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Abstract

Background: Word embedding technologies, a set of language modeling and feature learning techniques in natural language
processing (NLP), are now used in a wide range of applications. However, no formal evaluation and comparison have been made
on the ability of each of the 3 current most famous unsupervised implementations (Word2Vec, GloVe, and FastText) to keep
track of the semantic similarities existing between words, when trained on the same dataset.

Objective: The aim of this study was to compare embedding methods trained on a corpus of French health-related documents
produced in a professional context. The best method will then help us develop a new semantic annotator.

Methods: Unsupervised embedding models have been trained on 641,279 documents originating from the Rouen University
Hospital. These data are not structured and cover a wide range of documents produced in a clinical setting (discharge summary,
procedure reports, and prescriptions). In total, 4 rated evaluation tasks were defined (cosine similarity, odd one, analogy-based
operations, and human formal evaluation) and applied on each model, as well as embedding visualization.

Results: Word2Vec had the highest score on 3 out of 4 rated tasks (analogy-based operations, odd one similarity, and human
validation), particularly regarding the skip-gram architecture.

Conclusions: Although this implementation had the best rate for semantic properties conservation, each model has its own
qualities and defects, such as the training time, which is very short for GloVe, or morphological similarity conservation observed
with FastText. Models and test sets produced by this study will be the first to be publicly available through a graphical interface
to help advance the French biomedical research.

(JMIR Med Inform 2019;7(3):e12310)  doi: 10.2196/12310
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Introduction

Context
The use of clinically derived data from electronic health records
(EHRs) and other clinical information systems can greatly
facilitate clinical research as well as optimize diagnosis-related

groups or other initiatives. The main approach for making such
data available is to incorporate them from different sources into
a joint health data warehouse (HDW), thus containing different
kinds of natural language documents, such as prescription,
letters, surgery reports—all written in everyday language
(spelling errors, acronyms, and short and incomplete sentences).
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Clinical named entity recognition (NER) is a critical natural
language processing (NLP) task to extract concepts from named
entities found in clinical and health documents (including
discharge summaries). A semantic health data Warehouse
(SHDW) was developed by the Department of Biomedical
Informatics of the Rouen University Hospital (RUH),
Normandy, France. It is composed of 3 independent layers based
on a NoSQL architecture:

• A cross-lingual terminology server, HeTOP, which contains
75 terminologies and ontologies in 32 languages [1]

• A semantic annotator based on NLP bag-of-word methods
(ECMT) [2]

• A semantic multilingual search engine [3]

To improve the semantic annotator, it is possible to implement
deep learning techniques to the already existent one. To do so,
a new text representation, which keeps the most semantic
similarities existing between words, has to be designed to fit
the input of neural networks algorithms (text embedding).

Word Embedding
In NLP, finding a text representation that retains the meaning
proximities has always been a moot point. Indeed, the chosen
representation has to keep the semantic similarities between
different words from a corpus of texts to allow indexation
methods to output a correct annotation. Thus, the representation
of a unique token has to show the proximity with other related
meaning concepts (synonyms, hyponyms, cohyponyms, and
other related tokens), as illustrated in the quotation “You shall
know a word by the company it keeps” [4], now known as the
distributional hypothesis.

During the 60s, the system for the mechanical analysis and
retrieval of text information retrieval system brought the vector
space model (VSM), which led to the idea of vectorial
representation of words [5,6]. With this approach, the word
vectors were sparse (the encoding of a word being a vector of
n dimensions, n representing the vocabulary size). In fact, a
compact and precise representation of words could bring several
benefits. First comes the computational aspect. Computers are
way better to perform operations on low-dimensional objects.
This then permits to calculate the probability of a specific
concept to appear close to another one. Moreover, the vectors’
dimensions created to represent a word can be used to fit this
word in a space and thus make distance comparisons with other
tokens. Current unsupervised embedding techniques provide
dense and low-dimensional information about a word, either
with count-based or predictive-based methods [7]. Different
implementations of techniques mapping words into a VSM have
been developed.

Word2Vec
The Word2Vec approach was the first modern embedding
released in 2013 [8]. Mikolov et al implemented 2 kinds of
architectures: the continuous bag-of-word (CBOW) and the
skip-gram (SG).

The CBOW architecture is learning to predict a target word W
by using its context C. This model is similar to a feedforward
neural network proposed earlier [8,9]. However, the bias brought

by the nonlinear layer has been removed with a shared projection
layer. The input layer accepts one-hot encoding as input Xi (a
sentence is encoded as a very hollow vector. It is composed of
0 or 1, depending on the words found in this sentence and
becomes X’i when passing through the activation function).
With a corpus composed of V different words and an input layer
size of N chosen, the hidden representation of this corpus will
be a V × N matrix with each row representing a word Wv by a
vector of dimension N. After passing through the linear
activation function of the hidden layer, the output Yi can be

computed using the softmax function for each word W V, as
described in the equation below [10].

