F. Aflaki, V. Ghoulipour, N. Saemian, and M. Salahinejad, A simple method for benzoyl chloride derivatization of biogenic amines for high performance liquid chromatography, Analytical Methods, vol.6, pp.1482-1487, 2014.

C. Afonso, R. B. Cole, J. C. Tabet, S. Wiley-bazile, N. Moreau et al., Relationships among antibacterial activity, inhibition of DNA gyrase, and intracellular accumulation of 11 fluoroquinolones, Antimicrobial Agents and Chemotherapy, vol.36, pp.2622-2627, 1992.

B. D. Bennett, E. H. Kimball, M. Gao, R. Osterhout, S. J. Van-dien et al., Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli, Nature Chemical Biology, vol.5, pp.593-599, 2009.

K. Bingol, L. Bruschweiler-li, D. Li, B. Zhang, M. Xie et al., Emerging new strategies for successful metabolite identification in metabolomics, Bioanalysis, vol.8, pp.557-573, 2016.

Y. C. Chang, Z. Hu, J. Rachlin, B. P. Anton, S. Kasif et al., COMBREX-DB: An experiment centered database of protein function: knowledge, predictions and knowledge gaps, Nucleic Acids Research, vol.44, pp.330-335, 2016.

D. A. D'argenio, A. Segura, W. M. Coco, P. V. Bunz, and L. N. Ornston, The physiological contribution of Acinetobacter PcaK, a transport system that acts upon protocatechuate, can be masked by the overlapping specificity of VanK, Journal of Bacteriology, vol.181, pp.3505-3515, 1999.

V. De-berardinis, M. Durot, J. Weissenbach, and M. Salanoubat, Acinetobacter baylyi ADP1 as a model for metabolic system biology, Current Opinion in Microbiology, vol.12, pp.568-576, 2009.

V. De-berardinis, D. Vallenet, V. Castelli, M. Besnard, A. Pinet et al., A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1, Molecular Systems Biology, vol.4, p.174, 2008.

D. A. Dias, O. A. Jones, D. J. Beale, B. A. Boughton, D. Benheim et al., Current and future, 2016.

X. Domingo-almenara, J. R. Montenegro-burke, H. P. Benton, and G. Siuzdak, Annotation: A computational solution for streamlining metabolomics analysis, Analytical Chemistry, vol.90, pp.480-489, 2018.

W. Dunn, A. Erban, R. M. Weber, D. Creek, M. Brown et al., Mass appeal: Metabolite identification in mass spectrometry-focused untargeted metabolomics, Metabolomics, vol.9, pp.44-66, 2013.

W. B. Dunn, A. Erban, R. J. Weber, D. J. Creek, M. Brown et al., Mass appeal: Metabolite identification in mass spectrometry-focused untargeted metabolomics, Metabolomics, vol.9, pp.44-66, 2013.

C. Frainay, E. Schymanski, S. Neumann, B. Merlet, R. Salek et al., Mind the gap: Mapping mass spectral databases in genome-scale metabolic networks reveals poorly covered areas, Metabolites, vol.8, p.51, 2018.

M. Y. Galperin and E. V. Koonin, Conserved hypothetical' proteins: Prioritization of targets for experimental study, Nucleic Acids Research, vol.32, pp.5452-5463, 2004.

K. Hamana and S. Matsuzaki, Diaminopropane occurs ubiquitously in Acinetobacter as the major polyamine, The Journal of General and Applied Microbiology, vol.38, pp.191-194, 1992.

H. Horai, M. Arita, S. Kanaya, Y. Nihei, T. Ikeda et al., MassBank: A public repository for sharing mass spectral data for life sciences, Journal of Mass Spectrometry, vol.45, pp.703-714, 2010.

J. I. Jimenez, B. Minambres, J. L. Garcia, and E. Diaz, Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440, Environmental Microbiology, vol.4, pp.824-841, 2002.

N. S. Kale, K. Haug, P. Conesa, K. Jayseelan, P. Moreno et al., MetaboLights: An open-access database repository for metabolomics data, Current Protocols in Bioinformatics, vol.53, pp.13-14, 2016.

M. Kanehisa, S. Goto, Y. Sato, M. Furumichi, and M. Tanabe, KEGG for integration and interpretation of large-scale molecular data sets, Nucleic Acids Research, vol.40, pp.109-114, 2012.

T. Kind and O. Fiehn, Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry, BMC Bioinformatics, issue.8, p.105, 2007.

T. Kind and O. Fiehn, Advances in structure elucidation of small molecules using mass spectrometry, Bioanalytical Reviews, vol.2, pp.23-60, 2010.

T. Kind, H. Tsugawa, T. Cajka, Y. Ma, Z. Lai et al., Identification of small molecules using accurate mass MS/MS search, Mass Spectrometry Reviews, vol.37, pp.513-532, 2018.

