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Strongly self-interacting processes on the circle

The purpose of this paper is to investigate the long time behaviour for a selfinteracting diusion and a self-interacting velocity jump process. While the diusion case has already been studied for some particular potential function, the second one, which belongs to the family of piecewise deterministic processes, is new.

Depending on the underlying potential function's shape, we prove either the almost sure convergence or the recurrence for a natural extended process given by a change a variable.

Introduction

Our aim is to study the eect of the addition of a self-interaction mechanism to two initially Markovian dynamics. The rst one is the classical Fokker-Planck diusion X ∈ R that solves the SDE

dX t = dB t -V (X t )dt, (1) 
where (B t ) t 0 is a standard Brownian motion on R. Namely X is the Markov process with generator

Lf (x) = 1 2 f (x) -V (x)f (x).
We recall that the generator of a Markov process (Z t ) t≥0 is formally dened by

Lf (z) = (∂ t ) |t=0 E (f (Z t ) | Z 0 = z) .
Equation (1) can be seen as the generalization of the classical Ornstein-Uhlenbeck process, obtained for V (x) = λx, λ > 0.

The second one is the velocity jump process (X, Y ) ∈ R×{-1, 1} which is the piecewise deterministic Markov process (PDMP) introduced in [START_REF] Monmarché | Piecewise deterministic simulated annealing[END_REF] with generator Lf (x, y) = y∂ x f (x, y) + λ + (yV (x)) + (f (x, -y) -f (x, y))

where λ > 0 is constant and ( ) + denotes the positive part. A trajectory of the process is dened as follows: starting from an initial state (x, y), the process follows the deterministic ow (X t , Y t ) = (x + ty, y) up to a random time T with cumulative distribution P(T > s) = exp[-λs + s 0 (yV (x + uy))du]. At time T , the velocity is reversed, i.e. Y T = -y, while the position is continuous, i.e. X T = x + T y. By the Markov property, (X T , Y T ) can then be taken as a new initial state, from which the process again follows free transport up to a new random jump time, etc., and the full trajectory is dened by induction (see [START_REF] Monmarché | Piecewise deterministic simulated annealing[END_REF] and Section 2.2 for details).

In both cases (diusion or PDMP), if we suppose that the potential V is suciently coercive at innity, X is ergodic and its law converges to the Gibbs measure with density proportional to e -V . Note that when the rate of jump λ goes to innity and time is correctly accelerated, the velocity jump process (more precisely its rst coordinate) converges to the Fokker-Planck diusion (see [START_REF] Fontbona | Long time behavior of telegraph processes under convex potentials[END_REF]).

In both cases we want to replace the potential V (X t ) by a self-interacting potential

V t (X t ) = t 0 W (X t , X s )ds
where W is a symmetric interaction potential. In other words V t (X t ) depends both on the current position X t and the (non-normalized) occupation measure t 0 δ Xs ds. This is a strong self-interaction, by contrast with the weak self-interaction such as studied in [START_REF] Benaïm | Self-interacting diusions[END_REF] where the self-interacting potential is a function of X t and of the normalized occupation measure 1 t t 0 δ Xs ds.

Self-Interacting processes belong to the family of path-dependent processes. The particularity of such processes is their lack of Markov property since the past modies the environment that drives the particle. New phenomena may arise in their long time behavior, which would be impossible without the path-dependency.

A rst example of strong self-interaction is the linear one, that correspond to W (x, y) = 1 2 (x -y) 2 . M.Cranston and Y.Le Jan proved in 1995 (see [START_REF] Cranston | Self attracting diusions : Two case studies[END_REF]) that the solution of the SDE

dX t = dB t - t 0 (X t -X s )ds dt (2) 
almost surely converges to a Gaussian random variable as t goes to innity. Later, S.Herrmann and B.Roynette extended this result to a broader class of potentials of the form W (x, y) = V (x -y) with V convex (see [START_REF] Herrmann | Boundedness and convergence of some self-attracting diusions[END_REF]). In the case of the circle, the rst author obtained the same result (almost sure convergene toward a random variable) for the interaction potential W (x, y) = -cos(x -y) (see [START_REF] Gauthier | Self attracting diusions on a sphere and application to a periodic case[END_REF]). In all these cases the particle is attracted by its past.

In [START_REF] Benaïm | Self-repelling diusions on a Riemannian manifold[END_REF], M.Benaïm and the rst author considered the repulsive case, in which the particle is repelled by its past trajectory. More precisely they studied a self-repelling diusion on a compact manifold where W can be decomposed as

W (x, y) = n i=1
a i e i (x)e i (y) with the a i 's being positive numbers and the e i 's being eigenfunctions of the Laplace operator on the manifold. The basic example on the circle would be W (x, y) = cos(x-y) = cos(x) cos(y) + sin(x) sin(y). This assumption on the e i 's yields an explicit formula for the invariant measure of the Markov process X t , t 0 e i (X s )ds i=1..n . The aim of the present work is to investigate the case where the e i 's are not eigenfunctions of the Laplace operator. On the other hand we restrict the study (in dimension 1) to the case n = 1, namely we take a potential of the form

W (x, y) = F (x)F (y)
with moreover F smooth and 2π-periodic, so that we consider x ∈ S 1 = R/2πZ. Following [START_REF] Benaïm | Self-repelling diusions on a Riemannian manifold[END_REF], we set

U t = t 0 F (X s )ds, (3) 
which reduces the study of the non-Markovian process to the study of some Markov process on an extended space. This restriction should be seen as a rst step toward the analysis of the more general situation. As a consequence, in this paper we study the Markov processes (X, U ) on S 1 × R and (X, U, Y ) on S 1 × R × {-1, 1} with respective generators

L 1 f (x, u) = 1 2 ∂ 2 x f (x, u) -uF (x)∂ x f (x, u) + F (x)∂ u f (x, u) (4) 
and

L 2 f (x, u, y) = y∂ x f (x, u, y) + F (x)∂ u f (x, u, y) + λ + (yuF (x)) + (f (x, u, -y) -f (x, u, y)) . (5) 
In both cases we call X the position, U the auxiliary variable and, in the case of the velocity jump process, Y the velocity. Remark that (3) would imply that U 0 is always 0, but from now on we consider the general case of the processes with generators (4) and ( 5) with any initial condition U 0 ∈ R. The following assumptions are supposed to hold throughout all the paper:

• The function F : S 1 → R is non-constant, C ∞ ,
changes signs, and F (x) = 0 implies F (x) = 0. Moreover for all x ∈ S 1 there exists k ≥ 1 such that F (k) (x) = 0. In particular the critical points of F are isolated points.