The SG architecture uses a given word to predict its context,
unlike the CBOW architecture. The entire corpus V will thus
be transformed into many couples target || context (ie, input ||
output or xi || yi of the network) and a stochastic gradient descent
optimizing function will be used on this training dataset with a
minibatch parsing [11].

Thus, the hidden and the output weight matrix will have a shape
of V × N, with N being again the number of dimensions for
word vectors. To reduce the computation of such an amount of
data (in a normal training, all the weights of the network should
be updated for each passage through an example. The amount
of changes depends on the size of the contextual windows), the
authors brought some new ideas. First, word pairs always
appearing together are treated as a single token for both
architectures (New York is much more meaningful than the
combination of New and York). Then, the frequent words
subsampling allows the model to reinitialize a word vector,
reducing the over updating of some common words. Finally,
the negative subsampling makes the model to update only a
portion of the context for each target [12].

GloVe
This model is the embedding released by Stanford University
[13]. Similar to Word2Vec, GloVe can embed words as
mathematical vectors. However, it differs on the method used
to capture similarity between words, GloVe being a count-based
method. The idea was to construct a huge co-occurrence matrix
between the words found in the training corpus of shape V × C
with V being the vocabulary of the corpus and C being the
context examples. The probability P (VW1 || VW2) of a word VW1

being close to another VW2 will increase during the training and
fill the co-occurrence matrix. This gigantic matrix is then
factorized by using the log function, this idea coming from the
latent semantic analysis model [14].

FastText
It is a newly released model in 2017, which comes from a new
idea [15]. Although both Word2Vec and GloVe assumed that
a word can be effectively and directly embedded as a vector,
Bojanowski et al [15] consider that a word could be the result
of all of the vectorial decomposition of this word (subword
model). Each word VW with V being the vocabulary can be
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decomposed into a set of n-characters-grams vectors. For
example, the word “boat” can be seen as

(with the n-gram
parameter n=3, indicating the maximum number of letters
composing a subword). Thus, each word is embedded in the
vectorial space as the sum of all vectors composing this token,
incorporating morphological information into the representation
[16]. Similar to Word2Vec, FastText also comes with the 2
different previously mentioned architectures (SG and CBOW).

Related Study
For the past few years, the huge interest in word embeddings
led to comparison studies. Scheepers et al compared the 3 word
embedding methods but these models were trained on different
and nonspecific datasets (Word2Vec on news data, whereas
FastText and GloVe trained on more academic data, Wikipedia
and Common Crawl, respectively, a bias could have been
brought by such a difference) [17]. Bairong et al also performed
a comparison among these 3 implementations but focused on
bilingual automatic translation comparison (BLEU score [18])
and without human evaluation for all the different models. The
goal here is to determine the best ability to keep semantic
relationships between words [19]. More recently, Beam et al
produced huge publicly available word embeddings based on
medical data; however, this study did not involve FastText, but
involved Word2Vec and GloVe only. Moreover, the benchmark
between embedding methods was based on statistical
occurrences of the concepts [20]. In a similar way, Huang et al
deeply studied Word2Vec on 3 different medical corpuses,
measuring the impact of the corpuses’ focus on medicine and
without evaluating the semantic relationships [21]. Finally,
Wang et al compared word embeddings training set’s influence
on models used for different NLP tasks related to medical
applications, whereas the goal of this study is to compare
embedding implementations trained on the same corpus [22].

Moreover, many different teams or companies have released
pretrained word embedding models (eg, Google, Stanford
University) that could be used for specific applications. Wang
et al also proved that word embeddings trained on a highly
specific corpus are not so different than those trained on publicly
available and general data, such as Wikipedia [22]. However,
in a clinical context, the vocabulary coverage of those
embeddings, trained on an academic corpus, is quite low
regarding the words used in a professional context. To assess
the proportion of these nonoverlapping tokens, 1,250,000
articles’ abstracts were extracted from the French scientific
articles database, LiSSa, and they have been compared with the
raw health data from the SHDW [23]. These health documents
contained 180,362,939 words in total, representing 355,597
unique tokens, and the abstracts from the LiSSa database are
composed of 61,119,695 words, representing 380,879 unique
tokens. Among the 355,597 unique tokens written in the SHDW
documents, 26.11% (92,856/355,597) were not found in the
abstracts from the LiSSa corpus (mainly representing misspells,
acronyms, or geographic locations). Thus, more than a quarter
of the vocabulary used in professional context cannot be better
embedded by using an academic pretraining corpus. Thus, local
training on specific data is often needed, especially with

languages other than English, where less pretrained embedding
models are available.

Contributions
Word embedding comparisons thus have previously been
studied, but as far as we know, none of them compared the
ability of the 5 actual most used unsupervised embedding
implementations trained on a medical dataset produced in a
professional context in French, instead of a corpus of academic
texts. Moreover, a bias could occur when comparing models
trained on different datasets.

