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Team BEAGLE, INRIA Rhône-Alpes, Villeurbanne, France

October 22, 2019

1 Introduction

1.1 Challenges in modeling of neuron–glia interactions

Computational modeling is an important part of modern neuroscience research (Abbott, 2008).
Neuronal models are available at many scales of investigation (Dayan and Abbott, 2001): highly
detailed multi-compartmental models describe the ion channels that establish the membrane
potential and are responsible for action potential generation; simplified models, such as the
integrate-and-fire neuron, regard action potentials as stereotypical events that are not described
any further; and even more abstract models, such as Poisson neurons, only aim to capture the
statistics of timing of action potentials rather than the shape or the biophysical mechanism of
their generation. Such neuronal models can be readily simulated by a wide range of simulator
packages for neuronal simulations (Brette et al., 2007), given that they are well-established and
fairly standardized and thus are often provided by libraries built in these packages (but see
Brette, 2012).

The same does not hold true for glial cell models (De Pittà et al., 2013). Despite compelling
emerging evidence that glial cells could crucially regulate neural network activity (Poskanzer
and Yuste, 2016) and plasticity (De Pittà et al., 2016), the vast majority of available neuronal
models completely ignores the possible contribution of glia to neuronal physiology. Arguably,
one of the reasons for this is that standard glia models are yet to be defined (Chapter 1), and
thus simulator packages generally do not provide models of glial cells as part of their libraries.

Although several popular neural simulators, such as NEURON (Carnevale and Hines, 2006)
or NEST (Gewaltig and Diesmann, 2007), allow for extending their built-in library with user-
defined glia models, this is generally not straightforward as it requires specific programming
skills in a low-level language. Additionally, it usually involves an additional step of compilation
and integration into the simulator every time the library is changed. This may ultimately
discourage research that involves adding or modifying a glia model in a simulator, since iterative
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improvements are very inconvenient. As a consequence, computational studies that model glia
either use a standard simulator such as NEURON but are limited in usability by the specific
choice made for the glial model which cannot easily be modified by the user (Aleksin et al.,
2017), or use custom code written in a general-purpose language such as MATLAB (De Pittà
et al., 2011; Naeem et al., 2015; Wade et al., 2011) or lower-level languages such as C/C++
(Nadkarni et al., 2008; Volman et al., 2007), in turn suffering from reduced accessibility to
researchers with less technical experience. Overall, both scenarios raise potential issues in
terms of portability, reproducibility and correctness of the code which are detrimental to model
sharing and dissemination (Cannon et al., 2007).

In contrast to most other simulators, the Brian simulator (Goodman and Brette, 2008;
Goodman et al., 2009) was created with the aim to ease definition and portability of new models.
In its latest version, Brian 2 , this flexibility is extended to and combined with a generic approach
for code generation that allows high-performance simulations (Goodman, 2010; Stimberg et al.,
2014). This chapter explores these aspects, elucidating several advantages that should encourage
researchers to use the Brian 2 simulator to model glia in their work.

1.2 The Brian simulator

The Brian simulator, created in 2008, is provided as a package for the Python programming
language. All aspects of the model can be defined in a single Python script and are made ex-
plicit: rather than relying on predefined “black-box” models, models can be readily and flexibly
described in mathematical terms by differential equations for continuous dynamics and a series
of update statements for discrete events (Brette, 2012; Stimberg et al., 2014). This allows high
code readability and flexibility as the user can freely change details of the model’s equations
which are written in mathematical notation with only very little Brian-specific syntax. Fur-
thermore, because the description of the model is explicit, all model details are unambiguously
defined and appear in the main simulation description file.

In line with the principle of readability and simplicity, Brian 2 also comes with a system
for the use of physical units. For example, it allows the user to directly specify a parameter in
µm/s units, by multiplying its value by umolar/second. Brian 2 also checks the consistency of
all specified units across all assignments, statements, and equations and issues an error if there
is a mismatch.

Brian is open source and freely distributed under the GPL-compatible CeCILL v2.1 license.
For more information see http://briansimulator.org and http://brian2.readthedocs.io.

1.3 Modeling strategy

In the following, we focus on astrocytes and their interactions with synapses, but the modeling
arguments and code design principles that we present are of general validity and could be
used to also model other glial cells, such as microglia, oligodendrocytes or reactive astrocytes.
Computational modeling of neuron–astrocyte signaling has previously been tackled both on the
microscopic (molecular) level and the macroscopic (network) scale. On the microscopic level,
the MCell simulator (Stiles et al., 2001) has been used to investigate specific astrocytic signals
impinging on synaptic elements (Beenhakker and Huguenard, 2010). On the network level, the
NEURON-based ARACHNE platform to study astrocyte functions in neural network physiology
is available, but only considers astrocyte-mediated ‘volume-transmitted’ extracellular signaling
(Aleksin et al., 2017; Savtchenko and Rusakov, 2014).

In the following modeling section we pursue instead a mixed strategy, considering models of
astrocytes and of their interactions with synapses that lump both microscopic and macroscopic
aspects. Based on this approach, we show how Brian 2 can be used to create a network of
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neurons and synapses connected with a network of astrocytes that sense synaptic activity and
modulate it in turn, starting from a molecular-level description of astrocytic signaling. We
do so by first introducing a simple network model of only neurons and synapses (Sections 2.2
and 2.3). Then, we present modeling of individual astrocytes that respond to synaptic activation
by intracellular calcium signaling (Section 2.4) and release gliotransmitters that could modulate
synaptic transmission (Sections 2.5 and 2.6). Next, we discuss signaling between astrocytes in
a network (Section 2.7) and finally we combine all these aspects in a recurrent network of
interacting neurons, synapses, and astrocytes (Section 2.8).

For the sake of brevity, we only show excerpts of the Brian 2 code describing the models used
in the presented simulations. The full code (see also Appendix B), including the code for record-
ing and analyzing the results, as well as plotting the figures of this chapter can be downloaded
from https://github.com/mdepitta/comp-glia-book. It is also part of the Brian 2 docu-
mentation at http://brian2.readthedocs.io and available in ModelDB (McDougal et al.,
2017) at http://modeldb.yale.edu/233393.

2 Modeling of neuron–glia network interactions with Brian 2

2.1 General approach

In Brian 2 , models of neurons, synapses, and astrocytes are defined by a set of state vari-
ables, e.g. the neuron’s membrane potential, the synaptic conductances, or the astrocyte’s
intracellular calcium, and a description of their evolution over time. This description takes the
form of ordinary differential equations (ODEs) for the continuous temporal dynamics between
“events”, e.g. the membrane potential, postsynaptic conductances or astrocytic intracellular
calcium concentration between action potentials. Discontinuities in the dynamics of state vari-
ables triggered by events such as the crossing of the firing threshold by a neuron’s membrane
potential, or the arrival of an action potential at a presynaptic terminal, are described by a set
of statements that update these variables.

Groups of elements that share the same description of their dynamics are represented by a
single object. Thus, for example, groups of neurons, synapses, and astrocytes would each be
represented by an object. However, these groups can be heterogeneous. For example, neurons
or astrocytes in the same group can be stimulated by different synapses, or synapses can be
characterized by different cellular parameters. State variables are updated according to the
dynamics specified by the user. If the evolution of a state variable is of interest for the purpose
of analysis or visualization, the user can record it by a “monitor” object either for all elements
of a group or for a subset thereof.

Once all elements of a model have been specified, including initial values, constants, and
model parameters, the simulation can be launched. This is done by calling the run function with
a parameter that specifies the desired total simulated time in biological time units (e.g. second).
Upon completion of the run call, the user can analyze the simulation results either by accessing
the final values of state variables (for example to analyze the synaptic weight distribution at
the end of a simulated plasticity-inducing protocol), or by accessing values stored in a monitor.
All these values are readily accessible as NumPy arrays (van der Walt et al., 2011) and can be
stored, analyzed and displayed by standard tools. Since simulation results are annotated with
physical units, plotting them in a specific scale can easily be done by dividing them by those
units. For example, when the state variable v (“membrane potential”) of a group of neurons has
been recorded by monitor=StateMonitor(neurons, ’v’), the first neuron’s membrane potential
may be shown in mV as function of time in ms using Matplotlib’s (Hunter, 2007) plot function
by plot(monitor.t/ms, monitor[0].v/mV).
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2.2 Neurons

In Brian 2 , neurons are represented by objects of the NeuronGroup class (Figure 1A). Each
NeuronGroup object models the activity of a group of neurons with identical dynamics, i.e.
neurons whose state variables evolve according to the same differential equations. Consider, for
example, the simple model of an integrate-and-fire neuron with conductance-based excitatory
(ge) and inhibitory synapses (gi) and a constant input current Iex (Dayan and Abbott, 2001),
whose equations are

dv

dt
= (gl (El − v) + ge (Ee − v) + gi (Ei − v) + Iex)

1

Cm
(1)

dge
dt

= −ge
τe

(2)

dgi
dt

= −gi
τi

(3)

