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Acoustic tweezers allow to manipulate small objects like elastic spheres with a force1

generated by the radiation pressure which arises from the nonlinear interaction be-2

tween the incident and scattered waves by the object. The accurate control of3

the object by acoustic tweezers requires the study of the components of the three-4

dimensional force.If the physical properties of the elastic sphere are known, then the5

3D components of the force can be calculated thanks to a decomposition of the in-6

cident acoustic field in the spherical functions basis. In this work, we propose to7

evaluatethe expansion coefficients. Three methods are used and compared. The first8

one consists in measuring the acoustic field on a spherical surface centered on the9

theoretical position of the object and to calculate the spherical functions decompo-10

sition by Lebedev quadratures. The second method is based on the measurement of11

the acoustic field at random points in a spherical volume and on the resolution of the12

inverse problem by a sparse method called the orthogonal matching pursuit. In the13

third method, the incident beam is measured on a transverse plane, decomposed into14

a sum of plane waves and then the expansion coefficients are calculated. The results15

of the three methods will be presented and compared.16
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I. INTRODUCTION17

Acoustic tweezers like optical and magnetic tweezers are used for 3D manipulation of18

small objects such as cells and molecules. These micro manipulators are in a strong demand19

in the field of biophysics. Among these tweezers, optical tweezers1–3 have been developed20

first and demonstrated their precision and trap capabilities. However, the high intensity21

at the focus of optical tweezers can lead to photo-damage and heating of the target ob-22

ject, especially in vivo samples. Magnetic tweezers are not limited by photo-damage and23

are widely used in the biology field especially for manipulation and analyses of DNA and24

RNA23,32. The main limitation of magnetic tweezers is the limited range of constant-force25

that can be exerted due to their low trap stiffness. Moreover, applying large force requires26

high-current electromagnets which would cause heating or produce non constant-force. The27

radiation force is proportional to the field intensity divided by the speed of propagation.28

As the velocity of light is 5 orders of magnitude larger than sound speed, acoustic tweezers29

are able to afford large forces with much smaller intensity than optical tweezers and are a30

solution for the heating issue. This advantage enables a wide range of applications of acous-31

tic tweezers in various domains such as materials science, study of biophysical properties of32

cells and molecules, micro-rheology, biophysical characterization of DNA, etc.33

Different kinds of acoustic traps exist. Most of them are based on standing waves either34

in the bulk35 or propagating at the surface of a solid substrate13,14. In these schemes, all35

pressure nodes (or anti-nodes depending on the object density and compressibility) act as36

potential traps. On the contrary, optical tweezers are selective traps with a single position37
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of equilibrium. Radial selectivity was achieved by Wu34 using two counterpropagating fo-38

cused ultrasonic beams. Single beam acoustic tweezers are characterized by the ability to39

pick up, trap and manipulate a single small elastic particles in three dimensions4,5,7,9 as its40

optical counterpart. For all the possible applications, the calibration of the force provided41

by acoustic tweezers is of importance, especially for micro-rheology studies. The optical42

and magnetic tweezers’ forces calibration is achieved mainly by two methods: the first one43

consists in studying the Brownian motion of trapped objects with sizes comparable to the44

wavelength, then the force is determined from Hooke’s law12,24; the second one is to use the45

viscous drag force generated by a controlled fluid flow25.46

Nonetheless, the first method is not applicable for acoustic tweezers since the wavelength47

and the object can be much larger and the Brownian motion disappears at these scales. As48

for the second method, the fluid drag forces are also used to calibrate the acoustic trapping49

force22, but difficulties arise for single beam acoustic tweezers due to the Magnus effect1650

caused by the rotation of bead in an acoustic vortex beam8. Previously, the three dimen-51

sional force exerted on a spherical particle was modeled using the incident beam expansion52

on spherical functions. This model depends on the expansion coefficients, Amn , dubbed beam53

shape coefficients (BSC), and the scattering coefficients of the particle, Rn
6.54

55

In this article, we are interested in characterizing the radiation pressure exerted by acous-56

tic tweezers on a spherical particle using this model. Thus, this is not a direct measurement57

of the force. The acoustic field is measured with a calibrated hydrophone and then the force58

is deduced. Section II is a short reminder of the model focused on the equations needed59
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to calculate the radiation pressure exerted on an elastic sphere. To obtain the BSC of60

the incident pressure field, three methods are numerically investigated in section III: Lebe-61

dev quadrature, inverse problem regularization by sparsity and angular spectrum method62