The assumption that F has no critical point x with F (x) = 0 and is nowhere at is made for simplicity: otherwise, dierent behaviours may arise and many cases would have to be distinguished. We concentrate here on the generic case. Throughout this paper, we consider the discrete sets

M (F, +) = {x ∈ S 1 | x is a local maximum of F and F (x) > 0} M (F, -) = {x ∈ S 1 | x is a local maximum of F and F (x) < 0} m(F, +) = {x ∈ S 1 | x is a local minimum of F and F (x) > 0} m(F, -) = {x ∈ S 1 | x is a local minimum of F and F (x) < 0}
and M = M (F, -) ∪ m(F, +). Recall the total variation distance between two probability laws µ and ν is

d T V (µ, ν) = inf {P (Ξ 1 = Ξ 2 ) : Law(Ξ 1 ) = µ, Law(Ξ 2 ) = ν}
and a measure µ is said invariant for a Markov process

(Z t ) t≥0 if {Law(Z 0 ) = µ} implies {∀t ≥ 0, Law(Z t ) = µ}.
We say that the law of (Z t ) t≥0 converges exponentially fast to µ in the total variation sense if there exist C, ρ > 0, that may depend on the law of Z 0 , such that for all t ≥ 0

d T V (Law(Z t ), µ) ≤ Ce -ρt .
Finally, we say that a random variable Z admits an exponential moment if there exists θ > 0 such that E(e θ|Z| ) < ∞. Our main result is the following: Theorem 1.

1. If M = ∅, then each of the the processes (X, U ) with generator (4) and (X, U, Y )

with generator (5) admits a unique invariant measure with full support. If the law of U 0 admits an exponential moment then the process converges exponentially fast in the total variation distance sense to this invariant measure.

2. If M = ∅, then, in both cases, the position X t almost surely converges to a point of M, as t goes to innity. Any point of M has a positive probability to be the limit of X.

Before proceeding to its proof, let us mention why this result may be expected. Suppose that, at some time, U > 0. Then, as long as U is large enough, the force U t F (X t ) tends to conne X close to the minima of F . If these minima are all negative, while X stays in their neighbourhood, U decreases, up to some point where it becomes negative. From then the eect of the force is reversed, X is attracted by the maxima of F , and the same mechanism comes into play with U and F changed to -U and -F . In some sense X and U have then an inhibitory eect one on the other.

On the other hand if X falls in the neighborhood of a positive minimum of F while U > 0 (the case of a negative maximum with U < 0 being symmetric) then, as long as it stays there, U increases, which make it more and more unlikely for X to escape away from the minimum, so that eventually there is a positive probability that X never leaves and U goes to innity. This is reminiscent of the annealing problem (see [START_REF] Royer | A remark on simulated annealing of diusion processes[END_REF] for the diusion and [START_REF] Monmarché | Piecewise deterministic simulated annealing[END_REF] for the velocity jump process) where U t is replaced by a deterministic (β t ) t≥0 , called the inverse temperature. It is classical that in this case, if β increases faster than logarithmically then X will eventually stay trapped forever in the cusp of a local minima. Yet, in our present case, as long as X stays close to a positive minimum, U increases linearly in time.

Remarks :

1. The particular form of the interacting potential W (x, y) = F (x)F (y) implies that W is a Mercer Kernel, which means the particle is repulsed by its past (see [START_REF] Benaïm | Self-repelling diusions on a Riemannian manifold[END_REF]).

If furthermore 2π 0 F (y)dy = 0, it has been shown in [START_REF] Benaïm | Self-interacting diusions III. Symmetric interactions[END_REF]Theorem 2.13] that the normalized occupation measure 1 t t 0 δ Xs ds converges almost-surely to the uniform distribution on S 1 whether or not M is empty in the weak self-interaction diusion case. This is a major dierence between strong and weak self-interaction.

We could also consider the case W (x, y) = -F (x)F (y). Following the proof of Theorem 1, it is not hard to see that in this case X t almost surely converges as t goes to innity to a point of M = m(F, -) ∪ M (F, +) which, as soon as F is not constant and changes signs, is non-empty.

2. If F does not change signs, then, depending on the sign, U t converges either to ∞ or to -∞ linearly fast. Therefore, Proposition 1 and Proposition 4 imply the almost-sure convergence of X t respectively either to a local minimum or to a local maximum of F .

We made the choice to write as much as possible notations, results and proofs which are common to both processes, isolating only the few lemmas that deal with the specic technical diculties of each case. Our arguments are based on bounds for some hitting times of the processes which are established in Section 2. From them we show in Section 3 that, when M is empty, the time for the processes to return to compact sets is short (i.e. it admits exponential moments). Section 4 is devoted to some uniform bounds of the transition kernel of the processes over compact sets, and Section 5 to the proof of Theorem 1.

Notation: for s ∈ R, s = max{k ∈ Z, k ≤ s} and s = min{k ∈ Z, k ≥ s}.

Hitting times

In this section, for a redaction purpose, we will hide the dependency on U of the evolution of X. More precisely we will consider the (inhomogeneous in time) diusion

dX t = dB t -g(t)F (X t )dt ( 6 
)
where g is a Lipschitz-continuous function and, similarly, the inhomogeneous PDMP (X, Y ) with generator

L t f (x, y) = y∂ x f (x, y) + λ + (g(t)yF (x)) + (f (x, -y) -f (x, y)) (7) 
where the generator of an inhomogeneous Markov process Z is by denition

L t f (z) = (∂ s ) |s=0 E (f (Z t+s | Z t = z) .
Note the processes considered in Theorem 1 are particular cases of those dened here. Let A = m(F, +) ∪ m(F, -) be the set of minima of F , and δ ≤ -1 3 max{F (x) : x ∈ m(F, -)} be positive and small enough so that • for all x ∈ A, denoting by I δ x = [z l , z r ] the connected component of {F ≤ F (x) + 2δ} containing x, then F decreases on [z l , x] and increases on [x, z r ].

• there exists κ > 0 such that for all x ∈ A and η ∈ [0, δ],

d(x, B η x ) κ √ η, where B η x = {z ∈ I δ x , F (z) = F (x) + η}. The existence of κ follows from the fact that F (x) ≤ F (x 0 ) + F ∞ (x -x 0 ) 2 /2 for all x ∈ S 1 and x 0 ∈ A. Remark that the denition of δ ensures that for all x ∈ m(F, -), {F ≤ F (x) + 2δ} ⊂ {F ≤ -δ}. Finally, for all η ∈ [0, δ], let B η = x∈A B η x and C η = x∈A I η x c
.