In Brian 2 we closely follow the above mathematical notation, defining the neuron model by a
multi-line string:

neuron_eqs = ’’’

dv/dt = (g_l*(E_l -v) + g_e*(E_e -v) + g_i*(E_i -v) +

I_ex)/C_m : volt (unless refractory)

dg_e/dt = -g_e/tau_e : siemens # post -synaptic exc. conductance

dg_i/dt = -g_i/tau_i : siemens # post -synaptic inh. conductance

’’’

Each line of the neuron_eqs string defines a state variable of the model (v, g_e or g_i) and consists
of two parts separated by a colon and an optional comment after the # sign. The part before the
colon specifies the ODE for the dynamics of the state variable. The part that follows the colon
specifies the physical units of this state variable and (optionally) additional information about
it. In the case of the neuron’s membrane potential v for example, the additional specification
(unless refractory) states that the differential equation for v is not to be integrated during the
refractory period following the firing of an action potential by the neuron, but instead should
stay at the post-spike reset value. It should be noted that the stated physical unit after the
colon has to be a SI base unit, i.e. a unit such as volt, second, or siemens, and not a scaled
unit such as mV, ms, or nS1. This is to emphasize that internally all variable values are stored as
floating point numbers in the base unit. While users do not have to care about this most of the
time – they set values using the unit system in whatever scale they prefer and receive values
with the scaling information back – this become relevant when the unit information is stripped
away, e.g. when quantities are passed through library functions that are not unit-aware.

The implementation of the neuron model in equations 1–3 refers to model parameters,
namely the leak, excitatory, and inhibitory reversal potentials El, Ee and Ei; the constant
input current Iex; the membrane capacitance Cm; and the time constants of excitatory and
inhibitory synaptic inputs, τe and τi. Here, these parameters are taken to be equal for all
simulated neurons and can be defined by standard Python variables (one per parameter) in the
script that runs the simulation2. Alternatively, neuron-specific parameters can be defined by
appending lines in the form of <name> : <unit> (constant) to the model equations.

1Note that molar is not a SI base unit, because it is defined as m = mol L−1, i.e. referring to L instead of the
SI base unit m3. Since 1 mol L−1 = 1000 mol m−3, the base unit to use is mm (mmolar).

2Brian 2 also offers an alternative system to specify constants via a namespace argument that receives a
Python dictionary mapping constant names to their values. Refer to Brian 2 ’s online documentation for details
at http://brian2.readthedocs.io.
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In the scenario of a network of Ne excitatory and Ni inhibitory neurons (Figure 1B), we can
then create a NeuronGroup object of Ne+Ni neurons based on the above description, and further
define the condition for firing of an action potential (threshold), as well as the statement(s)
(if any) to be executed after an action potential (reset), and finally the refractory period
(refractory), which in this case we assume to be a constant value τr (defined along with the
other model parameters):

neurons = NeuronGroup(N_e + N_i , model=neuron_eqs ,

threshold=’v>V_th’, reset=’v=V_r’,

refractory=’tau_r ’, method=’euler ’)

The model’s state variables are exposed as attributes of the neurons object so that, for example,
the membrane potential can be accessed by neurons.v, and their initial value can be assigned
in the same way. Although all neurons in our example are described by the same equations,
the initial values of their variables can be different. Here, we set these latter to random values
using string expressions that are executed via the code generation facilities provided by Brian 2
(Stimberg et al., 2014) and refer to uniformly distributed random numbers between 0 and 1
using the predefined function rand(). Finally, we use Python’s slicing syntax to separate the
group into subgroups of excitatory and inhibitory neurons:

neurons.v = ’E_l + rand ()*(V_th -E_l)’

neurons.g_e = ’rand ()* w_e’

neurons.g_i = ’rand ()* w_i’

exc_neurons = neurons [:N_e]

inh_neurons = neurons[N_e:]

2.3 Synapses

In most models of neuronal systems, neurons are connected by chemical synapses that are acti-
vated by action potentials fired by presynaptic neurons. In the following, we use the phenomeno-
logical description of neocortical synapses exhibiting short-term plasticity originally introduced
by Tsodyks and Markram (Tsodyks, 2005; Tsodyks et al., 1998). According to this description,
synaptic release is modeled by the product of two variables uS and xS , where uS loosely relates
to the neurotransmitter resources “docked” for release by the Ca2+ sensor for synaptic exocy-
tosis of neurotransmitter, and xS represents the fraction of total neurotransmitter available for
release (Fuhrmann et al., 2002; Tsodyks, 2005). Between action potentials, uS decays to 0 at
rate Ωf while xS recovers to 1 at rate Ωd, i.e.

duS
dt

= −ΩfuS (4)

dxS
dt

= Ωd(1− xS) (5)

The arrival of an action potential triggers calcium influx at the presynaptic terminal, which
moves a fraction U0 of the neurotransmitter resources not scheduled for release (1− uS) to the
readily-releasable “docked” state (uS). Subsequently, a fraction uS of the available neurotrans-
mitter resources is released as rS while xS is reduced by the same amount, that is

uS ← uS + U0 (1− uS) (6)

rS ← uSxS (7)

xS ← xS − rS (8)

In Brian 2 , connections between neurons are modeled by objects of the Synapses class
(Figure 1A). Analogously to neurons of a NeuronGroup, we define each synapse’s state variables
xS and uS by a multi-line string:
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Figure 1. Modeling of neurons and synapses. A In Brian 2 neurons and synapses are modeled
by two distinct classes, NeuronGroup and Synapses. As a convention, in all the schemes presented
in this chapter, NeuronGroup objects are shown as rectangles, whereas Synapses objects are dis-
played as ellipses. B In a classic balanced network model (Brunel, 2000), neurons are separated
into excitatory (exc_neurons) and inhibitory ones (inh_neurons), being recurrently connected
both by excitatory (exc_synapses) and by inhibitory synapses (inh_synapses). C Raster plot
of the firing activity of 25% out of all excitatory (red) and inhibitory neurons (blue) of the
network in panel B and associated network-averaged firing rate (computed in 1 ms time bins).
D Asynchronous network activity coexists with large fluctuations in postsynaptic excitatory
(red traces) and inhibitory conductances (blue traces) and relatively sporadic firing by individ-
ual neurons (green dotted line: firing threshold, V_th). Timing of incoming presynaptic action
potentials also shapes the dynamics of synaptic transmission by short-term synaptic plasticity.
Synaptic release of neurotransmitter (rS) is not fixed, but rather varies at each action potential,
depending on the history of synaptic activity reflected in the values of the synaptic state vari-
ables uS (orange) and xS (purple) at the action potential instant. Postsynaptic conductances
and membrane potential are shown for neuron 50 from the raster plot. Displayed synaptic vari-
ables are from one excitatory synapse made by this neuron. Model parameters as in Table C.1
and in addition, Iex = 150 pA.
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synapses_eqs = ’’’

# Usage of releasable neurotransmitter per single action potential:

du_S/dt = -Omega_f * u_S : 1 (event -driven)

# Fraction of synaptic neurotransmitter resources available:

dx_S/dt = Omega_d *(1 - x_S) : 1 (event -driven)

’’’

Synaptic equations are specified to be (event-driven) because we only need values of synaptic
variables when an action potential arrives presynaptically. This tells Brian 2 to update synaptic
variables only at new incoming action potentials using the analytical solution of their differential
equations and the time interval since the last update. This is possible because the synapse’s
equations 4 and 5 are linear so that their analytical solution is known, allowing to simulate a
large number of synapses efficiently. We also note that in our model implementation, synaptic
equations do not include postsynaptic conductances as they were previously defined in the
neuronal equations. This allows storing and updating synaptic conductances only once per
neuron rather than once per synapse and is mathematically equivalent due to the assumed
linear summation of postsynaptic conductances.

Discrete changes of synaptic variables on arrival of an action potential can be implemented
by a series of statements in a multi-line string such as

synapses_action = ’’’

u_S += U_0 * (1 - u_S)

r_S = u_S * x_S

x_S -= r_S

’’’

In addition, excitatory (inhibitory) synapses will increase the excitatory (inhibitory) conduc-
tance in the postsynaptic cell whenever a presynaptic action potential arrives (Figure 1B), i.e.

ge ← ge + werS (9)

gi ← gi + wirS (10)

This is done by extending synapses_action by an update assignment ‘+=’ of the respective
postsynaptic conductance, identified by the post suffix, i.e. g_e_post and g_i_post. Combining
all of this together, we create two types of synapses, respectively originating from excitatory
and inhibitory neurons, i.e.

exc_syn = Synapses(exc_neurons , neurons , model=synapses_eqs ,

on_pre=synapses_action+’g_e_post += w_e*r_S’)

inh_syn = Synapses(inh_neurons , neurons , model=synapses_eqs ,

on_pre=synapses_action+’g_i_post += w_i*r_S’)

where the on_pre keyword argument denotes that the series of statements should be executed
on arrival of a presynaptic action potential.

