC

AVATAR Design::DrivingPowerReductionStrategy

<<CPU>>
CPU1

AVATAR Design::Communication

AVATAR Design::DSRSC_Management

AVATAR Design::NeighbourhoodTableManagement

AVATAR Design::CorrectnessChecking

<<CPU>>
CPU4

AVATAR Design::CSCU

AVATAR Design::ObjectListManagement

AVATAR Design::PlausibilityCheck

AVATAR Design::VehiculeDynamicsManagement

<<TTY>>
TTY0

<<RAM>>
Memory0

CorrectnessChecking/out toPlausibityCheckMessage

DSRSC_Management/out setCarPosition

DSRSC_Management/out forwardEmergencyBrakingMessage

NeighbourhoodTableManagement/out sendTable

CorrectnessChecking/out toPlausibityCheckMessage

DSRSC_Management/in broadcastEmergencyBrakingMessage

DSRSC_Management/out setCarPosition

DangerAvoidanceStrategy/out reducePower

DangerAvoidanceStrategy/out brakePower

DangerAvoidanceStrategy/in brake

PlausibilityCheck/in getInfoOnSpeed PlausibilityCheck/in getInfoOnObstacle

<<VGMN>>
ICN0

<<SystemC-AMS Cluster>>
CarPositionSimulatorCluster

<<SystemC-AMS Cluster>>
EmergencySimulatorCluster

<<SystemC-AMS Cluster>>
GPSSensorCluster

<<SystemC-AMS Cluster>>
RadarSensorCluster

<<SystemC-AMS Cluster>>
SpeedSensorCluster

Fig. 6. Deployment Diagram of the Active Braking Application

to CPUs, the latter to on-chip memory. For a
better overview, the diagram contains sensors as
gray boxes, each corresponding to a SystemC-AMS
cluster connected via a GPIO. Clicking on the box
opens the corresponding SystemC-AMS panel. A
fifth CPU which contained the sensors beforehand
is no longer in use.

TTool first checks the coherency of the block
and port parameters before calculating a valid TDF
schedule for each TDF cluster, taking into account
synchronization issues between the TDF and DE
world [13]. This is done in a so-called validation
window (Figure 7). Once the cluster schedule is val-
idated, one can initiate code generation by another
mouse click. The number of targets connected to
the central interconnect is now of 17 (five GPIO in
addition to the original 12 target modules) and the
number of initiators of 4 (one less CPU), potentially

stretching the capacity of the VGMN to its limits,
to be explored in future experiments.

VI. CONCLUSION AND FUTURE WORK

The paper presents a case study which explores
current limitations of the AMS extensions of TTool
on a larger industrial application. We succeeded
in running larger-scale software on a MPSoC; ex-
haustive exploration and performance evaluation
remains to be done.

Communication between the digital and the ana-
log part is performed by C entry code inserted in the
state blocks, relaxing the correct-by-construction
hypothesis of TTool. Non-determinism of read and
write operations should be handled more properly.
Also, it should be possible to transmit structured
data types and multiple parameters more conve-
niently.

Fig. 7. Validation and code generation window

The TDF models are still oversimplified; in the
EVITA industrial case study however, no more de-
tail is available. Next, we will model an application
stemming from the Open Source EchOpen project
[6], where we will have access to full implemen-
tation detail. Finally, even if analog components
tend to be unique, we plan to provide a library of
parametrizable building blocks for typical compo-
nents such as filters and analog/digital converters.

REFERENCES

[1] Accellera Systems Initiative. SystemC AMS extensions
Users Guide, Version 1.0. Accellera Systems Initiative,
March 2010.

[2] L. Andrade, T. Maehne, A. Vachoux, C. Ben Aoun,
F. Pêcheux, and M.-M. Louërat. Pre-Simulation Formal
Analysis of Synchronization Issues between Discrete Event
and Timed Data Flow Models of Computation. In Design,
Automation and Test in Europe, Mar. 2015.

[3] L. Apvrille. TTool, an open-source toolkit for the modeling
and verification of embedded systems, 2018.

[4] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno,
C. Passerone, and A. L. Sangiovanni-Vincentelli. Metropo-
lis: An integrated electronic system design environment.
IEEE Computer, 36(4):45–52, 2003.