In other words C η is the complementary of a neighbourhood of the minima of F and B η is a set of intermediary points from A to C η . These sets (for η = δ) are represented in Fig. 1. Note that the choice of δ ensures that if M = ∅ then C δ contains {F ≥ -δ}. For x ∈ S 1 and D ⊂ S 1 we write

T x→D = inf {t ≥ 0 : X t ∈ D | X 0 = x} q x→D = P (X reaches D before A | X 0 = x)
For two real random variables V, W , recall that V is said to be stochastically smaller than W , denoted by

V sto ≤ W (or equivalently W sto ≥ V ), if for all r ∈ R P (V > r) ≤ P (W > r) .
If V and W have same law we write V law = W . The aim of this section is to prove the following: Proposition 1. There exist a constant K > 1 and non-negatives random variables S and R with an exponential moment such that, for all M > 1 and η ∈ (0, δ] with M η > 1, for all Lipschitz function g ≥ M , if X is dened by [START_REF] Ciesielski | First passage times and sojourn times for Brownian motion in space and the exact Hausdor measure of the sample path[END_REF] or if (X, Y ) is dened by the generator [START_REF] Cranston | Self attracting diusions : Two case studies[END_REF], the following holds:

∀x ∈ B η , q x→C η ≤ KM e -ηM (8) ∀x ∈ A, T x→B η sto ≥ Rη (9) ∀x ∈ S 1 , T x→A sto ≤ S. (10) 
Figure 1: Starting from a minimum in A, the process has to cross an intermediary point of B δ halfway before reaching C δ . The energy level dierence from A to B δ , from B δ to C δ or (for a negative minimum) from ∂C δ to {F = 0} is always at least δ.

Remark : In the case of the velocity jump process (X, Y ), note that these bounds are uniform over the initial velocity Y 0 .

The meaning of these bounds is the following. Suppose the auxiliary variable U (whose role here is played by an arbitrary function g) stays for some time above a given level M > 1. Then the position X will fall in a local minima of F within a time shorter than S, which does not depend on M (i.e. a high U can only accelerate the hitting time of A). Then to climb back up to an intermediary point of B η , it takes a time Rη, which is again uniform on M > 1. From B η , the probability to escape from the neighborhood of the minimum in one attempt (namely to reach C η before having fallen back to A, the bottom) is of order e -ηM , which is a classical metastability result (see [START_REF] Bovier | Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times[END_REF][START_REF] Monmarché | Piecewise deterministic simulated annealing[END_REF] for instance) if g is thought as an inverse temperature, since η is the potential barrier to overcome.

The proof of Proposition 1 is split in the two next subsections since the arguments are dierent for each dynamic. Note that in several proofs we will make assumptions like x 1 ≤ x 2 where x 1 and x 2 are in S 1 , which will make sense since at these times we will only be concerned by the behaviour of the processes on given simply connected intervals of S 1 .

For the diusion

Proof of Inequality [START_REF] Fontbona | Long time behavior of telegraph processes under convex potentials[END_REF] in the diusion case. Let M > 1 and η ∈ [0, δ] with M η > 1 be xed and consider the diusion dened by [START_REF] Ciesielski | First passage times and sojourn times for Brownian motion in space and the exact Hausdor measure of the sample path[END_REF] with g ≥ M and X 0 = x ∈ B η . Let x 0 ∈ A and x 1 ∈ ∂C η be such that F is monotonous on the interval between x 0 and x 1 that contains x. In particular, F (x 1 ) -F (x) = F (x) -F (x 0 ) = η. Suppose without loss of generality that x 0 < x < x 1 . Since g ≥ M , it follows from Ikeda-Watanabe's comparison result [13, Theorem 1.1, Chapter VI] that

q x→C η P X hits C η before A | X 0 = x := qx→C η , where X solves the SDE d X t = dB t -M F X t dt.
Indeed, note that the denitions of q x→C η and qx→C η only involve the processes on the interval [x 0 , x 1 ], on which F ≥ 0. The scale function of X t ) t 0 is dened by

p(y) = y x exp -2 z x -M F (s)ds dz = y x e 2M (F (z)-F (x)) dz.
By [14, Proposition 5.22, Chapter 5.5],

qx→C η = p(x 1 ) -p(x) p(x 1 ) -p(x 0 ) ≤ 2πe 2M η x 1
x 0 e 2M (F (z)-F (x)) dz where we used the local monotony of F . On the other hand,

x 1 x 0 e 2M (F (z)-F (x)) dz 1 2M F ∞ x 1 x 0 2M F (z)e 2M (F (z)-F (x)) dz = 1 2M F ∞ e 4M η -1 .
Therefore, as M η > 1,

q x→C η 4πM F ∞ e 2M η e 4M η -1 8πM F ∞ e -2M η .
To prove the two other assertions of Proposition 1, we need the following comparison result: Lemma 1. Let x 0 be a local extrema of F and ε > 0 be such that F is monotonous on J ε := (x 0 -ε, x 0 + ε). Consider X the diusion dened by [START_REF] Ciesielski | First passage times and sojourn times for Brownian motion in space and the exact Hausdor measure of the sample path[END_REF], with g ≥ M > 1, starting at X 0 = x ∈ J ε , and let W be a standard Brownian motion. Denote by

χ ε (x) = inf {t > 0 : X t / ∈ J ε } and ι ε = inf {t > 0 : |W t | = ε}
the respective exit time from J ε of X and x 0 + W . Then:

1. if x 0 is a local maximum of F , for all x ∈ J ε , χ ε (x) sto ι ε . 2. if x 0 is a local minimum of F , χ ε (x 0 ) sto ι ε .
Proof. First, note that by symmetry the exit time from J ε of x + W has the same law as the exit time of x + 2(x 0 -x) + W , and since the process x 0 + W necessarily crosses x or x + 2(x 0 -x) before leaving J ε , the exit time of x 0 + W is stochastically greater than the one of x + W for any x ∈ J ε .

Consider Θ t = (X t -x 0 ) 2 , which solves

dΘ t = 2 Θ t d B t + dt -2g(t) (X t -x 0 )F (X t ) dt,
where B t = t 0 sign(X s -x 0 )dB s is still a standard Brownian motion. As easily seen,

X 0 -x 0 + B 2 is a weak solution of dZ t = 2 Z t d B t + dt.
Now, we can compare processes (Θ t ) t≥0 and (Z t ) t≥0 . When x 0 is a maximum (resp. minimum) of F , (x-x 0 )F (x) is non-positive (resp. non-negative) on J ε , so that by Ikeda-Watanabe's comparison result ([13, Theorem 1.1, Chapter VI]), Θ t Z t (resp. Θ t Z t ) up to the rst time where Θ reaches ε 2 . As a conclusion, when x 0 is a maximum, Θ reaches ε 2 before Z, and thus in a time stochastically smaller than ι ε , whereas when x 0 is a minimum, Θ reaches ε 2 after Z and the latter happens at a time with law ι ε if the starting point is x 0 .

Proof of Inequality [START_REF] Gauthier | Self attracting diusions on a sphere and application to a periodic case[END_REF] in the diusion case. Recall that there exists a constant κ > 0 such that for all x ∈ A and η < δ, d(x, B η x ) κ √ η. From Lemma 1 and the Brownian motion's scaling property,

T x→B η χ κ √ η (x) sto ι κ √ η law = ηι κ .
The fact that ι κ has an exponential moment is a consequence of [6, Theorem 2].