It must be stressed that the above code only defines the synaptic model in Brian 2 , but not
the connectivity. To create synapses, we have to specify what source–target neuron pairs should
be connected together out of all the possible pairs specified by the first two input arguments
in the Synapses initializer. One way to do this is by specifying a logical condition on neuronal
connectivity and, optionally, a connection probability, provided as arguments to the connect

method of the Synapses object (Stimberg et al., 2014). Here, we want to connect all possible
neuron pairs with a probability of 20% for each pair for inhibitory neurons, and 5% for excitatory
neurons. Thus we do not set any condition to be fulfilled and only specify a probability for all
possible connection pairs:

exc_syn.connect(p=0.05)

inh_syn.connect(p=0.2)
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For parameters values such as those in Table C.1, simulation of the resulting network reveals the
emergence of characteristic asynchronous neuronal firing activity (Brunel, 2000), as evidenced
in Figure 1C by the top left raster plot of the firing activity of 25% of the neurons in the
network. The network-averaged firing rate associated with this raster plot indeed presents
noisy dynamics (Figure 1C, bottom panel) that coexists with large fluctuations of postsynaptic
excitatory (red traces) and inhibitory conductances (blue traces) and sporadic firing of individual
neurons (Figure 1D, top panels). Consideration of a sample excitatory synapse of the network
allows appreciating how synaptic dynamics is modulated by short-term plasticity (Figure 1D,
bottom panels). The state variables uS and xS associated with the sample synapse evolve
in a characteristic exponential fashion intermingled with discontinuities triggered by action
potentials arriving at the presynaptic terminal. The resulting values define the amount of
synaptic neurotransmitter released by the synapse (rS), setting how effectively each action
potential is transmitted to the postsynaptic neuron.

2.4 Astrocytes

Intracellular Ca2+ concentration is unanimously regarded as a prominent readout signal of as-
trocyte activity (Zorec et al., 2012). Although astrocytic intracellular Ca2+ can be regulated
by multiple mechanisms, Ca2+-induced Ca2+ release (CICR) from the astrocyte’s endoplasmic
reticulum (ER) appears to be one of the main mechanisms to regularly occur in the healthy
brain (Nimmerjahn, 2009). Recall from Chapter 5 that astrocytic CICR is triggered by the
intracellular second messenger inositol 1,4,5-trisphosphate (IP3), which is produced upon astro-
cyte activation, and can be described, in one of its simplest formulation (De Pittà et al., 2008;
Falcke, 2004), by two ordinary differential equations in the Hodgkin-Huxley form (Li and Rinzel,
1994). The first equation is a mass balance for Ca2+ (C) in terms of three fluxes Jr, Jl, Jp which
respectively denote CICR (Jr), Ca2+ leak from the ER (Jl), and Ca2+ uptake from the cytosol
back to the ER by Ca2+/ATPase pumps (Jp). The second equation is for the gating variable
(h) of de-inactivation of the channels that are responsible for CICR. These channels are inside
the astrocyte, on the membrane that separates the ER Ca2+-rich stores from the cell’s cytosol,
and are nonlinearly gated by both IP3 (I) and Ca2+. This leads to the well-known two-equation
model originally introduced by Li and Rinzel (1994):

dC

dt
= Jr + Jl − Jp (11)

dh

dt
=
h∞ − h
τh

(12)

where

Jr = ΩC m
3
∞h

3 (CT − (1 + %A)C) m∞ = H1 (C, d5)H1 (I, d1)

Jl = ΩL (CT − (1 + %A)C) h∞ = d2
I + d1

d2(I + d1) + (I + d3)C

Jp = OPH2 (C,KP ) τh =
I + d3

Ω2(I + d1) +O2(I + d3)C

and H denotes the sigmoidal (Hill) function with Hn (x,K) = xn/ (xn +Kn).
For the sake of completeness, we also want to consider the stochastic opening and closing

process of CICR-mediating channels which, as discussed in Chapter 4, can be mimicked by
introducing a white noise term ξ(t) into the equation governing the dynamics of the gating
variable h, so that equation 12 becomes (Shuai and Jung, 2002):

dh

dt
=
h∞ − h
τh

(1 + ξ(t)
√
τh) (13)

8



Astrocytic IP3 is regulated by the complex Ca2+-modulated interplay of enzymatic pro-
duction by phospholipase Cβ (Jβ) and Cδ (Jδ) and degradation by IP3 3-kinase (J3K) and
inositol polyphosphatase 5-phosphatase (J5P ) (De Pittà et al., 2009a). To reproduce experi-
mental observations we consider two possible ways to trigger IP3 production. One is by synaptic
stimulation of astrocytic metabotropic receptors which starts phospholipase Cβ-mediated IP3

production, modeled by making Jβ proportional to the activated fraction of these receptors
(denoted hereafter by ΓA). The other way is to include a further Jex term for constant IP3

production by an exogenous source of stimulation such as, for example, IP3 uncaging or in-
tracellular diffusion from subcellular regions far from the CICR site (Goldberg et al., 2010).
In conclusion, IP3 dynamics evolves according to the mass balance equation (De Pittà et al.,
2009a)

dI

dt
= Jβ(ΓA) + Jδ − J3K − J5P + Jex (14)

with

Jβ(ΓA) = Oβ ΓA Jδ = Oδ
κδ

κδ + I
H2 (C,Kδ)

J3K = O3K H4 (C,KD)H1 (I,K3) J5P = Ω5P I

Jex = −Fex
2

(
1 + tanh

(
|∆Ibias| − Iθ

ωI

))
sgn(∆Ibias) ∆Ibias = I − Ibias

where the fraction of activated astrocyte receptors ΓA depends on the neurotransmitter con-
centration in the periastrocytic space YS , and is given by the further equation (Wallach et al.,
2014) (Chapter 5)

dΓA
dt

= ONYS (1− ΓA)− ΩN (1 + ζ · H1 (C,KKC)) ΓA (15)

For a concise description of the meaning of all the model’s parameters in the above equations,
see Table C.2 in the Appendix.

Dynamics of the astrocyte’s state variables ΓA, I, C, h are governed by ODEs akin to neu-
ronal state variables, although on a longer time scale (De Pittà et al., 2009b). Accordingly, they
can be implemented by a NeuronGroup object, exactly in the same way as neuronal variables.
In this fashion, the following code exemplifies how we can create two astrocytes with dynamics
governed by the above equations:

astro_eqs = ’’’

# Fraction of activated astrocyte receptors:

dGamma_A/dt = O_N * Y_S * (1 - Gamma_A) -

Omega_N *(1 + zeta * C/(C + K_KC)) * Gamma_A : 1

# IP_3 dynamics:

dI/dt = J_beta + J_delta - J_3K - J_5P + J_ex : mmolar

J_beta = O_beta * Gamma_A : mmolar/second

J_delta = O_delta /(1 + I/kappa_delta) *

C**2/(C**2 + K_delta **2) : mmolar/second

J_3K = O_3K * C**4/(C**4 + K_D **4) * I/(I + K_3K) : mmolar/second

J_5P = Omega_5P*I : mmolar/second

delta_I_bias = I - I_bias : mmolar

J_ex = -F_ex /2*(1 + tanh((abs(delta_I_bias) - I_Theta )/ omega_I )) *

sign(delta_I_bias) : mmolar/second

I_bias : mmolar (constant)
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# Ca^2+- induced Ca^2+ release:

dC/dt = J_r + J_l - J_p : mmolar

# IP3R de-inactivation probability

dh/dt = (h_inf - h_clipped )/ tau_h *

(1 + noise*xi*tau_h **0.5) : 1

h_clipped = clip(h,0,1) : 1

J_r = (Omega_C * m_inf **3 * h_clipped **3) *

(C_T - (1 + rho_A )*C) : mmolar/second

J_l = Omega_L * (C_T - (1 + rho_A)*C) : mmolar/second

J_p = O_P * C**2/(C**2 + K_P **2) : mmolar/second

m_inf = I/(I + d_1) * C/(C + d_5) : 1

h_inf = Q_2/(Q_2 + C) : 1

tau_h = 1/(O_2 * (Q_2 + C)) : second

Q_2 = d_2 * (I + d_1 )/(I + d_3) : mmolar

# Neurotransmitter concentration in the extracellular space

Y_S : mmolar

# Noise flag

noise : 1 (constant)

’’’

# M i l s t e i n i n t e g r a t i o n method f o r t h e m u l t i p l i c a t i v e n o i s e
astrocytes = NeuronGroup (2, astro_eqs , method=’milstein ’)

In the above Brian 2 code, the multi-line astro_eqs string defines our astrocyte model. The
white noise term ξ in equation 13 is implemented by the special symbol xi (in units of s−1/2)
which is a predefined symbol in Brian 2 . Also note that as a gating variable, h has to be bound
between 0 and 1, which is not guaranteed by the (approximated) nature of equation 13. We
therefore restrict h to this interval by replacing it by h_clipped=clip(h,0,1) on the right hand
side of the ODE for h and in the formula of J_r (Shuai and Jung, 2002). The noise term in
equation 13 is multiplicative (ξ(t) multiplies the gating variable h), we therefore have to use
a numerical integration method that can handle multiplicative stochastic differential equations
(under the Stratonovich interpretation, cf. Kloeden and Platen, 1992). We do this by specifying
method=’milstein’ as an argument to the NeuronGroup initializer, leading to the use of the
Milstein method for integration (Kloeden and Platen, 1992; Mil’shtejn, 1975, also see details on
example 2 gchi astrocyte.py in Appendix B).

