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Presented by Gilles Pisier

We present a short proof of the Alexandrov–Fenchel inequalities, which mixes elementary 
algebraic properties and convexity properties of mixed volumes of polytopes.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous donnons une preuve courte des inégalités d’Alexandrov–Fenchel qui repose sur des 
propriétés algébriques élémentaires ou de convexité des volumes mixtes de polytopes.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

This short text has the modest goal of presenting another proof of the Alexandrov–Fenchel inequality for mixed volumes. 
It is similar to the proof for polytopes discussed in the recent work of Shenfeld and van Handel [5], which is mainly devoted 
to a short and neat treatment of the case of smooth bodies. Our presentation puts the emphasis on the basic algebraic prop-
erties of the polynomials involved in the construction of mixed volumes. Actually, once elementary and classical geometric 
and algebraic properties have been recalled, our argument reduces to the simple Proposition 3 below.

The history of the Alexandrov–Fenchel inequality and of its various proofs until the 1980s is described in the book 
by Burago and Zalgaller [1, Section 20.3]. The more recent literature contains a proof by Wang [7] that was inspired by 
Gromov’s work [2], in addition to the proof by Shenfeld and van Handel [5]. Applications to combinatorics are described by 
Stanley [6].

The Minkowski sum of two sets A, B ⊆Rn is A + B = {a + b ; a ∈ A, b ∈ B}, and we also write t A = {tx ; x ∈ A} for t ∈R. 
Minkowski has shown that, when K1, . . . , K N ⊆Rn are convex bodies, the function

RN+ � (t1, . . . , tN) �→ V oln

(
N∑

i=1

ti Ki

)
(1)
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is a homogeneous polynomial of degree n. Particular cases were discussed earlier by the 19th-century geometer Jacob 
Steiner. Here, RN+ = {x ∈ RN ; ∀i, xi > 0}, a convex body is a compact, convex set with a non-empty interior and V oln is 
n-dimensional volume.

The mixed volumes are defined as the coefficients of the homogeneous polynomial in (1). Specifically, the mixed volume 
of n compact, convex sets K1, . . . , Kn ⊆Rn is

V (K1, . . . , Kn) = 1

n!
∂n

∂t1∂t2 . . . ∂tn
V oln

(
n∑

i=1

ti Ki

)∣∣∣∣∣
t1=...=tn=0

.

The reader is referred to Schneider’s book [4, Chapter 5] for explanations and for the basic properties of the mixed volumes. 
The mixed volume V (K1, . . . , Kn) is symmetric (invariant under permuting the convex bodies), continuous in the Hausdorff 
metric, it satisfies V (K , . . . , K ) = V oln(K ), it is multi-linear with respect to Minkowski addition, and it is invariant under 
translating the convex bodies. It turns out that V (K1, . . . , Kn) is always non-negative and monotone increasing (with respect 
to inclusion) in each of its arguments. When K1, . . . , Kn ⊆ Rn have a non-empty interior, their mixed volume is in fact 
positive.

The Alexandrov–Fenchel inequality from the 1930s states that

V (K1, K2, K3, . . . , Kn)
2 ≥ V (K1, K1, K3, . . . , Kn)V (K2, K2, K3, . . . , Kn) (2)

for any convex bodies K1, . . . , Kn ⊆Rn . In other words, this inequality states that the function

t → V (K1 + t K2, K1 + t K2, K3, . . . , Kn) (t > 0) (3)

is a quadratic polynomial with a non-negative discriminant. Alternatively, the Alexandrov–Fenchel inequalities ex-
press inequalities of Brunn-Minkowski type for mixed volumes. Given m = 2, 3, . . . , n, and (n − m + 2) convex bodies 
K1, . . . , Kn−m+2 ⊂Rn , it follows from the Alexandrov–Fenchel inequality that the function

t −→ fm(t) := V (K1 + t K2, . . . , K1 + t K2︸ ︷︷ ︸
m times

, K3, . . . , Kn−m+2)
1/m is concave on R+. (4)