Proof of Inequality [START_REF] Hairer | On Malliavin's proof of Hörmander's theorem[END_REF] in the diusion case. For a given small enough ε > 0, denote by

E ε = x∈M (F,+)∪M (F,-) (x -ε, x + ε)
the set of points which are at a distance less than ε from a maximum of F . Let X be the diusion dened by [START_REF] Ciesielski | First passage times and sojourn times for Brownian motion in space and the exact Hausdor measure of the sample path[END_REF] with g ≥ M . We apply the following procedure:

1. If, at some time, X t ∈ E ε , wait until it leaves E ε , which according to the rst part of Lemma 1 happens in a time stochastically smaller than ι ε .

2. If at some time t 0 , X leaves E ε , compare it with X t 0 + B where B is the Brownian motion that drives the SDE [START_REF] Ciesielski | First passage times and sojourn times for Brownian motion in space and the exact Hausdor measure of the sample path[END_REF]. More precisely by Ikeda-Watanabe's comparison result, F (X t ) F (X t 0 + B t ) up to the time where either X or X t 0 + B reach an extremum of F .

3. Wait until B reaches an extrema of F . If this is a maximum, go back to the rst step. If this is a minimum then necessarily, at this time, X has already crossed this minimum, stop the procedure.

Note that, ε being xed, the probability that x 0 + B reaches a maximum rather than a minimum is bounded above by some p < 1 which is uniform over all x 0 ∈ ∂E ε . Hence the number of iteration of the procedure is stochastically less than a geometric random variable G with parameter p. Conditionally to whether the Brownian motion reaches a minimum or a maximum in step 3, the law of the duration of the third step is dierent, but in either cases it is stochastically smaller than ι 2π . Therefore the total duration of one iteration of the procedure is stochastically smaller than ι C for some constant C > 0, independently from whether this is the last iteration or not. Let (ι k ) k≥0 be i.i.d copies of ι C , independent from G.

We have obtained that for all x ∈ S 1 ,

T x→A sto G k=0 ι k so that E e cT x→A ≤ E (E (e cι 0 )) G
which is nite for c small enough since G admits an exponential moment.

For the velocity jump process

This subsection is devoted to the proof of Proposition 1 in the PDMP case, namely for the inhomogeneous Markov process (X, Y ) with generator [START_REF] Cranston | Self attracting diusions : Two case studies[END_REF]. First we construct a trajectory of the process (X, Y ) in the following way: consider two independent i.i.d. sequences of standard (with mean 1) exponential random variables (E i ) i∈N and (F i ) i∈N . Set T 0 = 0 and suppose the process has been dened up to some time T k independently from (E i , F i ) i≥k . Let

θ 1 = inf t > 0 : t 0 g(T k + s)(Y T k F (X T k + sY T k )) + ds > E k , θ 2 = 1 λ F k ,
and

T k+1 = T k + θ 1 ∧ θ 2
, which is the next jump time. If T k+1 = T k + θ 1 we say that the jump is due to the landscape, else we say it is due to the constant rate λ. In either cases, set

X t = X T k + (t -T k )Y T k for all t ∈ [T k , T k+1 ], Y t = Y T k for all t ∈ [T k , T k+1 ) and Y T k+1 = -Y T k .
Thus by induction the process is dened up to time T n for all n.

Note that even if, depending on g, the rate of jump may not be bounded, two jumps due to the landscape cannot be arbitrarily close (since at such a jump time, yF (x) becomes non-positive), so that there cannot be innitely many jumps in a nite time and

T n → ∞ as n → ∞.
Proof of Inequality [START_REF] Fontbona | Long time behavior of telegraph processes under convex potentials[END_REF] in the PDMP case. We mainly have to adapt to our inhomogeneous setting the proof of [START_REF] Monmarché | Piecewise deterministic simulated annealing[END_REF]Proposition 4.1]. Without loss of generality, we consider the following conguration: x 0 ∈ A, x 1 ∈ B η and x 2 ∈ ∂C η with x 0 < x 1 < x 2 , and F is increasing on

[x 0 , x 2 ].
Let M 1 and L M be the set of Lipschitz functions g M . For all x ∈ [x 1 , x 2 ], set

η x = sup g∈L M P((X, Y ) reaches (x 2 , 1) before (x, -1) | (X 0 , Y 0 ) = (x, 1)).
where the supremum runs over the function g that appears in the generator (7) of the process (X, Y ). Consider a process (X, Y ) with generator [START_REF] Cranston | Self attracting diusions : Two case studies[END_REF] with some function g ∈ L M . For a small ε > 0, suppose that (X 0 , Y 0 ) = (x -ε, 1).

Then the probability that X goes from x -ε to x without any jump is less than

1 -ε (M F (x) + λ) + o ε→0
(ε) and the probability it reaches (x, 1) before (x -ε, -1) but with at least one jump is of order ε 2 as ε → 0 (uniformly over g ∈ L M ).

If the process has reached (x, 1), it has a probability less than η x to reach (x 2 , 1) before having fallen back to (x, -1). Nevertheless, if indeed it has fallen back to (x, -1), it has a probability ελ + o ε→0 (ε) to jump before reaching (x -ε, -1), in which case it reaches again (x, 1) with probability 1 + o ε→0 [START_REF] Benaïm | Self-repelling diusions on a Riemannian manifold[END_REF]. In this latter case, it reaches (x 2 , 1) before (x -ε, -1) with probability less than η x + o ε→0 [START_REF] Benaïm | Self-repelling diusions on a Riemannian manifold[END_REF]. Thus everything boils down to

η x-ε (1 -ε (M F (x) + λ)) η x (1 + ελ) + o ε→0 (ε) = (1 -εM F (x)) η x + o ε→0 (ε).
Together with η x 2 = 1, it yields η x e -M (F (x 2 )-F (x)) , and in particular η x 1 e -ηM . Let

r y = sup g∈L M P((X, Y ) reaches (x 2 , 1) before (x 0 , -1) | (X 0 , Y 0 ) = (x 1 , y)).
Starting from (x 1 , -1) and until the process either jumps or reaches (x 0 , -1), we have Y F (X) < 0 so that, whatever the function g in ( 7) is, there cannot be any jump due to the landscape during this time. On the other hand if θ 2 > 2π, which happens with probability e -2λπ , there is also no jump due to the constant rate during this time, so that

P ((X, Y ) reaches (x 1 , 1) before (x 0 , -1) | (X 0 , Y 0 ) = (x 1 , -1)) 1 -e -2λπ .
On the one hand it means that r -1 ≤ 1 -e -2λπ r 1 and on the other hand that

r 1 η x 1 + 1 -e -2λπ r 1
and nally that q x 1 →C η max(r 1 , r -1 ) e 2λπ e -ηM .