Thus, the objective here is to compare 5 different methods
(Word2Vec SG and CBOW, GloVe, FastText SG, and CBOW)
and to assess which of those models output the most accurate
text representation. They will be ranked based on their ability
to keep the semantic relationships between the words found in
the training corpus. We thus extended the related study by (1)
comparing the most recent and used embedding methods on
their ability to preserve the semantic similarities between words,
(2) removing the bias brought by the utilization of a different
corpus to train the compared embedding methods, and (3) using
these embedding algorithms on a challenging corpus instead of
academic texts.

This representation will then be used as the input of deep
learning models constructed to improve the annotating phase,
actually performed by the ECMT in the SHDW. This NER
phase will be the first step toward a multilingual and
multiterminology concept extractor. Moreover, the constructed
models will first be available for the community working on
medical documents in French through a public interface.

Methods

The Corpus
The corpus used in this study is composed of a fraction of health
documents stored in the SHDW of the RUH, France. All these
documents are in French. They are also quite heterogeneous
regarding their type—discharge summaries, surgery or procedure
reports, drug prescriptions, and letters from a general
practitioner. All these documents are written by medical staff
in the RUH and thus contain many typography mistakes,
misspells, or abbreviations. These unstructured text files were
also cleaned by removing the common header (containing RUH
address and phone numbers).

Documents Deidentification
These documents were then deidentified to protect each identity
of every patient or doctor from the RUH. Every first and last
name stored in the RUH main databases was replaced by
noninformative tokens, such as <doctor>, <firstname>, or
<lastname>. Moreover, other tokens have been used, such as
<email> or <date>. In case of a misspelling of a patient’s name
in a document or of a lack in the database, a filter based on
REGular EXpressions has been defined to catch emails, doctor
or professor names (based on the prefix Dr or Prof, respectively,
and their variations), abbreviations such as Mr or Mrs, dates,
and phone numbers without past knowledge. To improve this
important phase, a last rule has also been defined. If no patient
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or doctor name is found in the document, this text is just ruled
out to prevent the release of sensitive information in the
embedding models.

Preprocessing
First comes the question about the shape of the input data.
Should it be composed of chunks of sentences (data are
composed of a list of tokenized sentences) or subsplit by
documents (a list of tokenized documents)? The answer to this
question depends on what the model will be used for. In our
case, the context of each document is important (but not the
context of each sentence, which is a good representation for
documents dealing with many subjects). Therefore, the input
data will be based on document subsplitting.

Then, the data had been lowered (no additional information was
brought on word semantics similarity conservation by

differences between upper and lower case for this study), the
punctuation was removed, and the numerical values were
replaced by a meta-token <number>. We chose not to remove
stopwords because of their negligible impact on the context.
Indeed, their multiple apparitions in many different contexts
would have just created a cluster of stopwords in the middle of
the VSM.

Training
The models have been implemented thanks to the Gensim
Python library [24]. They have been trained on a server powered
by 4 XEON E7-8890 v3 and 1To of RAM located on the RUH.
We based the tuning of models’ hyperparameters on the
literature [25] and on our own experience. The goal here was
to compare word embedding implementation; so, we chose to
keep equivalent parameters for each model. Chosen values are
listed in Table 1.

Table 1. Hyperparameters values used to train the 5 word embedding models.

ValueParameter and applied to model

Epochs

25Word2Vec/FastText

100GloVe

Minimum token count

20All 3 models

Context window size

7All 3 models

Learning rate

2.5x10-2All 3 models

Embedding size

80All 3 models

Alpha rate

0.05All 3 models

Negative sampling

12Word2Vec/FastText

Subsampling

1e-6GloVe

Evaluation
The goal behind these comparisons was to find the model that
can represent nonacademic text into a mathematical form, which
keeps the contextual information about the words, despite the
bias brought by the poor quality of used language. To do so,
different metrics have been defined, centered on word similarity
tasks. The positive relationships were evaluated with the cosine
similarity task and the negative ones with the odd-one task.
Analogy-based operations and human evaluation allows us to
assess if a given model can keep the deep meaning of a token
(antonyms, synonyms, hyponyms, and hypernyms).

Cosine Similarity
Similarities between the embedded pairs of concepts were
evaluated by computing cosine similarity. It has also been used
to assess whether the 2 concepts are related or not. Cosine
similarity (cos) between word vectors W1 and W2 indicates
orthogonal vectors when close to 0 and highly similar vectors
when close to 1. It is defined as:

It is possible to define a validation set, composed of couples of
terms that should be used in a similar context in our documents
(such as flu and virus). Then, the first token from each couple
is sent to each model and the top 10 closest vectors regarding
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the cosine similarity are extracted. The second word has to be
retrieved in these 10 closest vectors to be considered as
successful. Then, the total percentage (p) of success is calculated
regarding the total number of word pairs, with N being the
number of times the second term had been found in the top 10
closest vectors of the first one with:

To construct the dataset, 2 well-known validation sets,
UMNSRS-Similarity and UMNSRS-Relatedness, were used,
containing respectively 566 and 588 manually rated pairs of
concepts known to be often found together, [26]. However, our
corpus being in French, the translated and aligned version of
the MeSH terminology stored in HeTOP was used to translate
these 2 sets [27]. The result provided a number of 308 pairs for
the UMNSRS-Similarity and 317 pairs for the
UMNSRS-Relatedness, the remaining concepts were not directly
found in the MeSH.