(ASM). In section IV, a focused Gaussian beam and a focused acoustic vortex are synthe-63

sized and measured. The BSC are recovered by applying the three methods. Then, the64

acoustic field is reconstructed and compared with measurements and finally the radiation65

pressure is determined by the three methods.66

II. THEORETICAL BACKGROUND: RADIATION PRESSURE67

Let us consider a 3D Cartesian system of coordinates (x, y, z). The three components of68

radiation pressure exerted on an arbitrarily located elastic sphere in a perfect fluid by an69

arbitrarily incident beam are6:70

Fx =− 〈V 〉
k20

∞∑
n=0

∑
|m|<n

=(Q−mn Am∗n Am−1n+1 Cn

+Qm
n A

m
n A

m+1∗
n+1 C∗n),

(1)

Fy = +
〈V 〉
k20

∞∑
n=0

∑
|m|<n

<(Q−mn Am∗n Am−1n+1 Cn

+Qm
n A

m
n A

m+1∗
n+1 C∗n),

(2)

Fz = +2
〈V 〉
k20

∞∑
n=0

∑
|m|<n

=(Gm
n A

m∗
n Amn+1Cn). (3)
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With :

V = p20/(4ρ0c
2
0),

Cn = R∗n +Rn+1 + 2R∗nRn+1,

Qmn =
√

(n+m+ 1)(n+m+ 2)/
√

(2n+ 1)(2n+ 3),

Gmn =
√

(n+m+ 1)(n−m+ 1)/
√

(2n+ 1)(2n+ 3).

pa(x, y, z, t) is the linear component of the acoustic pressure, its time average is zero. ρ071

and c0 are respectively the fluid density and speed of sound at rest. Coefficients Amn are the72

coefficients of the expansion into spherical functions:73

pa(r, θ, ϕ, t) = p0

∞∑
n=0

∑
|m|<n

Amn jn(kr)Y m
n (θ, ϕ)exp(−iωt) (4)

where the spherical harmonics are defined by:74

Y m
n (θ, ϕ) =

√
(2n+ 1)

4π

(n−m)!

(n+m)!
Pm
n (cos θ)eimϕ

= Nm
n P

m
n (cos θ)eimϕ

(5)

with (r, θ, ϕ) the spherical coordinates linked to the Cartesian coordinates by x = r sin θ cosϕ,75

y = r sin θ sinϕ and z = r cos θ. jn designates the spherical Bessel function, Pm
n (cos(θ)) are76

the Legendre polynomials and k is the wave number. The azimuthal number m and the77

radial degree n satisfy |m| ≤ n.78

From the theoretical expressions of the radiation pressure, two sets of coefficients are required79

to determine the forces:80

• Scattering coefficients: Rn81

• Incident BSC: Amn82
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The scattering coefficients Rn for an arbitrary incident beam are known and depend only83

on the physical characteristics of the object and propagation medium6. Therefore, our84

problem of determining the radiation forces can be solved by searching the incident BSC85

Amn . These coefficients are known analytically for several beams (plane wave, Bessel beam,86

vortex beam). Nevertheless, in real applications the pressure field is sampled in time and87

in space on a finite set of points and make the determination of BSC a challenge. In the88

following part, three different methods for calculating these coefficients are investigated.89

III. CALCULATION OF BEAM SHAPE COEFFICIENT Am
n FROM THE PRES-90

SURE FIELD91

For each method, the determination of the BSC is tested on the same incident field: a92

focused vortex beam of topological charge m′ = 1. This beam is very important because,93

it is the keystone to create acoustic tweezers4,5,7,28. As this paper proposes to address the94

problem of the characterisation of the radiation force and especially the one exerted by95

acoustic tweezers, it is reasonable to validate the methodology on a field as close as possible96

to the final target. The BSC for a focused vortex beam are5:97

Amn = δm,m′4π(kr0)
2h(1)n (kr0)

∫ π

π−α0

Pm′

n (cosθ′)Nm′

n dθ′. (6)

with δm,m′ the Kronecker delta, h
(1)
n the spherical Hankel function of first kind, m′ the98

topological charge of the vortex and α0, a0, r0 are respectively the aperture half angle, the99

radius of the transducer and the focal distance as illustrated on top of Fig. 1. In this paper,100
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we use the expression of normalized spherical harmonics with a factor Nm
n (see Eq. 5), hence101

Amn are different from previous works6,5.102
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FIG. 1. (Top) Modulus of the complex pressure field at frequency corresponding to a wavelength

of 1.25mm in water, and (bottom) BSC, for a focused vortex with topological charge m′ = 1 the

spherical basis is centered at the focus of the incident beam (color online)