The above model also defines three astrocyte-specific variables that are not defined by equa-
tions: I_bias, Y_S, and noise. I_bias and noise are constant over time, but Y_S, the concen-
tration of synaptically-released neurotransmitter in the extracellular space around astrocytic
receptors, i.e. YS in equation 15, depends on synaptic activity that changes and therefore does
not have the (constant) flag. We will define how it gets linked to the synaptic activity further
below.

In this example, we want to compare two types of astrocytes, a deterministic and a stochastic
one. To distinguish them, we have introduced the above-mentioned noise constant which scales
the strength of the noise term in equation 13. We can therefore switch the noise term on or off,
and we initialize it so that the first astrocyte is deterministic and the second is stochastic:

astrocytes.noise = [0, 1]

To complete our model, we also need to specify how to calculate YS in equation 15, as it
is needed for the integration of the ΓA state variable. For now, we are only interested in the
activity of the astrocyte and how it is stimulated by synaptic neurotransmitter. Therefore, we
do not take into account short-term synaptic plasticity, and rather consider a trivial synaptic
model stating that YS increases by the same amount at every action potential and then decays
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Figure 2. Modeling of synaptically-activated astrocytes. A Illustration of the design prin-
ciples to implement an astrocyte stimulated by synaptic inputs in Brian 2 . The coupling
between synapses and the astrocyte is achieved by an additional Synapses object, labeled here
as ecs_syn_to_astro, which feeds into the astrocyte the sums of all individual synaptic inputs.
B Simulated dynamics of the state variables of two synaptically-activated astrocytes, one deter-
ministic (red traces) and one with noise on the gating variable h according to equation 13 (blue
traces). The two astrocytes shared the same synaptic input which was repeatedly triggered by
action potentials arriving at a rate of 0.5 Hz. Model parameters as documented in tables in
Appendix C with the exception of ρc = 0.001; KP = 0.1 µm; Oβ = 5 µm s−1; Oδ = 0.2 µm s−1;
Ω5P = 0.1 s−1; KD = 0.5 µm; Fex = 0.09 µm; Kδ = 0.3 µm; and Ibias = 0.
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exponentially (Dayan and Abbott, 2001):

synapses_eqs = ’dY_S/dt = -Omega_c * Y_S : mmolar (clock -driven)’

synapses_action = ’Y_S += rho_c * Y_T’

synapses = Synapses(source_neurons , target_neurons ,

model=synapses_eqs , on_pre=synapses_action ,

method=’linear ’)

synapses.connect ()

Finally we have to specify how the synapses stimulate the astrocytes. We do this by intro-
ducing a further Synapses object that connects our synapses (which thus represent the “presy-
naptic” source in our object) to the two astrocytes (hence regarded as “postsynaptic” targets)
in an all-to-all fashion, which can be concisely expressed by a call to connect() without any
arguments. Each astrocyte i senses the sum of YS across all Si synapses that impinge on it.
This can be mathematically expressed as Y i

S =
∑

j∈Si Y
ij
S , and the implementation in Brian 2

closely follows this formulation, using the flag (summed) to denote the summing operation:

ecs_syn_to_astro = Synapses(synapses , astrocytes ,

’Y_S_post = Y_S_pre : mmolar (summed)’)

ecs_syn_to_astro.connect ()

The above definition will update YS for each astrocyte at every time step so that the integration
of the ΓA has access to the current value at all times.

Figure 2A summarizes the design of the astrocyte model previously described, exemplifying
its implementation by Brian 2 classes originally introduced in Figure 1A. A sample simulation of
this model is presented in Figure 2B, which shows the dynamics of the state variables ΓA, I, C
and h for the deterministic (red traces) vs. stochastic astrocyte (blue traces) in response to
synaptic stimulation by periodic action potentials at a rate of 0.5 Hz. It may be appreciated
how noisy dynamics of the gating variable h could dramatically alter C and I dynamics com-
pared to the deterministic scenario. This could also impact the activated fraction of astrocytic
metabotropic receptors (ΓA) by the Ca2+-dependent Hill nonlinearity in the right hand side
of equation 15, although in this example, the effect may be deemed moderate for the specific
choice of values for the model’s parameters (Table C.2).

2.5 Gliotransmitter release and modulation of synaptic release

Astrocytes are not only stimulated by synapses but they can also modulate them by releas-
ing neurotransmitters (also termed “gliotransmitters” for their glial origin; Bezzi and Volterra,
2001) in a Ca2+-dependent fashion. This process generally requires astrocytic intracellular
Ca2+ concentration to increase beyond a certain threshold, resulting in the release of a quan-
tum of gliotransmitter into the periastrocytic space (De Pittà et al., 2013). In turn, released
gliotransmitter molecules diffuse in the extracellular space, ultimately reaching extrasynaptic
receptors found on synaptic elements belonging either to the very synapses that stimulate the
astrocyte in the so-called “closed-loop” scenario of gliotransmission, or to other synapses in the
case of “open-loop” gliotransmission (Araque et al., 2014). Among these targeted receptors,
presynaptically-located ones, once bound by gliotransmitters, can ultimately regulate synaptic
transmission through modulations of synaptic release probability (Engelman and MacDermott,
2004; Pinheiro and Mulle, 2008). In the simplest approximation, as elucidated in Chapter 12,
this modulation can be modeled by treating the parameter U0 in the previously-introduced
Tsodyks-Markram synapse model (equation 4) no longer as a constant, but rather as linearly
dependent on the fraction ΓS of activated presynaptic receptors (De Pittà et al., 2011):

dΓS
dt

= OGGA(1− ΓS)− ΩG ΓS (16)
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U0 = (1− ΓS)U∗0 + αΓS , (17)

where GA denotes the gliotransmitter concentration in the extracellular space, and α dictates
whether the effect of gliotransmitters on the synapse is to decrease (0 ≤ α < U∗0 ) or increase
neurotransmitter release (U∗0 < α ≤ 1) (De Pittà et al., 2011). In Brian 2 syntax, this leads to
the following synaptic equations:

synapses_eqs = ’’’

# Neurotransmitter

dY_S/dt = -Omega_c * Y_S : mmolar (clock -driven)

# Fraction of activated presynaptic receptors

dGamma_S/dt = O_G * G_A * (1 - Gamma_S) -

Omega_G * Gamma_S : 1 (clock -driven)

# Usage of releasable neurotransmitter per single action potential:

du_S/dt = -Omega_f * u_S : 1 (clock -driven)

# Fraction of synaptic neurotransmitter resources available:

dx_S/dt = Omega_d *(1 - x_S) : 1 (clock -driven)

# released synaptic neurotransmitter resources:

r_S : 1

# gliotransmitter concentration in the extracellular space:

G_A : mmolar

’’’

Because the value of U0 is only needed at the arrival of an action potential, there is no need to
include equation 17 in the above code. Rather, we update U0 at the beginning of the statements
executed by synapses upon action potential arrival, i.e.

synapses_action = ’’’

U_0 = (1 - Gamma_S) * U_0__star + alpha * Gamma_S

u_S += U_0 * (1 - u_S)

r_S = u_S * x_S

x_S -= r_S

Y_S += rho_c * Y_T * r_S

’’’

synapses = Synapses(source_neurons , target_neurons ,

model=synapses_eqs , on_pre=synapses_action ,

method=’linear ’)

For the sake of simplicity we retained two inefficiencies in the above code which should
otherwise be avoided in larger, computationally-demanding simulations. First, we used the
(clock-driven) specification (instead of (event-driven)), even though synaptic state variables
need only be updated on action potential arrival (Section 2.3). This allows us to directly
retrieve and plot state variables at each time step without the need to manually interpolate
between their values at the timing of action potentials. For the same reason, we also defined
rS (equation 7) as an additional state variable in the synapse model in synapses_eqs rather
than using it as an auxiliary temporary variable in the statements of synapses_action as we
previously did (Section 2.3). This choice allows us to easily record rS by a monitor, avoiding
the need to recompute it a posteriori based on the values of the other state variables.