The inequality f ′′
m(0) ≤ 0 in the case m = 2 is precisely equivalent to the Alexandrov–Fenchel inequality (2), and it easily 

implies the other cases. The case m = n is the Brunn–Minkowski inequality for convex sets.
We will prove, by induction on the dimension n, that the functions fm are concave. To be precise, assuming the 

Alexandrov–Fenchel inequalities in dimension ≤ n − 1, we will prove that in dimension n and for m ≥ 3, the function 
fm is concave. Crucial but elementary properties of hyperbolic polynomials allow us to proceed to the desired case m = 2, 
namely:

Lemma 1 (“m = 3 ⇒ m = 2”). In order to prove the Alexandrov–Fenchel inequality (2) in Rn, it suffices to establish property (4) with 
m = 3 for all convex bodies in Rn.

Proof. We rely on an elementary linear algebra statement from the Appendix of Hörmander’s book [3]. Introduce the 
symmetric 3-linear form f̃ on R3, defined on the cone (R+)3 by

f̃ (x, y, z) = V (x1 K1 + x2 K2 + x3 K3 , y1 K1 + y2 K2 + y3 K3 , z1 K1 + z2 K2 + z3 K3, K4, . . . , Kn)

for x, y, z ∈ (R+)3, and the associated 3-form f (x) = f̃ (x, x, x), x ∈R3. Our assumption is that, for x, y ∈ (R+)3, the function 
t → f (x + ty)1/3 is concave on R+ , which is property (i)′ of [3, Proposition A1]. This implies property (iii) of [3, Proposition 
A1] which gives that

f̃ (x, y, z)2 ≥ f̃ (x, x, z) f̃ (y, y, z), ∀x, y, z ∈ (R+)3

and in turn implies (and is equivalent) to the Alexandrov–Fenchel inequalities (2), for instance by picking (at the limit) 
x = (1, 0, 0), y = (0, 1, 0) and z = (0, 0, 1). �

As we said, we prove the Alexandrov–Fenchel inequality (2) by induction on the dimension n. The base case of our induc-
tion is the case n = 2, in which it is well known that the Alexandrov–Fenchel inequality follows from the Brunn–Minkowski 
inequality. We do not provide here an alternative proof for the Alexandrov–Fenchel inequality in two dimensions.

Thus, assume that we are given n ≥ 3, and that the Alexandrov–Fenchel inequality is already proven in dimension n − 1. 
Our goal is to prove that, given m ≥ 3 and m + n − 2 convex bodies, the function fm above is concave (the case m = 3
suffices). By translating the convex bodies, it suffices to prove (4) under the additional assumption that the origin belongs 
to the relative interior of the Ki . By continuity with respect to the Hausdorff distance, it suffices to prove (4) in the case 
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where K1, . . . , Kn−m+2 ⊆ Rn are polytopes containing the origin in their interior. In fact, according to [4, Theorem 2.4.15], 
we may even assume that these polytopes are simple strongly isomorphic.

Let us briefly explain the definition and the basic properties of simple, strongly isomorphic polytopes, using Schneider 
[4, Chapter 2] as our main reference. A polytope in Rn is simple if each of its vertices is contained in exactly n facets. The 
polytopes K1, . . . , Kn−m+2 are strongly isomorphic if for any θ ∈ Sn−1, the (affine) dimension of the convex sets

{x ∈ Ki ; 〈x, θ〉 = sup
y∈K

〈y, θ〉}

is the same for all i = 1, . . . , n − m + 2. Here Sn−1 = {x ∈Rn ; |x| = 1} is the unit sphere in Rn , and we write 〈x, y〉 for the 
standard scalar product between x, y ∈Rn .

Let u1, . . . , uN ∈ Sn−1 be the list of outer unit normals to the facets of K1, say. Then this list is also the list of outer unit 
normals to the facets of Ki , for all i. For h ∈RN+ we consider the set

K [h] = {
x ∈ Rn ; 〈x, u j〉 ≤ h j for j = 1, . . . , N

}
,

which is a convex body containing the origin. Denote

C = {h ∈RN+ ; K [h] is strongly isomorphic to K1}.
It is well known, and stated in the next lemma, that C is a convex cone in RN which provides a parameterization of the 
space of all polytopes that are strongly isomorphic to K1 and with zero in their interior. Moreover, this parameterization is 
linear with respect to the Minkowski sum (Lemma 2).