Using Eq. 4, the pressure field can be computed anywhere. Fig. 1 shows the pressure103

field for a focused vortex beam of charge m′ = 1 (top row), and the BSC (bottom). We104

selected the case of water, c0 = 1500m · s−1, as propagating medium and a frequency of105

1.2MHz. The wavelength is λ = 1.25mm. The pressure field has a zero amplitude along106

the axis of propagation. This is a common feature associated with vortex beam19,26. The107

focusing is sharp because the aperture of the transducer is 110mm(88λ), 75mm(60λ) away108

from the focus (corresponding to an aperture half angle equal to α0 = 43o). As expected109

the BSC are restricted to the column m = 1 with a non intuitive variation in function of110

the radial degree. We assessed numerically the error on the radiation force, Eq. 1-3 by111
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decreasing the truncation order. Thereafter, all series are truncated at n ≤ N = 25 and the112

error on the force is 0.001.113

A. Lebedev Quadrature114

The first method is based on the orthogonality of the spherical harmonics: < Y m
n , Y

m′

n′ >=115

δn,n′δm,m′ where the scalar product on the sphere is defined by < f(θ, ϕ), g(θ, ϕ) >=116 ∫ ∫
f(θ, ϕ)g(θ, ϕ) sin θdθdϕ. By applying this property, BSC Amn can be expressed by inte-117

grals over a spherical surface:118

Amn =
1

p0jn(kr)
< p, Y m

n >

=
1

p0jn(kr)

∫
θ

∫
ϕ

p(θ, ϕ)Y m∗
n (θ, ϕ) sin θdθdϕ.

(7)

The integrals in Eq. 7 are computed by numerical integration. Using a numerical quadra-119

ture to perform this integration in the context of acoustic radiation force or torque have120

already been investigated17,18. In these previous works, the sphere was sampled with a very121

fine grid incompatible with actual measurements of the pressure fields and there was no122

noise. Different quadrature rules have been tested: Legendre-Gauss quadrature, Chebyshev123

quadrature10 and Lebedev quadrature. Among these quadratures, the Lebedev quadrature31124

gives the best precision for a given number of points and only that quadrature is used here21.125

The number, position and the weight of Lebedev grids defined on an unit sphere ((xi, yi, zi)126

and weights wi) have been derived by Sobolev31. Therefore, measuring the pressure field at127

the Lebedev points (see Fig. 2 to visualize their positions) and using this quadrature give128
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the BSC Amn .129

Amn =
1

p0jn(kr)

I−1∑
i=0

p(θi, ϕi)Y
m∗
n (θi, ϕi)wi. (8)

Lebedev quadrature has optimal efficiency, i.e. the number of points required, I =130

(N + 1)2/3, is the smallest, where N is the highest order of the polynomials integrated on131

the sphere. Moreover, the distance between the Lebedev points is roughly constant. This132

feature is very interesting since it provides an optimal sampling of the sphere in regards133

with the finite size of an hydrophone and thus it optimizes the signal-to-noise-ratio (SNR)134

The integrand is the product of spherical harmonics, Eq. 4, 7. If the series is truncated at135

n ≤ N , the integrand is a polynomial of order smaller than 2N and hence N = 2N . For our136

case, N = 25 and this yields I = 867. It must be noted that the number of Lebedev points137

is not arbitrary. Here, we use I = 974 Lebedev points on a sphere with radius 7mm(5.6λ).138

This choice amendellows to perfectly retrieve the high order modes (here up until n = 25) as139

shown in Fig. 2, the BSC obtained by the Lebedev quadrature for a focused vortex beam. Of140

course, this previous estimation does not take into account the noise in the measurements.141

It is known that the determination of the BSC are prone to errors in the presence of noise29.142

To assess the robustness of the method in presence of noise, we proceed in three steps. First,143

the BSC of Eq. 6, named thereafter Amnth
, are computed and the corresponding pressure field144

calculated with Eq. 4 on the Lebedev grid and in the focal plane to determine the maximum145

pressure. Second, a noise with a uniform distribution in an interval of amplitude 5% of this146

maximum pressure is added to the pressure field calculated on the Lebedev grid. Third, the147

BSC of this noisy pressure field, noted Amn , are estimated with Eq. 8 and shown on Fig. 2.148

In Fig. 2, the lines where the BSC are very different from the original ones correspond to149
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the values closest to zero for the Bessel function (Fig. 3). Indeed, since the scalar product150

with spherical harmonics is a linear operation, the result is the scalar product with the ideal151

pressure fields plus the scalar product with the noise. Hence the error is proportional to152