Odd One Out Similarity
The odd one out similarity task tries to measure the model’s
ability to keep track of the words’ negative semantic similarities
by giving 3 different words to the model. Among them, 2 are
known as linked, not the third one. Then, the model has to output
the word vector that does not clusterize with the 2 others (eg,
output car when the input is car, basketball, tennis) [28]. To
create such a validation corpus, every Medical Sub Heading
(MeSH) term appearing more than 1000 times in the corpus has
been extracted. The result was a list of 516 MeSH terms, which
have been manually clusterized into 53 pairs of linked MeSH
concepts according to 2 different medical doctors (MDs). Then,
53 words appearing more than 1000 times in the corpus have
been randomly selected to be used as odd terms, one for each
pair of MeSH term. The matrix of cosine distance between the
3 tokens was calculated for each item of the odd-one list and
for each model. The goal for the model is to output a cosine
distance between each of the 2 linked terms and the odd one
closer to 0 compared with the one between those 2 linked terms,
which should be closer to 1 (indicating more similar vectors).
The percentage p of success is then calculated.

Human Evaluation
A formal evaluation of the 5 methods was performed by a public
health resident (CM) and an MD (SJD). A list of 112 terms has
been extracted from the MeSH terminology. At least 3 concepts
have been extracted from each branch of the MeSH terminology
(regardless of branch Publication Characteristics, V). All of
these 112 terms have been sent to each model and the top 5
closest vectors regarding the cosine distance have been extracted
from every model. Overlapping top-close vectors between
models were grouped, avoiding to evaluate several times the
same answer and the total list was randomized to avoid the
annotator’s tiredness. CM and SJD then blindly assessed the
relevance of each vector compared with the sent token. These
citations were assessed for relevance according to a 3-modality
scale used in other standard Information Retrieval test sets: bad
(0), partial (1), or full relevance (2).

Analogy-Based Operations
Mikolov’s paper presenting Word2Vec showed that
mathematical operations on vectors such as additions or
subtractions are possible, such as the famous
(king–man)+woman~queen. This kind of task helps check the
semantic analogy between terms. With Mikolov’s operation, it
is possible to affirm that king and man share the same
relationship properties as queen and woman. To check the
conservation of these properties by each model, several
mathematical operations covering a wide range of possible
subjects found in the EHR (hospital departments, human tissues,
biology, and drugs) were defined following Mikolov’s style
([Term 1 – Term 2] + Term 3 ~ Term 4)). Then, the operation
was performed using vectors Term 1, Term 2, and Term 3
extracted from each model. The resulting vector was compared
with the Term 4 vector, the operation being considered as correct
if this Term 4 vector was found to be the closest one regarding
the cosine distance with the operation resulting one, indicating
a semantic similarity between Term 3 and Term 4, similar to
the one between Term 1 and Term 2.

Word Clusters
In the VSM, words are grouped by semantic similarity, but the
context does influence this arrangement a lot. Every model’s
vector dimensions have been reduced and projected on 2
dimensions using the t-SNE algorithm. Then, logical word
clusters have been manually searched in the projection. This
step was not a part of the global final score but allowed for the
rapid assessment of the quality of a word representation.

Going Further: Model Improvement
To check if a model pretraining affected the result or not, a new
version of the best model regarding the tasks explained above
was trained twice. First, the French paper abstracts from the
LiSSa corpus (1,250,000 in total) were used for model
pretraining. Then, this resulting embedding was trained a second
time on the documents from the RUH without changing any
parameter. All of the automatic tests were performed for this
model a second time to assess if the added academic data
improved the model’s quality regarding our evaluation.

Results

The Corpus
In total, 641,279 documents from the RUH have been
de-identified and preprocessed. With regard to the vocabulary,
texts have been split into 180,362,939 words in total,
representing 355,597 unique tokens. However, this number can
be pondered with 170,433 words appearing only once in the
entire corpus (mainly misspells, but also geographic locations
or biological entities, such as genes and proteins). In total,
50,066 distinct words were found more than 20 times in the
corpus, thus present in the models (minimum count parameter
set to 20). On average, each document contains 281.26 words
(SD 207.42). The 10 most common words are listed in Table 2.
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Table 2. The 10 most common words of our corpus. Note that Rouen is the city where the training data come from.