Proof of Inequality [START_REF] Gauthier | Self attracting diusions on a sphere and application to a periodic case[END_REF] in the PDMP case. Since |Y | = 1, the time needed to reach B η from A is deterministically larger than d(A, B η ) κ √ η.

Proof of Inequality [START_REF] Hairer | On Malliavin's proof of Hörmander's theorem[END_REF] in the PDMP case. Suppose that, at some point in the construction of a trajectory, θ 2 > 4π, which happens with probability e -4λπ . If there is also no jump due to the landscape in the meanwhile, X covers the whole circle and in particular reaches A in a time less than 2π. On the other hand if there is a jump due to the landscape before time 2π, the velocity turns to its opposite, and from then and up to the hitting time of A, Y F (X) < 0, so that in the meanwhile there cannot be another jump due to the landscape: A is attained in a time less than 4π.

It means that as soon as θ 2 > 4π, X reaches A in a time less than 4π, so that starting from any point of S 1 , X reaches A in a time stochastically smaller than 4πG where G is a geometric variable with parameter e -4λπ .

Stability

In this section we consider either Z = (X, U ) or Z = (X, U, Y ) such as in Theorem 1, and we are interested in the time of return of Z to compact sets. For M > 1 we write

τ M = inf{t > 0 : |U t | M }
and we aim to prove τ M admits exponential moments when M = ∅. For this purpose, we are going to establish that, for some κ > 0, V (u) = exp(κu) is a so-called Lyapunov function for both processes, which classically implies the latter.

The notations of Section 2 are kept, in particular the constant δ, and the constant K and the random variables R, S appearing along this section are those given by Proposition 1.

Lemma 2. Suppose m(F, +) = ∅. Let M > 1 be such that KM e -δM < 1, and let (S i ) i∈N , (R i ) i∈N and (G i ) i∈N be independent i.i.d. sequences where S 0 (resp. R 0 ) is a copy of S (resp. δR) and G 0 has geometric law with parameter KM e -δM . For t ≥ 0 let

N t = inf n ∈ N : G 0 +•••+Gn k=1 R k ≥ t .
Then for all t > 0 and for any initial condition

Z 0 with U 0 > M , t∧τ M 0 1 {F (Xs)≥-δ} ds sto ≤ Nt k=0 S k .
Proof. While t τ M , the estimates of Proposition 1 hold for X. In particular, independently from its initial condition, the process reaches A in a time stochastically smaller than S 0 . Then it takes at least a time R 1 to climb back to B δ . From there, it reaches C δ with probability less that KM e -δM , else it falls back to A. Therefore it remains a time stochastically greater than G 0 k=1 R k in (C δ ) c ⊂ {F -δ} before reaching C δ . When this nally occurs, the process falls again back to A after a time less than S 1 (independently from what occurred before it had reached C). We call this an excursion in C δ . After n excursions, the process has stayed at least a time G 0 +•••+Gn k=1 R k in {F -δ}, which implies in particular that at time t there have been stochastically less than N t excursions. Thus during a time t, the time spent in C δ is stochastically less than Nt k=0 S k .

Proposition 2. If M = ∅, there exists κ 0 > 0 such that, for all κ ∈ (0, κ 0 ], there exists t 0 such that, for all t t 0 , there exists C t 0 such that for all initial conditions,

E e κ|Ut| 1 2 e κ|u 0 | + C t .
Note that, in the sequel, the dependency of C t with respect to t will not matter.

Proof. Let κ 0 > 0 be small enough so that E e κ 0 (δ+max |F |)S < ∞ and, for κ ∈ (0, κ 0 ], let t 0 be such that E e (κ(δ+max |F |)S ≤ e κδt 0 /4. Finally, let M > 1 be such that KM e -δM < 1 and x t ≥ t 0 . Let u 0 > M + t max |F |, so that τ M t almost surely. Hence, Lemma 2 yields

|U t | ≤ u 0 -δt + (δ + max F ) t 0 1 {F (Xs)≥-δ} ds sto ≤ u 0 -δt + (δ + max F ) min t, Nt k=0 S k .
Hence, distinguishing the cases N t = 0 and N t > 0, E e κ(|Ut|-u 0 ) e -κδt E e κ(δ+max F )S 0 + e κt max F P (N t > 0) .

Now, for all a ∈ N * ,

G 0 ≥ a and a i=1 R i ≥ t ⊂ {N t = 0},
so that, considering the complementary sets,

P (N t > 0) ≤ P (G 0 < a) + P a k=1 R k < t .
Applied with a = M , this reads

P (N t > 0) ≤ 1 -(1 -KM e -δM ) M + P   M k=1 R k < t   -→ M →+∞ 0.
In particular, for M large enough, P (N t > 0) ≤ exp(-κt max F )/4. Then we have proved that there exists M > 0 such that for all u 0 > M + t max |F |,

E e κ|Ut| 1 2 e κ|u 0 | . ( 11 
)
The case u 0 < -M -t max |F | is similar (by changing U and F to their opposites), so that there exists M > 0 such that [START_REF] Hairer | Yet another look at Harris' ergodic theorem for Markov chains[END_REF] holds for all u 0 with |u

0 | > M + t max |F |. Finally, if |u 0 | M + t max |F | then E e κ|Ut| e κ(M +2t max |F |) := C t ,
which concludes.

In fact, we will also need this similar result, obtained by the same arguments:

Lemma 3. If m(F, +) = ∅ then, for M large enough, for all initial condition u 0 ≥ M , inf{s ≥ 0 : U s ≤ M } is almost surely nite and admits an exponential moment.

Proof. In the proof of Proposition 2 we have in fact obtained that, under the assumption that m(F, +) = ∅, there exists κ, t, C t > 0 such that for any initial condition u 0 ≥ 0,

E e κUt ≤ 1 2 e κu 0 + C t .
Denoting n 0 = inf{n ∈ N, exp(κU nt ) ≤ 4C t }, then the random sequence {(4/3) (n∧n 0 ) exp(κU (n∧n 0 )t )} n≥0 is a submartingale. As a consequence, by Fatou's lemma, E ((4/3) n 0 ) is nite, which concludes.

Transition kernel bounds

In this section we still consider either Z = (X, U ) or Z = (X, U, Y ) such as in Theorem 1, and we call E its state space, namely either S 1 × R + or S 1 × R + × {-1, 1}. We aim to prove that the following local Doeblin condition holds: Proposition 3. Let K be a compact set of E. There exists t 0 > 0 such that, for all t ≥ t 0 , there exist 0 < c < 1 and a probability measure ν on E such that for all z ∈ K, for all Borel set D,

P (Z t ∈ D | Z 0 = z) ≥ cν(D).
This condition classically ensures that two processes starting at dierent states in a compact set K can be coupled after a time t with some probability c > 0. Together with the Lyapunov condition obtained in Proposition 2 which implies that, starting away, the processes reaches K in a short time, this Doeblin condition ensures exponentially fast mixing for the process (see e.g. [START_REF] Hairer | On Malliavin's proof of Hörmander's theorem[END_REF]).