1/jn(kr). On Fig. 3, we can observe a first oscillating part up to n = 35 followed by a fast153

decrease converging to 0. We selected a sphere radius large enough, 7mm(5.6λ), so that the154

truncature order N = 25 is located in the oscillating part.155

To assess the numerical performance of the method, we compute the relative error:156

err =
1

(N + 1)2

N∑
n=0

m=n∑
m=−n

|Amn − Amnth
|

max(|Amnth
|)

(9)

(N + 1)2 is the total number of BSC Amn of order n ≤ N . Here the relative error is 0.061.157
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FIG. 2. (Top) points on a Lebedev sphere, and (Middle) reconstructed BSC for an incident focused

vortex beam without noise and (Bottom) with 5% noise. (color online)
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FIG. 3. (Top) Amplitude of the spherical Bessel jn(kr) function for a radius r = 7mm(5.6λ) (the

blue triangles show the values close to zero) and (Bottom) for two different radii r1 = 7.11mm(5.7λ)

and r2 = 7.45(6λ) (the red points show the maximum values between |jn(kr1)| and |jn(kr2)| for

each order n). The frequency is f0 = 1.2MHz. (color online)

An upgrade in order to mitigate the detrimental effect of noise is to use a double layer158

Lebedev sphere29. The idea is to use two spheres with different radii and to apply the159

Lebedev quadrature, for a given ordrer n, to the sphere for which the Bessel function has160

the greatest absolute value. Using the asymptotic behavior of Bessel function for large x161

compared to n, jn(x) ≈ cos(x − π/2)/x, in Fig. 3, we selected the radius of the second162

sphere such that jn(x′) ≈ sin(x′ − π/2)/x′ to optimize the estimation, this leads to r1 =163

7.11 mm(5.7λ) and r2 = 7.45 mm(6λ). The red stars indicate the chosen value between the164

two Bessel functions to compute the BSC of order n. The double layer Lebedev sphere grids165

are presented in Fig. 4. For each sphere, 974 Lebedev points are used. Fig. 4 shows the166
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BSC obtained with this method. They are close to the original ones (Fig. 1) and the relative167

error decreases from 0.06 to 0.015. Nevertheless, one can see that the BSC for m 6= 1 are168

not strictly equal to zero and thus a weak error remains on the estimated BSC.169
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FIG. 4. (Top) measurement points of a double layer Lebedev sphere, (Bottom) reconstructed

BSC for an incident focused vortex beam with 5% noise by the double layer Lebedev quadrature

method. (color online)

B. Regularization of the inverse problem by a sparse method170

Instead of solving Eq. 7 with its discretized version Eq. 8, another strategy consists171

in solving Eq. 4 whose discretized counterpart can be reformulated under a matrix/vector172

form:173

P = MA+ ε. (10)

with vector P whose components are the Fourier transform of the pressure field at frequency174

f0 at points of discretization (xi, yi, zi) : p̂(xi, yi, zi, f0) of length I, vector A whose compo-175
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nents are the BSC Al = Amn with l = n(n + 1) + m of length L = (N + 1)2, the matrix M176

whose elements are (jn(kri)Y
m
n (θi, ϕi)) with (ri, θi, ϕi) the points (xi, yi, zi) written in spheri-177

cal coordinates of size (I×L)and vector ε the additive noise on points (xi, yi, zi). To compare178

this method with the double layer Lebedev sphere quadrature, we set the same number of179

points: 1948 dispersed in a spherical volume of identical radius r = 7.11mm(5.7λ). As180

previously, the truncature order is set to 25. At this stage the points distribution is free and181

this can be used to avoid an ill-conditioned matrix. Then, the best choice is a set of random182

points distributed in a spherical volume as illustrated on Fig. 5.183

Because of the noise, the matrix M is always full rank, the direct inversion is then always184

possible but unstable in regard of a small change in the noise. This ill-posed problem required185

regularization to get a meaningful solution. As can be seen on Fig. 1 for a focused vortex186

beam, a large number of BSC are null. So, vector A is sparse. This a priori can be used to187

regularize the inversion:188

Ã = argmin ||A||0 such as P = MA (11)

With this formulation, vector Ã is searched with a particular constraint: it must contain a189

minimum of non-zero terms.190

To solve Eq. 11, we choose to use Orthogonal Matching Pursuit algorithm (OMP)11.191

This algorithm is iterative. For each iteration, the component of M with the highest inner192

product with the remaining part of vector P is selected. Then its contribution is subtracted193

and the iterations continue on the residue. This procedure stops when the iteration reaches194

the number of non-zero elements of the BSC (25 in our case) or when the residual reaches195

a limit.196
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FIG. 5. (Top) randomly distributed measurement points in a sphere, and (Middle) reconstructed