OccurrencesEnglishFrench

9,501,137ofde

4,822,797doctordocteur

3,975,735thele

3,147,286phonetéléphone

3,036,198’sd’

2,763,918RouenRouen

2,271,317atà

2,129,090thel’

2,091,502andet

2,001,135indans

Figure 1. Two-dimensional t-SNE projection of 10,000 documents randomly selected among main classes in the HDW. The five different colors
correspond to the five types of documents selected (discharge summaries [green], surgery [blue] or procedure [purple] reports, drug prescriptions
[yellow], letters from a general practitioner [red]).

These documents were decomposed using the Term-Frequency
Inverse-Document-Frequency (TF-IDF) algorithm that resulted
in a frequency matrix. Each row, representing an article, had
been used to cluster those documents with a kMeans algorithm
(number of classes K=5). To visualize their distribution on 2
dimensions, t-SNE algorithm had been used (Figure 1) [29].

Those main classes were well separated, thus the vocabulary
itself contained in the documents from the HDW was sufficient
to clusterize each type of text. However, discharge summaries,
surgery, or procedure reports were a bit more mixed because
of the words used in these kinds of context (short sentences,
acronyms and abbreviations, and highly technical vocabulary).

With regard to drug prescriptions and letters to a colleague or
from a general practitioner, they present a more specific
vocabulary (drugs and chemicals and current/formal language,
respectively), involving more defined clusters for these 2 groups.

Training
Regarding the training time, models were very different. GloVe
was the fastest algorithm to train with 18 min to process the
entire corpus. The second position was occupied by Word2Vec
with 34 min and 3 hours 02 min (CBOW and SG architectures,
respectively). Finally, FastText was the slowest algorithm with
a training time of 25 hours 58 min with SG and 26 hours 17
min with CBOW (Table 3).
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Table 3. Algorithms training time (min).

Training time (min)Algorithm

1678.1FastText SG

1577.0FastText CBOW

182.0Word2Vec SG

33.4Word2Vec CBOW

17.5GloVe

Table 4. Percentage of pairs validated by the 5 trained models on 2 UMNSRS evaluation sets.

UMNSRS-RelUMNSRS-SimAlgorithm

5.043.89FastText SG

3.793.89FastText CBOW

4.103.57Word2Vec CBOW

4.102.92Word2Vec SG

0.941.29GloVe

Table 5. Percentage of odd one tasks performed by each of the 5 trained models.

Odd oneAlgorithm

65.4Word2Vec SG

63.5Word2Vec CBOW

44.4FastText SG

40.7FastText CBOW

18.5GloVe

GloVe performs much better in terms of computational time
because of the way it handles the vocabulary. It is stored as a
huge co-occurrence matrix and thanks to its count-based method,
which is not computationally heavy, it can be highly parallelized.
It was expected that FastText would take a lot of time to train,
because of the high number of word subvectors it creates.
However, for Word2Vec, the difference between the 2 available
subarchitectures is highly visible (33 min to 3 hours 02 min).
This difference could come from the hierarchical softmax and
one-hot vector used by the CBOW architecture, which reduces
the usage of the CPU. With SG, the minibatch parsing of all the
context || target pairs highly increases the time to go through
all possibilities.

Evaluation

Cosine Similarity
The total number of UMNSRS pairs successively retrieved by
each model has been extracted (308+317 pairs in total with
UMNSRS-Rel and UMNSRS-Sim). The percentages of
validated pairs from the UMNSRS datasets are presented in the
Table 4. FastText SG performed this task with the highest score
(3.89% and 5.04% for UMNSRS-Sim and UMNSRS-Rel,
respectively). The very low scores indicate that this kind of
published dataset is useful to validate models trained on more
academic texts.

Odd One Similarity
With regard to the odd one similarity task, models are quite
different (Table 5). Word2Vec is the best so far with 65.4% and
63.5% of odd one terms correctly isolated with SG and CBOW
architectures, respectively. Both the FastText architectures
achieved a score between 44.4% (SG) and 40.7% (CBOW).
GloVe only found the correct odd terms in 18.5% of the tested
tasks.

With regard to the subarchitectures presented by both Word2Vec
and FastText, the SG always performed better than the CBOW,
possibly because of the negative sampling. Indeed, the studied
corpus is quite heterogeneous and words can be listed as items
(eg, drugs) instead of being used in correct sentences. Thus
sometimes, the complete update of vectors’ dimensions
generates non-senses in the models (items from lists are seen
as adjacent by the models, thus used in same sentences, leading
to non-senses).

Human Validation
The evaluation focused on 1796 terms (5 vectors, 112 MeSH
concepts, 5 models, and 1004 terms were returned multiple
times by different models) rated from 0 to 2 by 2 evaluators.
First, the agreement between CM and SJD was assessed with
a weighted kappa test [30]. A kappa (k)=.6133 was obtained.
According to the literature, the agreement between the 2
evaluators can be considered as substantial [31]. This agreement
can be retrieved in Figure 2. The accord is stronger for the
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extreme scores (0 and 2) whereas the agreement about the
middle score of 1 is least pronounced.