For the diusion process, this classically follows from an hypoellipticy argument. By contrast, note that the velocity jump process is not regularizing, in the sense its transition kernel is never absolutely continuous with respect to the Lebesgue measure (at all time there is a positive probability that the process hasn't jumped yet). However the Doeblin condition can still be obtained from some controllability property and a partial regularization.

Since, again, the arguments are dierent for both processes, we split the proof of Proposition 3 in two paragraphs.

For the diusion

In this subsection we consider the process Z = (X, U ) induced by the generator (4), namely the solution of the SDE

dX t = dB t -U t F (X t )dt dU t = F (X t )dt. ( 12 
)
Lemma 4. For all z 0 ∈ S 1 × R and t > 0, the transition kernel

P (Z t ∈ • | Z 0 = z 0 )
admits a smooth density with respect to the Lebesgue measure and its support is

S 1 × [u 0 + (min F )t, u 0 + (max F )t]. Proof. For (x, u) ∈ S 1 × R, set G 0 (x, u) = 1 0 and G 1 (x, u) = -uF (x) F (x) .
Denoting ∇G i the Jacobian matrix of

G i for i = 1, 2, the Lie-bracket of G 0 , G 1 is the vector eld [G 0 , G 1 ] dened by [G 0 , G 1 ](x, u) = G 0 (x, u)∇G 1 (x, u) -G 1 (x, u)∇G 0 (x, u) ,
which is here equal to

∂ x G 1 (x, u) = -uF (x) F (x) 
.

By induction, replacing F by F (k) for k ∈ N in the previous computation, we get

[G 0 , [G 0 , . . . [G 0 k times , G 1 ] . . .]](x, u) = ∂ (k) x G 1 (x, u) = -uF (k+1) (x) F (k) (x) .
Therefore, by our non-degeneracy assumption on F (namely that for all x ∈ S 1 , F k (x) = 0 for some k), the SDE (12) satises everywhere the Hörmander condition (see for instance [START_REF] Hairer | On Malliavin's proof of Hörmander's theorem[END_REF]), which gives the rst part of the lemma. For the second part, rst note that for z = (x 0 , u 0 ) ∈ S 1 × R,

(X t , U t ) t 0 ⊂ S 1 × [u 0 + (min F )t, u 0 + (max F )t].
In order to apply the Stroock-Varadhan support Theorem [19, Theorem 5.2], we are lead to the study of the following deterministic control problem. Denote by (x s , u s ) s 0 the solution of the ordinary dierential equation

ẋ = v(t) -uF (x) u = F (x) (13) 
with initial condition (x(0), u(0)) = z and where s → v(s) is a piecewise constant function. The proof will be concluded if, given any z = (x , u

) ∈ S 1 × u 0 +(min F )t, u 0 +(max F )t ,
we can build a function v such that (x(t), u(t)) is arbitrarily close to z . Let t 0 , t 1 > 0 be such that t 0 + t 1 = t and u -u 0 = t 0 (min F ) + t 1 (max F ). The idea is the following: since we have the choice for v, we can essentially drive x(t) to any position, so we put it rst at a minimum of F for a time t 0 , then at a maximum of F for a time t 1 , and nally we bring it to the end point x . More precisely, for any ε ∈ [0, min(t 0 , t 1 )/2), let y 0 , y 1 , y 2 ∈ R be such that F (x + y 0 ) = min F , F (x + y 0 + y 1 ) = max F and x + y

1 + y 2 + y 3 = x . Set v(s) = y 0 /ε for t ∈ [0, ε], v(s) = 0 for t ∈ (ε, t 0 ], v(s) = y 1 /ε for s ∈ (t 0 , t 0 + ε], v(s) = 0 for s ∈ [t 0 + ε, t 1 -ε) and nally v(s) = y 2 /ε for s ∈ [t 1 -ε, t 1 ]. Let s → z ε (s) := (x ε (s), u ε (s))
be the solution of the associated equation ( 13) with initial condition z. Remark that for all s ∈ [0, t] and for all ε > 0,

|u ε (s)| ≤ |u 0 | + t F ∞ , and in particular u ε (s)F (x ε (s)) is bounded uniformly in s and ε. As a consequence, (x ε (ε), u ε (ε)) → (x + y 0 , u 0 ) as ε → 0. Since x + y 0 is a minimum of F , s → z * (s) := (x + y 0 , u 0 + s min F ) solves (13) with v(s) = 0, so that sup s∈[ε,t 0 ] |z ε (s) -z * (s)| -→ ε→0 0 . Then, similarly, z ε (t 0 + ε) → (x + y 0 + y 1 , u 0 + t 0 min F ) as ε → 0 and thus sup s∈[t 0 +ε,t 1 -ε] |z ε (s) -z * (s)| -→ ε→0 0 .
where s → z * (s) := (x + y 0 + y 1 , u 0 + t 0 min F + (s -t 0 ) max F ) solves again (13) with v(s) = 0. Finally z ε (t) → z as ε vanishes, which concludes.

Proof of Proposition 3 in the diusion case. Denoting by p t (•, •) the transition density given by Lemma 4, let z 1 , z 2 ∈ E be such that p t 1 (z 1 , z 2 ) > 0 for some t 1 > 0. By continuity, there exist neighbourhood I 1 and I 2 of respectively z 1 and z 2 such that the inmum of p t 1 over I 1 × I 2 is c > 0.

Let K be a compact set and let t 0 be large enough so that

I 1 ∩   S 1 × (x,u)∈K [u + (min F )t 0 , u + (max F )t 0 ]  
has a non-empty interior. For t ≥ t 0 , the continuity of p t and the compactness of K imply

c t := inf z∈K P(Z t ∈ I 1 | Z 0 = z) > 0.
Let ν be the uniform measure on

I 2 , namely ν(D) = λ(D∩I 2 ) λ(I 2 )
for any Borel set D of E. Then for all z ∈ K and for t ≥ t 0 + t 1 ,

P (Z t ∈ D | Z 0 = z) P (Z t ∈ D | Z t-t 1 ∈ I 1 ) P (Z t 1 ∈ I 1 | Z 0 = z) c t-t 1 cλ(I 2 )ν(D).