Finally, we need to model gliotransmitter release from the astrocyte. For this, we use a
similar description to that of synaptic neurotransmitter release (Chapter 13). We thus introduce
a new variable xA which represents the fraction of gliotransmitter resources available for release
from the astrocyte and thereby controls the value of GA. These two state variables decay as
(De Pittà et al., 2011)

dxA
dt

= ΩA(1− xA) (18)
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dGA
dt

= −ΩeGA, (19)

while, when gliotransmitter is released, they are updated according to

GA ← GA + ρeGTUAxA (20)

xA ← xA(1− UA) (21)

As before, we can implement the above by textual equations and statements in Brian 2 , i.e.

astro_eqs = ’’’

# [...]

# Fraction of gliotransmitter resources available:

dx_A/dt = Omega_A * (1 - x_A) : 1

# gliotransmitter concentration in the extracellular space:

dG_A/dt = -Omega_e*G_A : mmolar

’’’

glio_release = ’’’

G_A += rho_e * G_T * U_A * x_A

x_A -= U_A * x_A

’’’

We also need to include in the astrocytic model a mechanism to time gliotransmitter re-
lease. We do this by imaging that when the astrocyte’s Ca2+ concentration increases beyond
a threshold Cθ, the astrocyte “fires” a gliotransmitter release event upon which the statements
of glio_release are executed. In this fashion, we can define in the astrocyte’s NeuronGroup a
threshold crossing for Ca2+ concentration (by the threshold keyword), upon which gliotransmit-
ter is released, and specify by the reset keyword what to do following firing of a gliotransmitter
release event by the astrocyte. Moreover, to avoid the threshold condition repeatedly trigger-
ing the release in all the time steps where the Ca2+ concentration is above the threshold, we
use the same condition for the refractory keyword, thereby stating that, as long as the Ca2+

concentration is above threshold, no new event should be triggered. That is,

astrocyte = NeuronGroup (2, astro_eqs ,

threshold=’C>C_Theta ’,

refractory=’C>C_Theta ’,

reset=glio_release ,

method=’rk4’)

Finally, to complete our model, we have to define how synapses are modulated by the
astrocytes’ gliotransmitter release. We do this defining another Synapses object as exemplified
in Figure 3A, akin to what we did in the previous section to connect synaptic neurotransmitter
release to astrocytes (Figure 2A). However, the connection between synapses and the astrocyte is
now in the opposite direction, i.e astrocytic gliotransmission is upstream (namely “presynaptic”)
with respect to synapses (which are thus “postsynaptic”). Hence,

ecs_astro_to_syn = Synapses(astrocyte , synapses ,

’G_A_post = G_A_pre : mmolar (summed)’)

Figure 3B illustrates how gliotransmitter release from the astrocyte could change synap-
tic neurotransmitter release in our model. The top panels show Ca2+ traces (C) from two
astrocytes that are differently stimulated by exogenous IP3 production (Jex in equation 14)
so that their intracellular Ca2+ concentration crosses the threshold for gliotransmitter release
(gray dashed line) at different times. This results in one astrocyte releasing gliotransmitter in
the extracellular space (GA) only once (green traces, “weak gliotransmission”), while the other
releases gliotransmitter twice (purple traces, “stronger gliotransmission”). The modulation of
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Figure 3. (Previous page.) Modeling of modulation of synaptic release by gliotransmis-
sion. A The model uses a Synapses object ecs_syn_to_astro to allow synapses’ modulation by
perisynaptic gliotransmitters. B (top panels) Extracellular gliotransmitter concentration (GA)
resulting from intracellular Ca2+ dynamics (C) in two differently activated astrocytes. (Bot-
tom panels) Dynamics of synaptic state variables (uS , xS) and extracellular neurotransmitter
concentration (YS) in response to a sequence of action potentials (top) for a synapse without
(black) and with (green and purple) gliotransmitter-mediated modulation. The two astrocytes
were initialized at t = −17.1 s at xA = 1, I = 0.4 µm, and h = 0.9 and were respectively stimu-
lated by Ibias = 0.8 µm (weak gliotransmission) and Ibias = 1.25 µm (stronger gliotransmission).
Other model parameters as in the Tables in Appendix C.

synaptic release ensuing from these two different timings of gliotransmitter release, is illustrated
in the lower panels, where neurotransmitter release from a synapse stimulated by a sample train
of action potentials, is monitored first in the absence of gliotransmitter release from the astro-
cyte, and then in the presence of weak vs. stronger gliotransmission. Without gliotransmission,
the extracellular neurotransmitter concentration (YS) progressively decreases with the incom-
ing action potentials, compatibly with the onset of strong short-term synaptic depression (black
traces). In the presence of gliotransmission instead, while the amount of released neurotrans-
mitter per action potential is generally lower than in the “naive” synapse (since we assumed
α < 0 in this example), this amount tends to increase at every action potential with respect to
preceding ones, and this increase is larger for stronger gliotransmission. This is consistent with
the onset of short-term synaptic facilitation, and agrees with the experimental observation and
the theoretical argument that gliotransmission could change the synapse’s short-term plasticity
(Araque et al., 2014; De Pittà et al., 2016, see also Chapters 8 and 13).

2.6 Closed-loop gliotransmission

In the examples discussed so far, we only separately considered one-way interactions between
synapses and astrocytes, modeling either modulation of astrocytic activity by synaptic neu-
rotransmitters (Section 2.4) or modulations of synaptic release by astrocytic gliotransmitters
(Section 2.5). In practice however, these two pathways may coexist, with gliotransmission feed-
ing back in a closed-loop fashion on the very synapses that stimulate the astrocyte and trigger its
gliotransmitter release. This section focuses on such a closed-loop scenario for gliotransmission.

Closed-loop gliotransmission can easily be implemented in Brian 2 by combining the model
of a synaptically-activated astrocyte (Figure 2A) with that of open-loop gliotransmission (Fig-
ure 3A), resulting in the model scheme shown in Figure 4A. However, it may be noted that in
doing so we end up using two independent Synapses objects (ellipses) to separately describe the
extracellular space for synapse-to-astrocyte signaling (ecs_syn_to_astro) and the extracellular
space for astrocyte-to-synapse gliotransmission (ecs_astro_to_syn). In reality, both neurotrans-
mitter and gliotransmitter release could occur in the same extracellular space, and thus only a
single Synapses object might be considered at the benefit of computational efficiency. Nonethe-
less, the choice of using two independent objects allows us to take into account the more general
scenario of astrocytes that are either sensitive or not to the activity of the same synapses they
modulate (Mart́ın et al., 2015; Navarrete and Araque, 2010). This is therefore an appropri-
ate choice when dealing with many synapses interacting with astrocytes as in the case of the
neuron–glia network discussed at the end of this chapter.

To elucidate some of the possible functional implications of closed-loop gliotransmission we
set out to characterize the average synaptic release for N_synapses=500 identical synapses for
different input stimuli and compare it to the open-loop scenario of gliotransmission as well as to
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Figure 4. Closed-loop gliotransmission. A In the most general design, modeling of closed-loop
gliotransmission in Brian 2 separates between the extracellular space of synapse-to-astrocyte
signaling (ecs_syn_to_astro) and the extracellular space of astrocyte-to-synapse gliotransmis-
sion (ecs_astro_to_syn). B Average extracellular concentration of synaptically-released neu-
rotransmitter (〈YS〉) for step increases of the mean rate of Poisson-generated incoming action
potentials (top panel, νin = 0.011 Hz, 0.11 Hz, 1.1 Hz, 11 Hz for 5-s time intervals; traces aver-
aged over 500 identical synapses.) C Corresponding average release of synaptic neurotrans-
mitter resources as function of the rate of incoming action potentials (data points and error
bars: mean ± standard deviation for 100 trials.) Parameters as in the tables in Appendix C
except for Oβ = 3.2 µm s−1; Ibias = 1 µm (open-loop gliotransmission); Ibias = 0 µm (closed-loop
gliotransmission).
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the “naive” scenario without gliotransmission. Brian 2 is optimized to deal with large objects
(see Appendix A), so rather than simulating one synapse at a time, for 500 times in the three
different scenarios (i.e. 1500 simulations in total), we simulate all synapses in all scenarios in
one single run. This is achieved by considering 500 × 3 synapses and an astrocyte group of
500 × 2 elements. The first 500 synapses are modulated by gliotransmitters from the first 500
astrocytes in a closed-loop fashion, the second group of 500 synapses is modulated by open-
loop gliotransmission mediated by the other 500 astrocytes; and finally, the remaining synapses
do not consider any gliotransmission. In contrast to previous synaptic connection patterns,
here we can directly calculate a target index for each connection, instead of evaluating a logical
condition for every possible connection pair. Brian 2 has a built-in syntax for such descriptions,
which offers a much more efficient way of establishing connections. In this syntax, we provide
an expression to calculate the target index j based on the source index i and potentially other
pre- or postsynaptic properties. To exclude certain potential connections, this expression can
be combined with an optional if part stating the condition for a connection to exist. Remember
that in our example here, the source index i and the target index j each refer either to synapses or
astrocytes, depending on the direction of the connection (“synapses to astrocytes” or “astrocytes
to synapses”). This leads to the following Brian 2 code:

ecs_syn_to_astro = Synapses(synapses , astrocyte ,

’Y_S_post = Y_S_pre : mmolar (summed)’)

# Connect t h e f i r s t N s y n a p s e s s y n ap s e s−−a s t r o c y t e p a i r s
ecs_syn_to_astro.connect(j=’i if i < N_synapses ’)

ecs_astro_to_syn = Synapses(astrocyte , synapses ,

’G_A_post = G_A_pre : mmolar (summed)’)

# Connect t h e f i r s t N s y n a p s e s a s t r o c y t e s −−p a i r s ( c l o s e d − l o o p )
ecs_astro_to_syn.connect(j=’i if i < N_synapses ’)

# Connect t h e s e cond N s y n a p s e s a s t r o c y t e −−s y n a p s e s p a i r s ( open− l o o p )
ecs_astro_to_syn.connect(j=’i if i >= N_synapses and i < 2* N_synapses ’)

Figure 4B shows a reproduction of Figure 13.2 by our Brian 2 implementation of closed-
loop gliotransmission for the time evolution of the average neurotransmitter concentration in
the synaptic cleft (〈YS〉) in response to step increases in the rate of incoming action potentials
(νin, top panel). Gliotransmission dramatically changes synaptic transmission (colored vs. black
traces), with the effect of closed-loop gliotransmission (purple trace) being somewhat interme-
diate between the scenarios of no gliotransmission (black trace) and open-loop gliotransmission
(green trace).