Moreover, to assess if human evaluators remained coherent
regarding the cosine distance computed by each model, the
average note given by the 2 evaluators was compared with the
average of the cosine distance computed for each model (Table
6). Word2Vec with the SG architecture performed the highest
score, regardless of the evaluator (1.469 and 1.200).
Interestingly, GloVe computed the closest to 1 cosine distance

in averages (0.884 on the top 5 terms to each of the 112 given
concepts, indicating the highest similarity), whereas both
evaluators gave it the lowest grade.

To go further, the cosine distances between the 112 sent
concepts and the 1796 returned were plotted for each of the 3
modalities rated by the evaluators (Figure 3). In fact, when
humans are judging the quality of a returned vector as poor
(note 0), the cosine distance between this vector and the queried
one is also lower and vice-versa.

Figure 2. Global representation of the notation agreement between the 2 evaluators (CM and SJD). Notes attributed to a model output are going from
0 (bad matching) to 2 (good matching). Colors are ranging from light green (high agreement) to red (low agreement).

Table 6. Comparison between cosine distance computed by each model and the human evaluation performed (notes ranging from 0 to 2). Notes and
distances are in averages on the top 5 closest vectors for 112 queries on every model by each of the 2 evaluators (evaluator 1, SJD; evaluator 2, CM).

Evaluator 2Evaluator 1CosineModel

1.2001.4690.776Word2Vec SG

1.1481.3550.731Word2Vec CBOW

1.1111.2000.728FastText SG

1.0481.2140.748FastText CBOW

0.4800.9250.884GloVe
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Figure 3. Comparison of the cosine distance calculated regarding the note given by two human evaluators. In both cases, the lower the note is, the
lower the average distance is (evaluator 1, SJD; evaluator 2, CM).

Analogy-Based Operations
A list of 6 mathematical operations has been defined with the
help of an MD and a university pharmacist (listed in Textbox
1). Each operation consists in verifying if

, allowing to check if
the similarity between Term 1 and Term 2 is the same as the
one between Term 3 and Term 4. These operations have been
defined to cover a wide range of subjects (RUH departments,
drugs, and biology).

Each operation has been performed
on vectors from each model and the nearest vector to the
resulting one has been extracted. Regarding this task, Word2Vec
got the highest score on this task (especially for SG architecture
(5/6), while CBOW only reached (3/6)). FastText, independently
of the architecture studied, obtained a score of (3/6). GloVe got
the lowest score by reaching (2/6).

Interestingly, no operation has been failed by the 5 models,
indicating that none of them is simply not logical or just too
hard to perform for word embedding models. Operation 2 has

been missed by both Word2Vec and FastText SG, whereas
CBOW architectures succeeded to perform it for both
algorithms. In the corpus, tumors (mélanome [melanoma] and
adénome [adenoma]) were cited far from their localization (peau
[skin] and glande [gland], respectively). This distance may be
too high for the context-window size (7 words).

GloVe only performed operations 1 and 5. Only Word2Vec SG
succeeded on the 5th one. The low score for this task can come
from the fact that GloVe treated only pairs of words in the
co-occurrence matrix. Thus, relations in common between 2
tokens and a third one are not taken in account.

FastText algorithm just got the average score with SG and
CBOW. They both failed to perform operations number 4 and
5 (also number 2 for SG and number 3 for CBOW). The
subword decomposition performed by this algorithm was
keeping track of the context, but was not as accurate as
Word2Vec SG in this task. This imbalance was not compensated
by the SG architecture, which performed better for Word2Vec,
indicating that this subword decomposition has a really strong
impact on the embedding.

Textbox 1. Relation number and mathematical operation performed. For each relation number, the first line is in French and the second line is in English.

1. (cardiologie - coeur) + poumon ~ pneumologie

(cardiology - heart) + lung ~ pneumology

2. (mélanome - peau) + glande ~ adénome

(melanoma - skin) + gland ~ adenoma

3. (globule - sang) + immunitaire ~ immunoglobuline

(corpuscle - blood) + immune ~ immunoglobulin

4. (rosémide - rein) + coeur ~ fosinopril

(furosemide - kidney) + heart ~ fosinopril

5. (membre - inférieur) + supérieur ~ bras

(limb - lower) + upper ~ arm

6. (morphine - opioide) + antalgique ~ perfalgan

(morphine - opioid) + antalgic ~ perfalgan
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Word Clusters
As a visual validation, t-SNE algorithm was applied on vectors
extracted from each of the 5 models. To investigate how word
vectors are arranged, clusters had been manually searched on
the projection. Word2Vec clustered words with a good quality
regarding the context they could be used in. Both SG and
CBOW architectures had logical word clusters, for example,
related to time (Figure 4).