For the velocity jump process

In this subsection we consider the process Z = (X, Y, U ) with generator [START_REF] Bovier | Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times[END_REF]. The construction of a trajectory is similar to the one exposed in Section 2.2, except from these slight modications: in the denition of θ 1 , g(T k + s) is replaced by U T k + s 0 F (X T k + uY T k ) du and between the two jump times T k and T k+1 , U is dened by U t = t T k F (X s )ds. We start with a controllability result. Lemma 5. Let K and V respectively be a compact and open set of S 1 × R × {-1, 1}. Then there exists t 0 > 0 such that, for all t ≥ t 0 ,

inf z∈K P (Z t ∈ V | Z 0 = z) > 0.
Proof. The boundedness of F implies that for t > 0, there exists a compact set K 2 such that for all s < t and for all z 0 ∈ K, if Z 0 = z 0 then Z s ∈ K 2 . Hence results from [START_REF] Benaïm | Qualitative properties of certain piecewise deterministic Markov processes[END_REF] apply even if our whole state space is not compact. In particular, the process is Feller, and because K is compact we only need to prove that, for t large enough,

P (Z t ∈ V | Z 0 = z) > 0
for all z ∈ K. Let z 0 = (x 0 , y 0 , u 0 ) ∈ K and z 1 = (x 1 , y 1 , u 1 ) ∈ V. We proceed in three steps.

First, suppose that we can choose in a deterministic way a piecewise constant velocity y(s) ∈ {-1, 0, 1} for s ∈ [0, t], from which (x(s), u(s)) s∈[0,t] is dened by an initial condition and by the ODE

ẋ u = y F (x) . ( 14 
)
Let h 0 < h 1 < h 2 < h 3 be such that F (x 0 +h 0 ) = min F , F (x 0 +h 1 ) = max F , F (x 0 +h 2 ) = 0 and x 0 + h 3 = x 1 . For t 0 > h 3 large enough and any t t 0 , we can build a path of length t between z 0 and z 1 as follows. Given 0 < s 1 < s 2 < t -h 3 , denote

I = [0, h 0 ) ∪ [h 0 + s 1 , h 1 + s 1 ) ∪ [h 1 + s 2 , h 2 + s 2 ) ∪ [t -(h 3 -h 2 ), t)
set y(s) = 1 for s ∈ I, y(s) = 0 for s ∈ [0, t) \ I and y(t) = y 1 and let s → (x(s), u(s)) be the solution of the associated system [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF] with initial condition (x 0 , u 0 ). In particular,

x(t) = x 0 + h 0 + (h 1 -h 0 ) + (h 2 -h 1 ) + (h 3 -h 1 ) = x 1 , and 
u(t) = u 0 + h 3 0 F (x + s)ds + s 1 max F + (s 2 -s 1 ) min F .
For t 0 large enough, there exist s 1 < s 2 < t 0 such that u(t) = u 1 . This gives a path from z 0 to z 1 that solves [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF] with velocities y(s) ∈ {-1, 0, 1}.

In a second instance, we can choose a deterministic y(s) ∈ {-1, 1} such that the solution of the system [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF] starting from z 0 is arbitrarily close to z 1 at time t 0 . To ensure this, we simply approximate the case y(s) = 0 in the previous step by suciently fast and balanced jumps between -1 and 1.

Finally, we consider the PDMP starting from z 0 . Since the random jump times have positive density, the PDMP follows arbitrarily closely a trajectory as described in the second step with positive probability. Hence, given any neighbourhood of z 1 , the PDMP has positive probability to be in it at time t 0 , which concludes.

Proof of Proposition 3 in the PDMP case. Consider the following vector elds:

G -1 (x, u) = -1 F (x) and G 1 (x, u) = 1 F (x)
.

Then their dierence is

G 1 -G -1 = 2 0 so that the Lie bracket [G 1 -G -1 , G 1 ](x, u) is [G 1 -G -1 , G 1 ] = 2∂ x G 1 (x, u) = 0 2F (x)
Since F is not constant and smooth, there exists some x such that F (x) = 0, at which point the rank of

(G 1 -G -1 , [G 1 -G -1 , G 1 ]) is 2.
According to [START_REF] Benaïm | Qualitative properties of certain piecewise deterministic Markov processes[END_REF]Theorem 4.4], it implies there exist a non-empty open set U, a probability measure ν and t 1 , c > 0 such that ∀z ∈ U ,

P (Z t 1 ∈ • | Z 0 = z) c ν(•).
Considering t 0 > 0 given by Lemma 5 with V = U, we get that for any z ∈ K, any Borel set D and any t t 0 ,

P (Z t+t 1 ∈ D | Z 0 = z) ≥ P (Z t ∈ U | Z 0 = z) × inf z ∈U P (Z t+t 1 ∈ D | Z t = z ) ≥ inf z ∈K P (Z t ∈ U | Z 0 = z ) c ν(D)
and Lemma 5 concludes.

Proof of the main theorem

In this section we consider either Z = (X, U ) or Z = (X, U, Y ) such as in Theorem 1, and we call E the state space, namely either

S 1 × R + or S 1 × R + × {-1, 1}.
The case M = ∅ is a classical consequence of Harris' ergodic theorem:

Proof of point 1 of Theorem 1. Let κ 0 be given by Proposition 2 and κ ≤ κ 0 be small enough so that E e κ|U 0 | < ∞. Let t 0 be large enough for both Propositions 2 and 3 to apply. Let P t be the Markov kernel on E dened by

P t f (z) = E (f (Z t ) | Z 0 = z).
Then [11, Theorem 1.2], applied to P t 0 with V (z) = exp(κ|z|), implies that P t 0 admits a unique invariant measure µ and that there exists constants C > 0 and γ ∈ (0, 1) such that for all n ∈ N,

d T V (Law(Z nt 0 ), µ) ≤ Cγ n E e κ|U 0 | .
By the semi-group property, for all t ≥ 0, µP t P t 0 = µP t 0 P t = µP t , so that µP t is invariant for P t 0 and hence, by uniqueness, µP t = µ. In other words, µ is invariant for P t for all t ≥ 0, and in particular

d T V (Law(Z t ), µ) = d T V Law(Z t ), µP t-t/t 0 t 0 ≤ d T V Law(Z t/t 0 t 0 ), µ ≤ Cγ -1 e -t| ln γ|/t 0 E e κ|U 0 | .
Finally, the controllability results of Section 4 (Lemmas 4 and 5) imply that µ has full support.

The rest of the section is devoted to the proof of the localization of the processes when M = ∅. Proposition 4. Suppose m(F, +) = ∅. Then there exist p > 0 and M > 0 (which does not depend on Z 0 ) such that if X 0 = x 0 ∈ m(F, +) and U 0 ≥ M , then

P X t -→ t→∞ x 0 p.
Proof. For j 0, dene

η j = 4 ln(1 + j) 1 + j ∧ δ, set c = max{ 1 F (x) ,
x ∈ m(F, +)} and S 0 = 0 and dene by induction the following stopping times:

τ j+1 = inf {t > S j : X t ∈ C η j+1 } , S0,j = S j , Tk,j = inf t > Sk-1,j : X t ∈ B η j+1 ∧ ( Sk-1,j + c) ∧ τ j+1 , k 1, Sk,j = inf t > Tk,j : X t ∈ A ∧ τ j+1 , k 1 ,
and S j+1 = SN j ,j with

N j = inf k ∈ N : Sk,j S j + c or Sk,j = τ j+1 .
Let us give some intuition on these denitions. The connected component of (C η j ) c that contains x 0 is a neighbourhood of x 0 whose diameter goes to 0 as j goes to ∞. At time τ j , the process has escaped from this neighbourhood. For t ≤ τ j , the process makes possibly many oscillations near x 0 . When such an oscillation is large enough for the process to reach B η j (this is at a time T k,j for some k), we consider this is the beginning of an attempt to leave (C η j ) c . If this attempt fails, the process falls back to x 0 (this is S k,j ). While X makes those attempts to escape, time goes by, so that U increases: after a time c, U has increased at least by 1. Next time X falls back to x 0 (this is S j+1 ), we shrink the neighbourhood, namely from then we consider that the process escapes if it reaches C η j+1 . From S j to S j+1 , there have been N j attempts to leave. The sequence η is scaled so that there is in fact a positive probability that the process never escape from the shrinking neighbourhood that collapses at innity to {x 0 }.