Lemma 2. We have the following properties:

(i) the set C ⊆RN+ is an open convex cone with an apex at zero;
(ii) each polytope strongly isomorphic to K1 and containing the origin in its interior takes the form K [h] for a certain uniquely 

determined h ∈ C;
(iii) for any h, h′ ∈ C ,

K [h + h′] = K [h] + K [h′]. (5)

Proof. Begin with the proof of (ii). Each polytope strongly isomorphic to K1 has u1, . . . , uN as the unit outer normal to 
its facets. If such polytope contains the origin in its interior, then it takes the form K [h] for a certain uniquely determined 
h ∈Rn+ . By definition, h ∈ C , and (ii) is proven. Next, it is clear that th ∈ C whenever t > 0 and h ∈ C . We need to prove that 
C is open and convex and that (5) holds true. First, note that when K [h] is strongly isomorphic to K1, the polytope K [h]
has a facet whose outer normal is u j , and hence

h j = sup
x∈K [h]

〈x, u j〉 for all j.

Given h, h′ ∈ C , the convex set

K [h] + K [h′]
is strongly isomorphic to K1, according to [4, Corollary 2.4.12]. It follows from (ii) that K [h] + K [h′] = K [h′′] for a certain 
h′′ ∈ C . In order to show that h′′ = h + h′ , we note that

h′′
j = sup

x∈K [h]+K [h′]
〈x, u j〉 = sup

x∈K [h]
〈x, u j〉 + sup

x∈K [h′]
〈x, u j〉 = h j + h′

j.

Thus h′′ = h + h′ ∈ C , and C is convex. Moreover, K [h] + K [h′] = K [h + h′] and (iii) is proven. The fact that C is open follows 
from the simplicity of the polytope K [h] for any h ∈ C , see [4, Lemma 2.4.13]. This completes the proof of (i), and the lemma 
is proven. �

We conclude from Lemma 2 that each Ki takes the form Ki = K [h] for a certain h = h(i) ∈RN+ . We will study the function

F(h) := V (K [h], . . . , K [h]︸ ︷︷ ︸
m times

, K3, . . . , Kn−m+2), h ∈ C ⊂RN .

With Lemma 2 in hand, it is clear that when working with our simple strongly isomorphic polytopes Ki , the concavity of 
fm on RN+ is equivalent to the concavity of the function F1/m on the cone C , since
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fm(t) = F1/m(h(1) + th(2)).

For proving that fm is concave on RN+ , it is enough to prove that the function F1/m is concave on C . We will do it locally 
by analyzing its Hessian.

A crucial property of F is that it is homogeneous of degree m on C ; actually, F may be extended to a homogeneous 
polynomial of degree m in RN as is explained in [4, Chapter 5]. Other properties that follow from the geometry of polytopes 
will allow us to perform induction on the dimension. For a convex body K ⊆Rn , we write

F j(K ) =
{

x ∈ K ; 〈x, u j〉 = sup
y∈K

〈y, u j〉
}

for the facet whose normal is u j . In our case, when K = Ki , the facets F1(K ), . . . , F N (K ) have positive (n − 1)-dimensional 
volume. It is wellknown (e.g., follows from [4, Lemma 5.1.5]) that

∂ iF := ∂F
∂hi

= m

n
· V (Fi(K [h]), . . . , Fi(K [h])︸ ︷︷ ︸

m−1 times

, Fi(K3), . . . , Fi(Kn−m+2))

where this is a mixed volume of (n − 1) bodies in dimension n − 1. The facets satisfy the property of Lemma 2, that is, for 
h, h′ ∈ C ,

Fi(K [h + h′]) = Fi(K [h]) + Fi(K [h′]).
This follows from Lemma 2 and [4, Theorem 1.7.5]. Therefore, by the induction hypothesis (namely the concavity of a certain 
function t → fm−1(t) for convex bodies in Rn−1 � u⊥

i ), the function (∂ iF)1/(m−1) is concave on C , and so in particular, ∂ iF
is log-concave on C . Similarly,