K. Levsen, H. M. Schiebel, J. K. Terlouw, K. J. Jobst, M. Elend et al., Even-electron ions: A systematic study of the neutral species lost in the dissociation of quasimolecular ions, Journal of Mass Spectrometry, vol.42, pp.1024-1044, 2007.

G. Martin and A. Williams, Utilizing long-range 1 H-15 N 2D NMR spectroscopy in chemical structure elucidation, 2008.

G. E. Martin and C. E. Hadden, Long-range 1H-15N heteronuclear shift correlation at natural abundance, Journal of Natural Products, vol.63, pp.543-585, 2000.

D. Metzgar, J. M. Bacher, V. Pezo, J. Reader, V. Döring et al., Acinetobacter sp. ADP1: An ideal model organism for genetic analysis and genome engineering, Nucleic Acids Research, vol.32, pp.5780-5790, 2004.

J. E. Peironcely, M. Rojas-cherto, D. Fichera, T. Reijmers, L. Coulier et al., OMG: Open molecule generator, Journal of Cheminformatics, vol.4, p.21, 2012.

M. Rojas-cherto, M. Van-vliet, J. E. Peironcely, R. Van-doorn, M. Kooyman et al., MetiTree: A web application to organize and process high-resolution multistage mass spectrometry metabolomics data, Bioinformatics, vol.28, pp.2707-2709, 2012.

A. Roux, D. Lison, C. Junot, and J. F. Heilier, Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology: A review, Clinical Biochemistry, vol.44, pp.119-135, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00641535

Y. Sawada, R. Nakabayashi, Y. Yamada, M. Suzuki, M. Sato et al., RIKEN tandem mass spectral database (ReSpect) for phytochemicals: A plant-specific MS/ MS-based data resource and database, Phytochemistry, vol.82, pp.38-45, 2012.

S. Y. Siehler, S. Dal, R. Fischer, P. Patz, and U. Gerischer, Multiple-level regulation of genes for protocatechuate degradation in Acinetobacter baylyi includes cross-regulation, Applied and Environmental Microbiology, vol.73, pp.232-242, 2007.

D. P. Singh, R. Govindarajan, A. Khare, and A. K. Rawat, Optimization of a high-performance liquid chromatography method for the separation and identification of six different classes of phenolics, Journal of Chromatographic Science, vol.45, pp.701-705, 2007.

C. A. Smith, G. O'maille, E. J. Want, C. Qin, S. A. Trauger et al., METLIN: A metabolite mass spectral database, Therapeutic Drug Monitoring, vol.27, pp.747-751, 2005.

L. Stuani, C. Lechaplais, A. Salminen, B. Ségurens, M. Durot et al., Novel metabolic features in Acinetobacter baylyi ADP1 revealed by a multiomics approach, Metabolomics, vol.10, issue.6, pp.1-16, 2014.

L. W. Sumner, A. Amberg, D. Barrett, M. H. Beale, R. Beger et al., Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG), Metabolomics Standards Initiative (MSI). Metabolomics, vol.3, pp.211-221, 2007.

H. Tsugawa, T. Kind, R. Nakabayashi, D. Yukihira, W. Tanaka et al., Hydrogen rearrangement rules: Computational MS/MS fragmentation and structure elucidation using MS-FINDER Software, vol.88, pp.7946-7958, 2016.

J. J. Van-der-hooft, J. Vervoort, R. J. Bino, J. Beekwilder, and R. C. De-vos, Polyphenol identification based on systematic and robust high-resolution accurate mass spectrometry fragmentation, Analytical Chemistry, vol.83, pp.409-416, 2011.

M. R. Viant, I. J. Kurland, M. R. Jones, and W. B. Dunn, How close are we to complete annotation of metabolomes?, Current Opinion in Chemical Biology, vol.36, pp.64-69, 2017.

D. S. Wishart, T. Jewison, A. C. Guo, M. Wilson, C. Knox et al., HMDB 3.0-The Human Metabolome Database in 2013, Nucleic Acids Research, vol.41, pp.801-807, 2013.

S. Wolf, S. Schmidt, M. Muller-hannemann, and S. Neumann, In silico fragmentation for computer assisted identification of metabolite mass spectra, BMC Bioinformatics, vol.11, p.148, 2010.

D. M. Young, D. Parke, and L. N. Ornston, Opportunities for genetic investigation afforded by Acinetobacter baylyi, a nutritionally versatile bacterial species that is highly competent for natural transformation, Annual Review of Microbiology, vol.59, pp.519-551, 2005.

Z. J. Zhu, A. W. Schultz, J. Wang, C. H. Johnson, S. M. Yannone et al., Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database, Nature Protocols, vol.8, pp.451-460, 2013.