Let us write these ideas more precisely. Note that as long as S j+1 < τ j+1 , S j+1 -S j c and U t M + j for t S j . We take M large enough so that (M + j) η j > 1 for all j ∈ N. Therefore, from Proposition 1, for all k ≥ 1,

P( Sk,j = τ j+1 | Tk,j < τ j+1 ) K(j + M )e -(j+M )η j .
It implies that 1 S(i∧N j ),j <τ j+1 + (i ∧ N j )K(j + M )e -(j+M )η j i 0 is a submartingale. Thus,

P(S j+1 < τ j+1 | S j < τ j ) = 1 + E(1 S j+1 <τ j+1 -1 S j <τ j | S j < τ j ) 1 -K(j + M )e -(j+M )η j+1 E(N j | S j < τ j ). (15) 
From Proposition 1, we have Sk+1,j -Sk,j sto η j R.

Hence, considering a sequence (R i ) i∈N of i.i.d random variables distributed like R

N j sto inf n 1 : η j n i=1 R i c 2c E(R 1 )η j + inf n 1 : 1 n n i=1 R i E(R 1 ) 2 .
Since R is a positive r.v. with an exponential moment, from Cramer's Theorem (see e.g [17, Chapter 2.4] with the exercise 2.28 in it), there exist c 1 , c 2 > 0 such that for all n ≥ 0,

P 1 n n i=1 R i E(R 1 ) 2 ≤ c 1 e -c 2 n .
Hence, applying the general formula E(J) = k∈N P(J k) for a random variable J on N, we get

E(N j |S j < τ j ) 2c E(R 1 )η j + n 1 P 1 n n i=1 R i E(R 1 ) 2 K η j
for some constant K which does not depend on j, nor M . Thus ( 15) is now P(S j+1 < τ j+1 | S j < τ j ) 1 -K K η j (j + M )e -(j+M )η j+1 .

Take M large enough so that the right-hand side is positive for all j ∈ N. Then by induction P(S j+1 < τ j+1 ) = P(S j+1 < τ j+1 | S j < τ j ) P(S j < τ j )

j+1 i=0 1 - K K η i (i + M )e -(i+M )η i+1 .
As ({S j < τ j }) j 1 is a decreasing family of events, P(S j < τ j ∀j ∈ N) = lim j→∞ P(S j < τ j ) ∞ j=0

1 -K K η j (j + M )e -(j+M )η j+1 = exp j 0 ln 1 -K K η j (j + M )e -(j+M )η j+1 .

For j large enough, K K η j (j + M )e -(j+M )η j+1 1 j 2 , (where we used that η j = 4 ln(1 + j)/(1 + j) for j large enough so that the right-hand-side is equivalent to K K/(j 2 ln j)), and ln 1 -K K η j (j + M )e -(j+M )η j+1 -1 2j 2 which means P(S j < τ j ∀j ∈ N) > p > 0 where p does not on depend Z 0 . Yet, {S j < τ j ∀j ∈ N} = {∀j ∈ N, ∀s ≥ S j , X s ∈ I η j x 0 } and the S j 's are all a.s. nite, which concludes.

Remark : The proof even provides an estimation of the speed of convergence. Indeed we can see that S j+1 sto S j + c + δR, so that the S j 's grow linearly to innity. From the non-degeneracy assumption on F , there exist n ∈ N and c > 0 such that the diameter of I η j

x 0 is less than cη 1 n j , depending on the rst derivative of F at x 0 to be non-zero (if F is a Morse function, n = 2). It means when there is convergence, it occurs at least at a speed of order ln t t 1 n .

Proof of point 2 of Theorem 1: First note that by changing U and F to their opposites, Proposition 4 also says that if M (F, -) = ∅ then there exist p, M > 0 such that if U 0 < -M and X 0 ∈ M (F, -) then X t converges to x 0 with probability at least p.

For M > 0 large enough, ε > 0 small enough and x ∈ M, let

V ε x = {z ∈ E : |x -x| < ε and u × sign (F (x)) > M } V ε = x∈M V ε x .
When ε is xed, for M large enough, if the process starts in V ε x , from Inequality (8) (which is written for x ∈ m(F, +) but by symmetry, again, also holds for x ∈ M (F, -)) it has a probability at least 1 2 to hit V 0 x before leaving V 2ε

x . Then from Proposition 4, X has a probability at least p to converge to x. By the Markov property, it is then sucient to prove that the hitting time of V ε is almost surely nite in order to obtain that X will almost surely converge to some point of M.

Denoting by τ D the rst hitting time of a set D and K = {z ∈ E : |u| M }, let us prove that for all z 0 ∈ E P(τ V ε ∧ τ K < ∞|Z 0 = z 0 ) = 1. To do so, consider the case u 0 > M (as before, the case u 0 < -M is obtained by symmetry). Consider a smooth 2π-periodic function F such that F (x) = F (x) for all x ∈ {x ∈ S 1 : |x -x 0 | > ε ∀x 0 ∈ m(F, +)} and such that all the local minima of F are negative (i.e. m( F , +) = ∅). Let ( Zt ) t 0 be the process constructed like (Z t ) t 0 but with the function F rather than F . In particular, in the diusion, we use the same Brownian motion in the SDE [START_REF] Herrmann | Boundedness and convergence of some self-attracting diusions[END_REF] for both processes, and in the PDMP case we use the same sequence of i.i.d. exponential variables. That way, Z t = Zt up to time τ V ε ∧ τ K . By Lemma 3, the hitting time of K by Z, which is greater than τ V ε ∧ τ K , is almost surely nite.

On the other hand, by Lemmas 5 (for the PDMP) and 4 (for the diusion), there exists t 0 > 0 such that for all x ∈ M, inf z∈K P (Z t 0 ∈ V ε x | Z 0 = z) > 0. It therefore follows that for any z ∈ E, P(τ V 0 < ∞|Z 0 = z) = 1 and moreover P(X τ V 0 = x) > 0 for all x ∈ M. Proposition 4 concludes.
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