∂ i jF := ∂2F
∂hi∂h j

= ci j · V (Fij(K [h]), . . . , Fij(K [h])︸ ︷︷ ︸
m−2 times

, Fij(K3), . . . , Fij(Kn−m+2))

where Fij(K ) = Fi(K ) ∩ F j(K ) and where ci j = (m/n) · ((m − 1)/(n − 1))/

√
1 − 〈ui, u j〉2 is a non-negative coefficient. Note 

that ∂ i jF is non-negative for all i �= j. Moreover, ∂ i jF(h) > 0 whenever the facets Fi(K [h]) and F j(K [h]) intersect in an 
(n − 2)-dimensional face. We conclude that the Hessian matrix ∇2F is irreducible: for any two indices i, j, there is a 
chain of indices i, i1, . . . , iL, j such that ∂ ii1F(h) > 0, ∂ i1 i2F(h) > 0, . . . , ∂ iL jF(h) > 0. The conclusion now follows from the 
following simple abstract proposition (with p = m and f =F ), which is the core of our argument.

Proposition 3. Let C ⊆RN+ be an open, convex cone and let p ∈ (2, +∞). Let f : C → (0, ∞) be a smooth function such that

(i) the function f is p-homogeneous;
(ii) ∂ i f is positive and log-concave for 1 ≤ i ≤ N (in other words, log(∂ i f ) is concave);
(iii) ∂ i j f is non-negative for all distinct i, j ∈ {1, . . . , N}; moreover, sufficiently many of these numbers are strictly positive, so that the 

Hessian matrix ∇2 f is irreducible.

Then the function f 1/p is concave on the convex cone C.

Proof. For any i, the function f i = ∂ i f is log-concave and (p − 1)-homogeneous, hence f 1/(p−1)

i is concave and so

∇2 f i ≤ p − 2

p − 1

∇ f i ⊗ ∇ f i

f i
. (6)

Note that 
∑

i xi∇2 f i = ∑
i xi∂i(∇2 f ) = (p − 2)∇2 f , again by homogeneity. By multiplying (6) by xi and summing over i,

(p − 2)∇2 f =
∑

i

xi∇2 f i ≤ p − 2

p − 1

N∑
i=1

xi
∇ f i ⊗ ∇ f i

f i
= p − 2

p − 1
(∇2 f )D(∇2 f ) (7)

where D is defined via

D = diagonal(x1/ f1, . . . , xN/ f N).

Since D has positive entries, we may multiply from the left and right by D1/2, hence

(p − 2)D1/2(∇2 f )D1/2 ≤ p − 2 [
D1/2(∇2 f )D1/2

]2
. (8)
p − 1
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We conclude that the matrix M = D1/2(∇2 f )D1/2 thus has no spectrum in the interval (0, p − 1). The matrix M has non-
negative off-diagonal entries, it is irreducible, and it has an eigenvector D−1/2x with non-negative entries, corresponding 
to the eigenvalue p − 1. By the Perron–Frobenius theorem, this is the simple, maximal eigenvalue; actually, since we are 
dealing with a symmetric matrix, this can also be proved by elementary computations without using the Perron–Frobenius 
theorem. Hence,

M ≤ (p − 1)
(D−1/2x) ⊗ (D−1/2x)

|D−1/2x|2 = (p − 1)
D−1/2(x ⊗ x)D−1/2

p · f
.

Multiplying by D−1/2 on the left and on the right, we get as desired

∇2 f ≤ (p − 1)
D−1(x ⊗ x)D−1

p · f
= p − 1

p

∇ f ⊗ ∇ f

f
. �

Remark 4. Properties (7)–(8) for our homogeneous function play the role of a second-order integration by parts formula (à 
la Bochner).

Remark 5. Had we had the Proposition in the case p = m = 2, we could have deduced the Alexandrov–Fenchel inequalities 
directly without having to use Lemma 1. For this, one needs to find a proper replacement for the condition (ii), which as 
such seems too weak in the case p = 2 (the function ∂ i f is linear). We leave this as question to the interested reader.
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