[5] Beyond Dreams Consortium. Beyond Dreams
(Design Refinement of Embedded Analogue
and Mixed-Signal Systems), 2008-2011.
http://projects.eas.iis.fraunhofer.de/beyonddreams.

[6] E. community. Designing an open-source and low-cost
echo-stethoscope. http://www.echopen.org/, 2017.

[7] A. I. Concepcion and B. P. Zeigler. DEVS formalism:
A framework for hierarchical model development. IEEE
Trans. on Software Engineering, 14(2):228–241, 1988.

[8] R. Cortés Porto. Integration of SystemC-AMS simulation
platforms into TTool. Master’s thesis, Technische Univer-
sität Kaiserslautern, 2018.

[9] Cortés Porto, Rodrigo, Genius, Daniela, and Apvrille,
Ludovic. Modeling and virtual prototyping for embedded
systems on mixed-signal multicores. In RAPIDO, 2019.

[10] A. Davare, D. Densmore, T. Meyerowitz, A. Pinto,
A. Sangiovanni-Vincentelli, G. Yang, H. Zeng, and Q. Zhu.
A next-generation design framework for platform-based
design. In DVCon, volume 152, 2007.

[11] EVITA. E-safety Vehicle InTrusion protected Applications.
http://www.evita-project.org/.

[12] D. Genius and L. Apvrille. Virtual yet precise prototyping:
An automotive case study. In ERTSS’2016, Toulouse, 2016.

[13] Genius, Daniela, Cortés Porto, Rodrigo, Apvrille, Ludovic,
and Pêcheux, François. A tool for high-level modeling
of analog/mixed signal embedded systems. In MODEL-
SWARD, 2019.

[14] H-Inception Consortium. Heterogeneous Inception Project,
2012-2015. https://www-soc.lip6.fr/trac/hinception.

[15] F. Herrera and E. Villar. A framework for heterogeneous
specification and design of electronic embedded systems
in SystemC. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 12(3):22, 2007.

[16] IEEE. SystemC. IEEE Standard 1666-2011, 2011.
[17] E. Kelling, M. Friedewald, T. Leimbach, M. Menzel,

P. Sieger, H. Seudié, and B. Weyl. Specification and
evaluation of e-security relevant use cases. Technical
Report Deliverable D2.1, EVITA Project, 2009.

[18] E. A. Lee. Disciplined heterogeneous modeling. In
D. Petriu, N. Rouquette, and O. Haugen, editors, Proceed-
ings of the ACM/IEEE 13th International Conference on
Model Driven Engineering, Languages, and Systems, pages
273–287. Springer LNCS 6395, Oct. 2010.

[19] L. Li, L. Apvrille, and D. Genius. Virtual prototyping
of automotive systems: Towards multi-level design space
exploration. In DASIP, 2016.

[20] S. H. A. Niaki, M. K. Jakobsen, T. Sulonen, and I. Sander.
Formal heterogeneous system modeling with systemc. In
Specification and Design Languages (FDL), 2012 Forum
on, pages 160–167. IEEE, 2012.

[21] G. Pedroza, D. Knorreck, and L. Apvrille. AVATAR:
A SysML environment for the formal verification of
safety and security properties. In The 11th IEEE Con-
ference on Distributed Systems and New Technologies
(NOTERE’2011), Paris, France, May 2011.

[22] Ptolemy.org, editor. System Design, Modeling, and Simu-
lation using Ptolemy II. 2014.

[23] SocLib consortium. The SoCLib project: An integrated
system-on-chip modelling and simulation platform. Tech-
nical report, CNRS, 2003. www.soclib.fr.

[24] A. Vachoux, C. Grimm, and K. Einwich. Analog and mixed
signal modelling with SystemC-AMS. In ISCAS (3), pages
914–917. IEEE, 2003.

[25] VSI Alliance. Virtual Component Interface Standard (OCB
2 2.0), Aug. 2000.

[26] J. Zhu, I. Sander, and A. Jantsch. Hetmoc: Heterogeneous
modelling in systemc. In Forum on Specification & Design
Languages, pages 1–6. IET, 2010.