BSC for an incident focused vortex beam with 5% noise by the OMP method and (Bottom) block-

OMP method. (color online)

With the OMP method, we should be able to recover the BSC on the column m = 1 with197

25 iterations. However, tests for a vortex beam have shown the inefficiency of this stopping198

criterion. Thus, the stopping criterion of the OMP procedure will be the residual limit199

(lower than 0.001). Fig. 5 shows the BSC obtained with the OMP algorithm for the same200

noisy pressure field as before.There is a very good agreement with the original set of BSC201

even if some BSC laying outside the column m = 1 are not exactly set to zero. Here, the202

relative error is 0.0141 close to the 0.015 obtained with the Lebedev method. A drawback is203

the number of iteration required, the computation can be very long. A method to improve204

this is the Block version of OMP. It’s the same procedure but with the matrix M in a block205
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version15. Fig. 5 shows the BSC obtained by applying the Block-OMP method, the matrix206

M is divided into blocks of (N × 10), and the iteration number is 35 only. An unexpected207

result is that the relative error is then twice better : 0.006208

C. Angular spectrum method (ASM)209

A third approach is to use a transformation from angular spectrum to spherical harmonics.30.210

The Fourier transform of the pressure in plane z can be seen as a superposition of plane211

waves:212

p̂(x, y, z, ω) =

1

4π2

∫ ∫
k2x+k

2
y≤k2

S(kx, ky)e
ikxx+ikyy+i

√
k2−k2x−k2yzdkxdky,

(12)

where the angular spectrum S(kx, ky) is the 2D spatial Fourier transform of the pressure213

in plane z = 0:214

S(kx, ky) =

∫ +∞

−∞

∫ +∞

−∞
p̂(x, y, z = 0, ω)e−i(kxx+kyy)dxdy, (13)

According to30, the pressure field can be rewritten:215

p̂(x, y, z, ω) =
1

π

∞∑
n=0

injn(kr)
n∑

m=−n

Ynm(θ, ϕ)

∫ ∫
k2x+k

2
y≤k2

S(kx, ky)Y
∗
nm(θk, ϕk)dkxdky,

(14)

with: kx = k sin(θk) cos(ϕk) ky = k sin(θk) sin(ϕk) and kz = k cos(θk). The comparison of216

Eq. 4 and Eq. 14 shows that the Amn can be written as:217

Amn =
in

π

∫ ∫
k2x+k

2
y≤k2

S(kx, ky)Y
∗
nm(θk, ϕk)dkxdky. (15)

The noisy pressure field is simulated here on a square grid of dimension 7mm ×218

7mm(5.6λ × 5.6λ) regularly sampled with a total of 2500 points. Note that the mesh219
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grids of ASM should be very fine otherwise errors of integration in Eq. 15 arise.The square220

grid is located at the focal distance (x, y, z = 0). This field is Fourier transformed (Eq.221

13) with a discrete Fourier transform (DFT). The sampling after a DFT can be refined222

by zero-padding for instance. We performed a polynomial interpolation instead. Indeed,223

knowing the polynomial coefficients, numerical integration of Eq. 15 can be achieved with224

a variable step method to increase accuracy.225

Fig. 6 shows the BSC obtained with the ASM method The agreement with the original226

BSC is quite good especially for column m = 1. Nevertheless, other columns contain non227

null BSC with a relative important amplitude. The relative error is 0.014.228
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FIG. 6. Computation of the BSC by angular spectrum decomposition. (color online)

Therefore, all methods except the Lebedev quadrature on a single sphere allow to retrieve229

the BSC for a focused vortex beam with a good confidence even in presence of noise. The230

results are synthesized in Tab. I.231

D. Estimation of the radiation pressure by the three methods232

To assess the efficiency of each method, we calculate the radiation forces exerted on a233

polystyrene sphere of radius r = 0.1λ using equations 1, 2, 3. These forces are then decom-234
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Methods Relative Error

Lebedev quadrature (Single sphere) 0.061

Double layer Lebedev quadrature 0.015

OMP 0.014

Block - OMP 0.006

ASM 0.014

TABLE I. Relative error for three methods

posed into three components: radial, azimuthal and axial forces (Fρ, Fφ, Fz) in a cylindrical235

basis (ρ, φ, z). On the left of Fig. 7, the forces are calculated by using all the BSC obtained236

by the three methods, while on the right of Fig. 7, the forces are computed with A1
n only.237