Many other clusters were found by reducing the dimension of
both Word2Vec SG and CBOW results; some are showed on
Multimedia Appendix 1. These clusters of linked words were
underlying the fact that the context in which words are used has
a strong impact on the words’ vectorization for this algorithm.
In Figure 4, it is easily visible that the word structure itself (word
size and the letters composing it) does not influence the
representation of words produced by Word2Vec at all. In fact,
tokens seen in this insert are very different, regarding the size
(ranging from 2 letters for an [year] to 8 for semaines [weeks])
or the composition of letters (no letters in common between the
2 neighbors semaine [week] and jour [day]).

By looking at the dimensional reduction of vectors produced
by GloVe, it is visible how co-occurence matrix used by this
algorithm is affecting the placement of vectors in the VSM. In

fact, words often used close to each other (and not especially
on the same context, such as Word2Vec) are clusterizing well.
In the group given as an example in Figure 5, it is visible that
sentence segments are almost found intact. Indeed, the large
co-occurrence matrix very well captures the similarities found
inside the sliding window, but 2 words having the same meaning
but not found in the same context (ie, surrounded by other
different tokens) will have more difficulties to clusterize with
this algorithm.

With regard to FastText, it is interesting to notice that clusters
of words used in a similar context were found but other variables
do influence the spatial arrangement of the vectors a lot when
projected on 2 dimensions: word size and composition. Indeed,
as seen on the Multimedia Appendix 2, a gradient starting from
the edges of the word projection to the center is following the
size of tokens. The shortest ones are found on the edges whereas
the longest, in the middle, indicating that the subword vectors
created by FastText to decompose each word are strongly
impacted by the morphological structure of embedded words.

With regard to the global shape of the 5 projections on the
Multimedia Appendix 3, no meaningful distinction can be made
between the 5 studied models at this scale. The diversity found
at a local scale is not projected on the global one.

Figure 4. Small cluster of words found in both Word2Vec SG and CBOW (second one shown). Année(s) and an(s) mean year(s), semaine(s) mean
week(s) and jour(s) mean day(s). The meta-token "number" used to replace numbers is visible in the expression numberj.

Figure 5. Cluster of words related to the size found by reducing the number of dimensions of word vectors produced by GloVe algorithm.
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Figure 6. Pulled scores for each task regarding every of the five trained models. Log has been used to facilitate the visualization. Cosine score is
duplicated regarding the UMSNRS used set.

Model Improvement
So far, Word2Vec with the SG architecture showed the best
results in average (Figure 6). Thus, a subset of 350,000 French
abstracts has been extracted from the LiSSa database, hosted at
the RUH, to pretrain this embedding model. It took nearly 20
min for the algorithm to preprocess these data with the same
workflow than the one presented in the method section and to
train on it (parameters listed in Table 1). Afterward, another 48
min were needed to update word vectors, thanks to the 607,135
health documents contained in the HDW from the RUH.

When this model trained on 2 different datasets is compared
with the initial Word2Vec model (without any pretraining),
scores were not changed with regard to the cosine and odd one
tests (4.1% on the UMNSRS-Rel and 65.4%, respectively).
Interestingly, the grade coming from analogy-based operations
decreased, lowered from 5/6 to 3/6. This could come from the
fact that documents used for pretraining (scientific articles) were
highly specialized in a domain, leading to already strongly
associated vectors.

Discussion

Principal Findings
In this study, the 3 most famous word embeddings have been
compared on a corpus of challenging documents (2 architectures,
each for Word2Vec and FastText, as well as GloVe) with 5
different evaluating tasks. The positive and negative semantic
relationships have been assessed, as well as the word sense
conservation by human and analogy-based evaluation.

The training in our 600,000 of challenging documents showed
that Word2Vec SG got the best score for 3 on the 4 rated tasks

(FastText SG is the best regarding the cosine one). These results
are coherent with those obtained by Th et al, who compared
Word2Vec and GloVe with the cosine similarity task [32]. More
specifically, the CBOW architecture is training way faster,
whereas the SG is more accurate on semantic relationships. This
model seems to be more influenced by the context in which
each word is used, than by the word composition itself. GloVe
got the worst grade regarding to our evaluations; however, it is
the fastest to train so far. Moreover, GloVe was the only one
not implemented in the Python library Gensim, which could
have brought a bias in this study. This model is computing a
cosine distance closer to 1 in average between queried word
and close ones, whereas human judgment shows the lowest
grade. With regard to FastText, it is interesting to notice that
the morphological similarities are kept in account in the vector
space creation. In fact, word clusters are highly impacted by
the word’s composition in letters and by its size. However, the
subvector decomposition of words allows this kind of model to
be queried by words absent in the original training corpus, which
is impossible with others. Therefore, this model could be used
for orthographic correction or acronym disambiguation, for
example.