This is further elucidated in Figure 4C where the mean neurotransmitter concentration in the
extracellular space in the three scenarios is shown for different mean rates of randomly incoming
action potentials. The low-pass filter characteristics of synapses without gliotransmission (top
panel) turns into a bell-shaped, band-pass filter characteristics caused by (release-decreasing)
open-loop gliotransmission (middle panel) (Chapter 12). In the presence of closed-loop glio-
transmission however, the average concentration of synaptically-released neurotransmitter is
in between those expected in the other two scenarios for low input rate values, and tends to
approach the shape of the curve in the open-loop scenario for increasing rates. For high in-
put rates however, the release-decreasing effect of gliotransmission is such that the synapse is
ultimately silenced and cannot sustain further gliotransmitter release. Synaptic transmission
then becomes independent of gliotransmission again as if it were in the naive scenario without
gliotransmission, which accounts for the jump at νin > 10 Hz.
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2.7 Networks of astrocytes

Astrocytes are known to arrange in networks of different shape and connectivity depending on
the brain region under consideration (Giaume et al., 2010), and to be capable of propagating
Ca2+ signals through such networks in the form of intercellular (regenerating) waves. The
mechanisms underlying such propagation can be multiple and varied (Scemes and Giaume,
2006). Here, we only focus on the well characterized mechanism of intracellular IP3 diffusion
through gap junctions channels (GJCs) between neighboring astrocytes (Chapter 7).

From a modeling perspective, IP3 diffusion from one astrocyte j to a neighboring one i
can be thought as a flux of IP3 (Jij) which is some nonlinear (rectifying) function of the IP3

concentration gradient between cells i and j, i.e. ∆ijI = Ii−Ij , such as, for example (Lallouette
et al., 2014, see also Chapter 7)

Jij = −F
2

(
1 + tanh

(
|∆ijI| − Iθ

ωI

))
sgn(∆ij) (22)

Incidentally, we note that the above formula is reminiscent of the expression of the exogenous IP3

flux (Jex) in equation 14, insofar as the latter may be regarded as a special case of intercellular
IP3 influx to any astrocyte from a much larger external IP3 source (i.e. Ibias in our notation)
(Goldberg et al., 2010). Because Jij is a function of IP3 concentrations in connected astrocytes
(i.e. Ii, Ij) by ∆ijI, it is astrocyte-dependent and not constant. Therefore, once we add Jij to
our astrocyte equations in Brian 2 (denoted in the code below by J_coupling), we must define
it as an astrocytic variable (that is without the (constant) flag), i.e.

astro_eqs = ’’’

dI/dt = J_delta - J_3K - J_5P + J_ex + J_coupling : mmolar

# [...]

# Diffusion between astrocytes

J_coupling : mmolar/second

# [...]

’’’

Connections between astrocytes by GJCs may conveniently be implemented by a Synapses

object in Brian 2 , once we regard Jij as the IP3 flow from “presynaptic” astrocyte j to “post-
synaptic” astrocyte i (Figure 5B). The effective total J_coupling to cell i by intercellular IP3

diffusion is the sum of all IP3 fluxes incoming to cell i from the Ai astrocytes connected to this
latter by GJCs, i.e. J icoupling =

∑
j∈Ai Jij . In Brian 2 code, this reads

astro_to_astro_eqs = ’’’

delta_I = I_post - I_pre : mmolar

J_coupling_post = -F/2 * (1 + tanh((abs(delta_I) - I_Theta )/ omega_I )) *

sign(delta_I) : mmolar/second (summed)

’’’

astro_to_astro = Synapses(astrocytes , astrocytes ,

model=astro_to_astro_eqs)

The above code bears the caveat of defining GJCs as unidirectional when they may not
be so. This caveat can be easily overcome, specifying both a connection from astrocyte i to
astrocyte j and a connection from j to i, whenever we want to model bidirectional IP3 diffusion
between neighboring astrocytes. For example, to connect astrocytes in a ring, where every
astrocyte is connected to its neighbors (Figure 5A), we can make use of the connect method of
the astro_to_astro object, and specify the following condition in terms of Brian 2 predefined
pre- and post-synatic indexes, i and j respectively, and the total number of elements in the
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Figure 5. Astrocytes connected in a network. A Sample astrocyte network in a ring configu-
ration with only one cell (in red) being exogenously stimulated. Connections between cells are
bidirectional, and represent GJC-mediated coupling between neighboring astrocytes. B General
Brian 2 modeling principle of astrocytic networks: GJC-mediated connections can be modeled
by a Synapses object (ellipse). C Intercellular Ca2+ wave generation and propagation in a
ring of 50 identical astrocytes mediated by stimulation of cell 25 (red trace). Parameters as in
Table C.2 with Fex = 0.09 µm s−1; and Ibias = 1 µm.
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presynaptic group N_pre3:

astro_to_astro.connect(’j == (i + 1) % N_pre or ’

’j == (i + N_pre - 1) % N_pre’)

where the % operator implements the modulo (remainder) operation.
Figure 5C shows a snapshot of Ca2+ dynamics of 50 astrocytes connected in a ring, where

only the 25th cell is exogenously stimulated (red trace). The fact that all cells, for some t > 0,
display Ca2+ fluctuations, is a direct consequence of inclusion of intercellular IP3 diffusion in
our model. Such diffusion allows excess IP3 from the stimulated cell to be redistributed by
GJCs in the ring to other cells where it ultimately triggers CICR. It may also be appreciated
how, in this example, bidirectional GJC communication allows for emergence of intercellular
Ca2+ waves that propagate both from and to the stimulated cell, as evidenced by wave fronts
respectively oriented like ‘\’ or like ’/’.

2.8 Coupled neuron and astrocyte networks

The examples discussed so far provide together all the ingredients to model complex networks
of interacting neurons and astrocytes (Figure 6A). However, to realistically implement such
networks we also need to specify the connections among neurons, synapses and astrocytes in
the physical (Euclidean) space. In the following we show how to include space in such networks,
limiting our focus here to planar networks for simplicity, although the outlined procedure can
easily be extended to higher dimensions.

We start by adding two cell-specific parameters, x and y, to each neuron which store the
cell’s 2D spatial coordinates and initialize them so that neurons are arranged on a grid of N_rows
rows and N_cols columns:

neuron_eqs = ’’’

# [...]

# Neuron position in space

x : meter (constant)

y : meter (constant)

’’’

neurons = NeuronGroup(N_e + N_i , model=neuron_eqs ,

threshold=’v>V_th’, reset=’v=V_r’,

refractory=’tau_r ’, method=’euler ’)

exc_neurons = neurons [:N_e]

inh_neurons = neurons[N_e:]

# Ar r ange e x c i t a t o r y n e u r o n s i n a g r i d
N_rows = int(sqrt(N_e))

N_cols = N_e/N_rows

grid_dist = (size / N_cols)

exc_neurons.x = ’(i / N_rows )* grid_dist - N_rows /2.0* grid_dist ’

exc_neurons.y = ’(i % N_rows )* grid_dist - N_cols /2.0* grid_dist ’

Furthermore, we also add a synapse-specific constant astrocyte_index to the synapse’s equa-
tions, whose value will correspond to the index of the astrocyte that ensheathes a synapse:

synapses_eqs = ’’’

# [...]

# which astrocyte covers this synapse ?

astrocyte_index : integer (constant)

’’’

3Note that the expression has been split into two strings for better readability. Python automatically merges
adjacent strings.
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# [ . . . ]
exc_syn = Synapses(exc_neurons , neurons , model=synapses_eqs ,

on_pre=synapses_action+’g_e_post += w_e*r_S’,

method=’linear ’)

We finally need to define the effective connections between the different cells of the network.
Overall there are four different types of connections: (i) connections between neurons which
defines the actual synapses; (ii) connections from synapses to astrocytes, as pathways to trigger
astrocyte activation; (iii) connections from astrocytes to synapses as routes for gliotransmission
and thereby modulation of synaptic release; and ultimately, (iv) connections between astrocytes
by GJCs. Here, for simplicity, we assume random connectivity between all neurons, indepen-
dently of their spatial coordinates (as in Figure 1C). Furthermore, we make the assumption
that only excitatory synapses can activate astrocytes and be modulated by them, restricting in
this way our focus on the experimentally well-characterized pathway of closed-loop glutamater-
gic gliotransmission (Panatier et al., 2011; Perea and Araque, 2007). In particular, we specify
which astrocyte is responsible for which excitatory synapse on the basis of the spatial position
of postsynaptic neurons with respect to Na astrocytes (N_a) which, like neurons, are arranged
on a regularly-spaced grid of Nrows rows (N_rows_a) and Ncols columns (N_cols_a), i.e.