All methods yield accurate estimations of the radial force. On the contrary, the azimuthal238

force, Fφ, has a much weaker amplitude and all methods give poor estimates. Nevertheless,239

OMP method roughly recovers the original shape of the force. These differences originate240

from the estimated BSC with finite value outside column m = 1. It is shown in Fig. 7 that241

after filtering out these BSC, all methods recover perfectly the theoretical force. In the case242

of the axial force, Fz, both OMP and the ASM turn out to provide good estimations while243

again, the Lebedev method is less efficient and leads to fast oscillations around the expected244

curve. However, these errors can not be reduced by filtering BSC outside m = 1. We may245

assume that the error is hidden in column m = 1.246
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FIG. 7. (Left) radiation force exerted on a polystyrene sphere of radius r = 0.1λ with all the BSC,

and (Right) with only BSC on column m = 1. (color online)

The oscillations on the axial force calculated by Lebedev method are periodical, similar247

to those caused by a standing wave. Moreover, we know that the radiation pressure due to248

a standing wave is much stronger than the one due to a progressive wave20. Any error on249

the estimated BSC in this regard should lead to large discrepancies on the force estimation.250

In order to investigate this assumption, a weak amplitude wave propagating in the opposite251

direction is superposed to the incident wave. The BSC of the counter propagating wave can252

be computed as follow. The symmetry z → −z transforms cos(θ) into cos(π−θ) = − cos(θ).253

Then, considering that the associated Legendre functions Pm
n (cos(θ)) satisfy the relation :254

Pm
n (−x) = (−1)(n+m)Pm

n (x). (16)

19



and Eq. 4, 5, the BSC of the wave propagating in the opposite direction can be computed255

by multiplying the BSC by (−1)(n+m). Taking into account the mean relative error on the256

estimated BSC 0.006 for block OMP, we fixed the amplitude of this weak counterpropagating257

wave at 0.005 so that the new BSC are (1 + 0.005(−1)(n+m))Amnth
. On Fig. 8 is plotted the258

axial force for the progressive wave only and with the counterprogating wave superposed.259

Comparing with Fig. 7, oscillations with the same periodicity but weaker amplitudes are260

obtained.261

There remains to explain why the Lebedev method is more sensitive to the noise than the262
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FIG. 8. Axial force exerted on a polystyrene sphere of radius r = 0.1λ with theoretical BSC Amn

(black) and theoretical BSC with a counter propagating wave with 0.5% amplitude (red). (color

online)

263

264

other two methods. In our simulation, the random noise amplitude is evenly distributed265

between −5% and 5% of the maximum pressure of the incident beam in all three cases.266

However for Lebedev quadrature, the pressure field is sampled at the surfaces of two spheres267

with radius r = 7.11mm(5.7λ) and r = 7.45mm(6λ) where the wave is either yet converging,268

z < 0, or diverging, z > 0. Since the wave is sharply focused, on these spheres its amplitude269
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and hence the SNR is 10dB lower.On the contrary, the set of points used either inside a270

spherical volume (OMP) or on a focal plane (ASM) contains locations where the pressure271

amplitude is maximum. By calculating the SNR at a measurement point where the signal272

is the maximum for each method, we obtain the results of 22.5dB, 32.2dB and 32.5dB for273

the Lebedev quadrature, OMP and ASM respectively. To confirm the role played by the274

SNR, the OMP method is now applied in conditions similar to the ones used for Lebedev275

quadrature. The pressure field is sampled on a set of points randomly distributed on a276

spherical surface of r = 7mm(5.6λ). The axial force obtained by the two methods are277

now similar with oscillating errors of about the same period and amplitude. Besides, if we278

increase the radius to 10mm(8λ), the fluctuations become stronger as expected since the279

SNR is even more degraded.280

To compare the numerical estimation of the forces by different methods (with all the BSC281
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FIG. 9. Axial force exerted on a polystyrene sphere of radius r = 0.1λ with BSC computed by

OMP method on two spherical surfaces (black and blue) and the theoretical force (red). (color

online)

282

283

Amn ), the relative errors between the force calculated with the Amn , F , in the presence of284
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noise and the force computed with the Amnth
, Fth, are then calculated :285

errforce =
1

K

∑K
0 |F − Fth|
max|Fth|

(17)