The medical corpus used as a training set for these embedding
models is coming from a real work environment. First, finding
a good evaluation for embeddings produced in such a context
is a hard task. The performances shown by some models trained
on scientific literature or on other well-written corpus should
be biased regarding their utilization on a very specific work
environment. Second, based on our results, an amount of 26.1%
of unique tokens found in the health-related documents are not
present in an academic corpus of scientific articles, indicating
a weakness of the pretrained embedding models. Documents
produced in a professional context are highly different compared
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with this kind of well-written texts. Finally, in this study,
pretraining an embedding with an academic corpus and then on
the specific one does not improve the model’s performances. It
even lowers the score associated to analogy-based operations,
indicating strongly associated vectors in the VSM, which leads
to a loose of the inherent plasticity of this kind of model to
deeply understand the context of a word.

Limitations
There are a few limitations in our study. First, other embedding
models, newly released, could have been compared as well
(BERT [33] and ELMo [34]). Second, other clinical notes from
different health establishments could have been joined to this
study, to investigate how the source of the corpus could affect
the resulting similarities found in the embedding space. The
complete comparison could also have been trained on
nonclinical data, which are highly sensitive and hard to obtain,
to help reproducibility. Finally, the quality of those embedding
has been checked regarding the semantic similarity conservation,
but other metrics could affect this judgment, depending on the
model’s usage.

Regarding the cosine annotation, low scores could be explained
by the number of occurrences of each term from the 625 words
pairs in the corpus of texts. The UMNSRS-Rel dataset contains
257 unique terms for 317 word pairs, whereas the
UMNSRS-Sim contains 243 terms for 308 word pairs. First,
128 words in total (25.6%) have been found less than 20 times
regarding all of the 641,279 documents, thus being absent in
the model because of the min_count parameter. These words
are found in 452 word pairs in total (231/317 in the
UMNSRS-Rel and 221/308 in the UMNSRS-Sim), representing
72.3% of the total number of word pairs searched that cannot
be found in the models.

Most of the words absent from the models are drugs’ molecular
names, whereas practitioners from the RUH often use the trade
names to refer to a drug (eg, ESPERAL instead of disulfirame).
The natural medical language used in the RUH by the
practitioners prevents some words to be found: use of an

acronym (HTA instead of hypertension artérielle, meaning
hypertension) or of a synonym (angor instead of angine de
poitrine, meaning angina pectoris). Another explanation could
come from the fact that some associations defined in those
UMNSRS datasets can be true in an academic context, but will
be very rarely found in a professional context.

With a median number of occurrences of 230 in the entire corpus
of health documents, 176 words (28.1%) have been found more
than 1000 times. Whereas the biggest proportion of the
low-frequency words was composed of drugs or molecules
names, the high-frequency group of words (up to 134,371 times
for the word douleur, meaning pain) is mainly composed of
clinical symptoms or diseases. This validation corpus seems to
be just not suitable to investigate the quality of embedding
trained on such a corpus.

Conclusions

In our case, Word2Vec with the SG architecture got the best
grade in 3 out of the 4 rated tasks. This kind of embedding seems
to preserve the semantic relationships existing among words
and will soon be used as the embedding layer for a deep learning
based semantic annotator. More specifically, this model will be
deployed for semantic expansion of the labels from medical
controlled vocabularies. To keep the multilingual properties of
the actual annotator, a method of alignment between the
produced embedding and other languages will also be developed.
Other recently tested unsupervised embedding methods exhibit
a certain quality, but their ability to preserve the semantic
similarities between words seems weaker or influenced by other
variables than word context.

As soon as the paper is submitted, any end user will be able to
query the word embedding models produced by each method
on a dedicated website as well as to download high quality
dimension reduction images and test sets [35]. This embedding
will be the first publicly published embedding in French,
allowing the NLP medical research on French language to go
further.
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Multimedia Appendix 1
Other word clusters found in the Word2Vec model (CBOW architecture). Red words represent departments from the RUH
(cardiology, gynecology, pneumology, etc.) while the red circle indicate months of year. These two groups are near because of
the appointment letters or the summary of patients' medical background found in the corpus. Only words appearing more than
5,000 times in the entire corpus have been plotted.
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[PNG File, 663KB-Multimedia Appendix 1]

Multimedia Appendix 2
Words size gradient visible while projecting FastText model in two dimensions. In the background is the entire model, in the
front the middle-right squared piece zoomed. Red words correspond to units for International Systems. They are grouped with
two or three-letters words, while words visible on the left are longer. Only tokens appearing more than 5,000 times in the entire
corpus have been plotted.

[PNG File, 335KB-Multimedia Appendix 2]

Multimedia Appendix 3
Global shape of the cloud generated by the dimension reduction by t-SNE of the five VSM created by the five trained word
embedding models. Clouds design is highly similar; however, Word2Vec CBOW (figure B) seems to be more compact regarding
the y axis compared to the other four. A: Word2Vec SG; B: Word2Vec CBOW; C: GloVe; D: FastText SG; E: FastText CBOW.

[PNG File, 594KB-Multimedia Appendix 3]
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