N_rows_a = int(sqrt(N_a))

N_cols_a = N_a/N_rows_a

grid_dist = size / N_rows_a

exc_syn.astrocyte_index = (’int(x_post/grid_dist) + ’

’N_cols_a*int(y_post/grid_dist)’)

We then define the network of astrocytes:

astro_eqs = ’’’

# [...]

# The astrocyte position in space

x : meter (constant)

y : meter (constant)

’’’

# [ . . . ]
# Ar r ange a s t r o c y t e s i n a g r i d
astrocytes.x = ’(i / N_rows_a )* grid_dist - N_rows_a /2.0* grid_dist ’

astrocytes.y = ’(i % N_rows_a )* grid_dist - N_cols_a /2.0* grid_dist ’

Next, we connect the astrocytes with those synapses that they are supposed to ensheathe
according to astrocyte_index, i.e.

ecs_astro_to_syn = Synapses(astrocytes , exc_syn ,

’G_A_post = G_A_pre : mmolar (summed)’)

ecs_astro_to_syn.connect(’i == astrocyte_index_post ’)

ecs_syn_to_astro = Synapses(exc_syn , astrocytes ,

’Y_S_post = Y_S_pre/N_incoming : mmolar (summed)’)

ecs_syn_to_astro.connect(’astrocyte_index_pre == j’)

Finally, we specify the connectivity of the astrocyte network. In this example, we introduce
recurrent connections between astrocytes by GJCs, connecting each astrocyte to all other astro-
cytes found at the boundary of its anatomical domain, in line with the experimental observation
that neighboring astrocytes are more likely to be connected than astrocytes that are far apart
(Giaume et al., 2010; Pannasch and Rouach, 2013). Given that the diameter of astrocyte is
between 50–130 µm (Chao et al., 2002), we consider an intermediate value of 75 µm, whereby:

astro_to_astro.connect(’i != j and ’

’sqrt((x_pre -x_post )**2 +’

’ (y_pre -y_post )**2) < 75*um’)
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Figure 6. Recurrent neuron-glial network. A Neuron-glial network model design in Brian 2 .
B Simulations of neuron-glia network for a rectangular-pulse increase of external current (Iex,
top panel). The raster plot (middle panel) shows the firing activity of 25% out of all excitatory
(red) and inhibitory neurons (blue) of the network, and gliotransmitter release (green) from an
equal fraction of astrocytes. The network-averaged firing rate is shown at the bottom. Neural
activity dramatically changes from asynchronous low-firing activity to synchronous high-firing
activity following gliotransmitter release from astrocytes during the period of high stimulation
(2 ≤ t < 4 s). External current: Iex = 100 pA for t < 2 s or t ≥ 4 s; Iex = 120 pA for 2 ≤ t < 4 s.
Neural and synaptic parameters as those in Figure 1 (see also Table C.1). Astrocyte parameters
as in Table C.2 except for Oβ = 0.5 µm s−1; Oδ = 1.2 µm s−1; and Ibias = 0.
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We present a simulation of our neuron-glia network in Figure 6B, where we show the raster
plot of the firing activity of 25% of the excitatory (red) and inhibitory neurons (blue) of the
network along with gliotransmitter release events from an equal fraction of astrocytes (green),
in response to a transient increase of external stimulation (rectangular pulse in the top panel).
Up to the onset of stimulation (i.e. t < 2 s) there is no gliotransmitter release from astrocytes,
therefore the network behaves as it would be expected for a neuronal network without the
astrocyte component. It may be noted in fact how the raster plot of our network, and the ensuing
dynamics of the total firing rate (bottom panel), show low-frequency population activity, similar
to those reported in Figure 1C for our neuronal-only network model introduced in Sections 2.2
and 2.3. For 2 ≤ t < 4 s, the increase of external stimulation correlates with an increase in
the firing rate of the whole network, as reflected by a denser raster plot during this period. In
particular for t > 3.5 s, the larger neuronal firing triggers gliotransmitter release from astrocytes
and thus astrocytic modulation of excitatory synaptic transmission. Because this modulation is
slow-decaying (Chapter 8), it outlasts the transient increase of external stimulation and changes
neural firing once the external stimulation returns to its original value (at t = 4 s). We can
indeed clearly see how, for t > 4 s, excitatory neurons are more synchronized in firing than
for t < 2 s, as a consequence of gliotransmission from astrocytes. This is just one example of
the many possible ways astrocytes could actively shape neural activity, which has also been
suggested to participate in the genesis of cortical UP and DOWN states (Fellin et al., 2012).

Conclusions

Computational approaches to model glial physiology are hampered by the lack of definitive
experimental evidence and a missing comprehensive modeling framework that could tackle the
many different scales of glial signaling. “Standard” glia models have yet to be identified, and
neural simulator packages therefore do not ship such models as part of their pre-built model
libraries. While in theory these libraries could be extended by individual researchers to add
their preferred glia model, in practice this path is only open to experienced programmers.

In this chapter, we have shown how Brian 2 ’s simple syntax and versatility can offer a
solution to these problems, providing an ideal tool to model glial physiology, and specifically
the influence of astrocytes on neural activity. Brian 2 ’s syntax allows the researcher to flexibly
describe models by using conventional mathematical notation instead of low-level programming
code (Goodman and Brette, 2008; Goodman et al., 2009; Stimberg et al., 2014). Moreover,
Brian 2 ’s core data structure NeuronGroup, which describes a neuron by a set of ODEs, pa-
rameters, and actions that are triggered by conditions, provides a versatile framework that
can be borrowed to also describe non-neuronal cell types such as astrocytes. Similarly, the
Synapses data structure that, in purely neural simulations, represents chemical and electrical
synapses that connect neurons, can also be used to model the interactions between astrocytes
and synapses, as well as GJCs between astrocytes. Importantly, this flexibility does not come
at the cost of computational efficiency: without any user interaction, Brian 2 employs a code
generation approach that generates highly efficient code based on the user-provided high-level
description (Goodman, 2010). We hope that these arguments motivate newcomers as well as
experienced researchers to experiment with Brian 2 in the future and use it to model glial
physiology in their research, thereby contributing to the growth of this exciting emerging field
of computational research.
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Appendix A Technical remarks on Brian 2

Brian 2 scripts are executed by default in the so-called “runtime mode”. This mode runs the
simulation loop over the time steps in Python and executes chunks of target language code that
have been generated from the model description provided by the user. The choice of target
language depends on the user’s system; Brian 2 will prefer to use the C++ programming
language but, if the user does not have a working C++ compiler, will fall back to a pure
Python-based simulation. A Python-based simulation will usually be significantly slower but
can give comparable performance for big networks due to the use of vectorized computation
(Brette and Goodman, 2011). The advantage of the runtime mode is that the user has full
control to combine the automatically generated simulation code with arbitrary hand-written
Python code. This code could dynamically change aspects of the model during the run, or
interact with it in other ways. For example it could read out the model’s state and hand it
over to some code for visualization or terminate the simulation based on some criterion. This
mode however involves a significant overhead per simulated time step, since the program flow
constantly switches between Python and the individually-generated code chunks. For small-to-
medium size networks for which computations during a single time step do not take long, this
overhead can critically dominate the total runtime and lead to long simulation times.

To avoid this problem and allow more efficient simulations, Brian 2 also offers an alternative
mode called “standalone mode”. In this mode, the complete simulation code, including the
main simulation loop, are written as a set of C++ files to disk which can then be compiled
and executed as a single program. The resulting files are independent of the Python platform,
so that the simulation could also be run on systems where Python may not be available (for
example, in robotics). Moreover, if the user code complies to some specific conventions and does
not run custom Python code during a simulation, then switching from runtime to standalone
mode only requires the addition of a set_device(’cpp_standalone’) line to the simulation script;
Brian 2 then takes care of the whole process transparently. For further details, the reader is
invited to see comments in individual examples files (Appendix B) and/or refer to the online
Brian 2 documentation.