K is the total number of positions where the forces are estimated. The results are presented286

in Tab. II. We can conclude that both the OMP and angular spectrum are effective methods287

for estimating the radiation force from pressure field measurements with very low relative288

error as presented in Tab. II. The task is nevertheless difficult since small errors potentially289

result in spurious standing waves and the radiation pressure exerted by standing waves is290

much stronger than for progressive waves.291

Relative error Lebedev OMP ASM

Fρ 0.036 0.012 0.018

Fφ 0.87 0.23 0.22

Fz 0.29 0.056 0.096

TABLE II. Relative error of the forces for three methods

IV. EXPERIMENTAL MEASUREMENTS292

In this section, the three methods are applied on experimental data. A focused Gaus-293

sian beam, with charge m′ = 0, and a focused vortex beam with charge m′ = 1 have been294

synthesized using a large antenna made of 120 piezoelectric transducersdistributed on a295

hexagonal pattern on a concave surface with a radius of curvature of 45cm. The array aper-296

ture is 11cm(88λ). An acoustic lens is used to reduce this focal to 7.5cm(56λ). With the297
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lens, the half-angle, α0, is comparable to the simulated cases. The pressure field is synthe-298

sized by selecting the electric signals fed to each transducers by a multichannel electronics299

made of 120 arbitrary signals generators. These signals are calculated using the inverse300

filter technique26,27,33. The set-up and procedure are identical to the ones used in previous301

work7. The incident sound beam was then measured by a calibrated needle hydrophone of302

0.2mm(0.2λ) diameter (Precision Acoustics Ltd, UK) on three different grids corresponding303

to the different algorithms presented in the previous section. The measurement grids are304

all centered on the focal point of the vortex beam. For each location of the hydrophone, an305

ultrasound burst of 10 cycles is repeated 128 times and the records are averaged to increase306

the SNR. The experimental SNR is 20dB lower than the SNR in the previous section.After307

these measurements on the different grids, we apply the three methods described in sec-308

tion II to estimate the BSC. The obtained BSC completely describe the field, Eq. 4. We309

measured the acoustic pressure on the transverse plane (xy) (on the ASM grid) and the310

vertical plane (xz) (on a rectangular grid of dimension 7mm × 20mm (5.6λ × 16λ) with311

steps of 0.4mm × 0.3mm (0.3λ × 0.2λ)). A DFT is then used to get the measured pres-312

sure in the Fourier domain and then extract the modulus at 1.2MHz. Fig 10 displays the313

computed and measured modulus of the pressure field at this frequency. The reconstructed314315

fields computed with the three different methods are in very good agreement with the direct316

measurements.On the lateral, (xy), plane. The main lobe is perfectly recovered and in the317

case of the vortex beam the small anisotropy on the bright ring is accurately estimated.318

The secondary ring of high pressure modulus characteristic of diffraction by a truncated319

aperture, i.e. the array of transducers, is also efficiently estimated. Compared to simulated320
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FIG. 10. Reconstruction of the incident beam in Fourier domain, (pressure modulus is shown),

for the focused Gaussian beam (Left), and the focused vortex beam with m′ = 1 (Right). (color

online)

results of the previous section, the noise is not the single source of discrepancy between Amn321

and Amnth
and as consequence between F and Fth, Eq. 17. The inverse filtering while very322

efficient does not achieve a perfect synthesis of the looked for pressure fields, Fig 10. For323

instance, the experimental measurements are not perfectly axisymmetric and this will have324

an impact on the azimuthal force. For the axial plane, (xz), OMP and ASM methods also325

provide quite a good reconstruction on main and secondary lobes. The ”X-shape” and high326

pressure at the focus, features expected for sharply focused beam, are perfectly reproduced,327

while the Lebedev quadrature estimation has some spurious amplitude oscillations. These328
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oscillations have a comparable period with the one observed on the axial force, Fz, Fig. 7,329

in the numerical simulation when noise was present. We provided an explanation for this330

phenomenon in the previous section. As a result, both the OMP and ASM are able to es-331

timate the incident BSC Amn and hence the acoustic pressure field in the volume of interest332

around the focus.333

Finally, we use these obtained BSC of the focused Gaussian beam and the vortex beam334

m′ = 1 to calculate the radiation forces exerted on polystyrene spheres of radius r = 0.1λ335

with Eq. 1, 2, 3. The results are shown on Fig. 11 and Fig. 12. The axial force obtained336

with Lebedev method is not presented on the Figures since it’s very fluctuating like its re-337

construction on (xz) plane. As in the previous section, the relative error of the experimental338

forces for Gaussian beam and vortex are calculated and reported in tables Tab.III, IV.339

Relative error Lebedev OMP ASM

Fρ 0.036 0.036 0.012

Fz 0.23 0.11 0.07

TABLE III. Relative error of the experimental forces for three methods (Gaussian beam)