Appendix B Example files

The code for all the simulations presented in this chapter has been organized in multiple stan-
dalone example files as detailed in the following. Unless stated otherwise, all simulations start
from zero initial conditions, except for h(0) = 0.9 and xS(0) = xA(0) = 1.

example_1_COBA.py

This file implements the simulation of the neuron-only network model of Figure 1. The simu-
lation runs for 1 s with an integration time step of 0.1 ms. Out of all neurons, we distinguish
between excitatory (exc_neurons) and inhibitory ones (inh_neurons), which give rise to exci-
tatory synapses (exc_syn) and inhibitory synapses (inh_syn), connecting from the respective
population to the full population. Because the dynamics of synaptic variables are updated
only at incoming action potentials (i.e. (event-driven)), we can monitor the value of these
variables only at the arrival time of action potentials but not in between. However, we can re-
construct the whole synaptic dynamics by recording synaptic variables immediately after each
action potential (i.e. at t+i with i > 0), which is achieved by specifying the keyword argument
when=’after_synapses’ in the synaptic StateMonitor. For t > ti, the solutions of the synapse’s
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equations 4 and 5 then read (Tsodyks, 2005):

uS(t) = uS(t+i ) exp (−Ωf (t− ti))
xS(t) = 1 +

(
xS(t+i )− 1

)
exp (−Ωd(t− ti))

whereas synaptic release by the ith action potential at time ti is given by rS(ti) = uS(t+i )xS(t−i ) =
uS(t+i )xS(t+i )/

(
1− xS(t+i )

)
.

example_2_gchi_astrocyte.py

This code implements the synaptically-stimulated astrocyte model and related simulations
of Figure 2. The astrocyte’s temporal dynamics in response to synaptic activity was simu-
lated for 30 s using the derivative-free Milstein integration method with a time step of 1 ms. In
the deterministic limit of ξ(t) → 0 in equation 13, the Milstein method reduces to the classi-
cal (forward) Euler method which is suitable, at sufficiently small time steps, to numerically
solve dynamics of the deterministic astrocyte model, too. Synapses are stimulated by a train
of periodic action potentials at rate f0 = 0.5 Hz (f_0, rate of generation of action potentials by
presynaptic neurons) generated by

source_neurons = NeuronGroup (1, ’dx/dt = f_0 : 1’, threshold=’x>1’,

reset=’x=0’, method=’euler ’)

example_3_io_synapse.py

This file implements the open-loop model of gliotransmission and the simulations shown in Fig-
ure 3. The code considers three synaptic connection between one presynaptic source_neurons

and one postynaptic target_neurons, built by passing n=3 as an argument to the synapses.connect
method. We further consider two astrocytes stimulated by different I_bias values, and connect
them to synapses 2 and 3 respectively, leaving synapse 1 as it is (i.e. without gliotransmission).
This is done by:

ecs_astro_to_syn.connect(j=’i+1’)

example_4_synrel.py

This code runs the closed-loop model of gliotransmission for simulations in Figure 4B. The code
considers N_synapses neurons (source_neurons), each firing action potentials drawn from an
independent, inhomogeneous Poisson process with a stepped rate specified in a TimedArray, i.e.

rate_in = TimedArray ([0.011 , 0.11, 1.1, 11] * Hz , dt=5* second)

source_neurons = PoissonGroup(N_synapses , rates=’rate_in(t)’)

target_neurons = NeuronGroup(N_synapses , ’’)

The target_neurons are used to build N_synapses multi-synaptic connections from the
source_neurons, with each connection constituted of three synapses. Out of these three synapses,
the first one is connected with its own astrocyte and is, in turn, modulated by gliotransmitters re-
leased from this latter (closed-loop scenario); the second one is modulated by gliotransmitters re-
leased from another astrocyte (open-loop scenario); the third one is left as it is (scenario without
gliotransmission). Since this is repeated for all N_synapses, and overall we have N_astro=2 differ-
ent scenarios of gliotransmission (open-loop vs. closed-loop), we consider N_astro*N_synapses

astrocytes in total, and connect them accordingly with N_synapses*(N_astro+1) synapses as
elucidated in Section 2.6.
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example_4_rsmean.py

The file provides the code to build the synaptic transfer characteristics in Figure 4C in terms
of average synaptically-released neurotransmitter resources for different input rates of (presy-
naptically) incoming action potentials.

example_5_astro_ring.py

This code implements the astrocyte ring model in Figure 5. The simulation runs for 4000 s with
a time step of 50 ms. Calcium concentrations shown in Figure 5C were normalized by their
maximum.

example_6_COBA_with_astro.py

This file runs the simulation of the recurrent neuron-glial network in Figure 6. To stimulate
the network by a time-varying external current we multiply I_ex in neuron_eqs on page 4 by
stimulus = TimedArray([1.0, 1.2, 1.0, 1.0], dt=2*second). Neurons are placed on a square
lattice of size 3.75 × 3.75 mm at 50 µm distance from each other. For t = 0 we set C = I =
0.01 µm.

Appendix C Model parameters used in the simulations

The following tables report constants that correspond to the model parameters used in the
simulations presented in this chapter. Simulation-specific parameters are marked by ‘†’ and are
reported in respective figure captions instead.

C.1 Neurons and synapses

Symbol Name in code Value Units Description

Neuron parameters

Cm C_m 198 pF Membrane capacitance
El E_l -60 mV Leak reversal potential
gl g_l 9.99 nS Leak conductance
Iex I_ex † pA External current
Vr V_r -60 mV Reset potential
Vθ V_th -50 mV Firing threshold
τr tau_r 5 ms Refractory period

Synapse parameters

Ωd Omega_d 2 s−1 Synaptic depression rate
Ωf Omega_f 3.33 s−1 Synaptic facilitation rate
U∗

0 (U0) U_0__star (U_0) 0.6 – Resting synaptic release probability
YT Y_T 500 mm Total vesicular neurotransmitter concentration
ρc rho_c 0.005 – Synaptic vesicle-to-extracellular space volume ratio
Ωc Omega_c 40 s−1 Neurotransmitter clearance rate
we w_e 50 pS Excitatory synaptic conductance
wi w_i 1 nS Inhibitory synaptic conductance
τe tau_e 5 ms Excitatory synaptic time constant
τi tau_i 10 ms Inhibitory synaptic time constant
Ee E_e 0 mV Excitatory synaptic reversal potential
Ei E_i -80 mV Inhibitory synaptic reversal potential

Presynaptic receptors

OG O_G 1.5 µm−1 s−1 Agonist binding (activating) rate
ΩG Omega_G 0.5 min−1 Agonist release (deactivating) rate
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C.2 Astrocytes

Symbol Name in code Value Units Description

Calcium-induced Ca2+ release

CT C_T 2 µm Total cell free Ca2+ content
ρA rho_A 0.18 – ER-to-cytoplasm volume ratio
d1 d_1 0.13 µm IP3 dissociation constant
d2 d_2 1.05 µm Ca2+ inactivation dissociation constant
d3 d_3 0.9434 µm IP3 dissociation constant
d5 d_5 0.08 µm Ca2+ activation dissociation constant
O2 O_2 0.2 µm s−1 IP3R binding rate for Ca2+ inhibition
ΩC Omega_C 6 s−1 Maximal rate of Ca2+ release by IP3Rs
ΩL Omega_L 0.1 s−1 Maximal rate of Ca2+ leak from the ER
OP O_P 0.9 µm s−1 Maximal Ca2+ uptake rate by SERCAs
KP K_P 0.05 µm Ca2+ affinity of SERCAs

IP3 signaling

Oβ O_beta † µm s−1 Maximal rate of IP3 production by PLCβ

Oδ O_delta 0.6 µm s−1 Maximal rate of IP3 production by PLCδ

κδ kappa_delta 1.5 µm Inhibition constant of PLCδ by IP3

Kδ K_delta 0.1 µm Ca2+ affinity of PLCδ

O3K O_3K 4.5 µm s−1 Maximal rate of IP3 degradation by IP3-3K
K3K K_3K 1 µm IP3 affinity of IP3-3K
KD K_D 0.7 µm Ca2+ affinity of IP3-3K
Ω5P Omega_5P 0.05 s−1 Maximal rate of IP3 degradation by IP 5P

Metabotropic receptor kinetics

ON O_N 0.3 µm−1 s−1 Agonist binding rate
ΩN Omega_N 0.5 s−1 Maximal inactivation rate
KKC K_KC 0.5 µm Ca2+ affinity of PKC
ζ zeta 10 – Maximal reduction of receptor affinity by PKC

IP3 stimulation & diffusion

Fex F_ex 2 µm s−1 Maximal exogenous IP3 flow
Ibias I_bias † µm External IP3 drive
F F 0.09 µm s−1 GJC IP3 permeability
Iθ I_Theta 0.3 µm Threshold gradient for IP3 diffusion
ωI omega_I 0.05 µm Scaling factor of diffusion

Gliotransmission

Cθ C_Theta 0.5 µm Ca2+ threshold for exocytosis
GT G_T 200 mm Total vesicular gliotransmitter concentration
ΩA Omega_A 0.6 s−1 Gliotransmitter recycling rate
UA U_A 0.6 – Gliotransmitter release probability
ρe rho_e 0.00065 – Astrocytic vesicle-to-extracellular volume ratio
Ωe Omega_e 60 s−1 Gliotransmitter clearance rate
α alpha 0 – Gliotransmission nature
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De Pittà, M., Volman, V., Levine, H., and Ben-Jacob, E. (2009b). Multimodal encoding in a
simplified model of intracellular calcium signaling. Cogn. Proc., 10(S1):55–70.
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