340

341

According to Fig. 11, for a focused Gaussian beam and for each method the radial force is342

in good agreement with the theoretical one. Theoretically no azimuthal force is applied, but343

a weak rotational force exists in the force estimation by three methods. This dissimilarity of344

azimuthal force can be due to the difference between the theoretical and experimental field345

synthesised by inverse filtering, as well as the presence of the noise in the measurements. As346
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Relative error Lebedev OMP ASM

Fρ 0.027 0.057 0.034

Fφ 0.71 0.6 0.99

Fz 0.8 0.14 0.14

TABLE IV. Relative error of the experimental forces for three methods (Acoustic vortex m′ = 1)

for the axial force, the force estimated by ASM is very close to the theoretical one with a very347

low relative error of 0.07. However, the one calculated by OMP appears to be oscillating348

though in the reconstruction on plane (xz) no oscillations are visible. Note that the trap349

slope is positive for both radial and axial forces. Therefore at the origin the force is null but350

the equilibrium is unstable. To achieve acoustical tweezers for a stiffer and denser particle351

compared to water, cancellation of the pressure field at the focus is required as the case352

studied below.353

For the focused vortex beam of charge m′ = 1, the forces are quite similar with the ones354

obtained by adding noise in the numerical assessment of the three methods (see previous355

section). First, the computation of the radial force agrees with the theoretical force whatever356

the method. Secondly, the azimuthal forces computed by the experimental BSC are different357

from the theoretical one. These differences are caused by the value of Amn coefficients outside358

column m = 1. If we keep only column m = 1 and recalculate the azimuthal force, then, all359

the forces for different methods superpose with the theoretical force. This filtering makes360

the pressure modulus axisymmetric and eliminates any anisotropy in the transverse plane361
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whatever its origin inverse filtering imperfection or biased estimation of BSC. The third362

observation is that both OMP and ASM provide a good estimate of the axial force which363

has the same negative slope as the theoretical one, i.e same trap strength and stiffness. The364

OMP axial force has some fluctuations, but performs much better than the Lebedev method,365

the force obtained with ASM is smooth and close to the theory but with a shift about 0.2λ366

of the equilibrium position where Fz = 0. This shift can be caused by a slight shift 0.2λ367

(0.25mm) of the focal point in the experimental measurements. As reported in the Tab. IV,368

even with this shift, the relative error is small (0.14), by cancelling the shift, the relative369

errors will decrease to 0.091 and 0.085 for the OMP and ASM respectively which are very370

similar to the numerical estimations in the Tab. II of section III.371372373

V. CONCLUSION374

In this paper, the measurement of the radiation pressure on an elastic sphere exerted by375

acoustic tweezers is presented. The radiation force is not measured directly but is obtained376

from measurements of the pressure field associated with a model (see Eqs.1-3). To obtain the377

forces, it is necessary to estimate the BSC from experimental sampling of the pressure field.378

Three methods were developed in section III: the Lebedev double layer sphere quadrature,379

the OMP method, and the ASM. First, we assessed the methods by simulating an acoustic380

vortex of charge m′ = 1 with 5% noise. The results show that all these methods can recover381

the BSC. In spite of that, the forces computed by the different methods agree well with the382

theory, except the Lebedev quadrature for which the axial force is fluctuating.383

The experimental verification of these methods is done in section IV. Compared with the384

27



3 2 1 0 1 2 3
z/

200

0

200

400

F z
(n

N
)

3 2 1 0 1 2 3
/

1000

0

1000

F
(n

N
)

ASM
OMP
Lebedev
Theory

3 2 1 0 1 2 3
/

50

0

50

100

F
(n

N
)

FIG. 11. Experimental radial Fρ, azimuthal Fφ and axial Fz forces exerted on an polystyrene

sphere of radius r = 0.1λ in a focused Gaussian beam with charge m′ = 0. (color online)

measurements in (xy) plane, the reconstructions of the field by the three methods are similar385

and almost identical. Nevertheless, for (xz) plane reconstructions, the field rebuilt by the386

Lebedev quadrature contains a lot of oscillations. Apart from that, both the OMP method387

and the angular spectrum method are in good agreement with the experimental data. From388

the analysis of the forces, the OMP and angular spectrum (ASM) methods allow to pre-389

dict the radial and axial forces with a good precision and the azimuthal force with a lower390
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FIG. 12. Experimental radial Fρ, azimuthal Fφ, axial Fz forces exerted on an polystyrene sphere

of radius r = 0.1λ in a focused vortex beam with charge m′ = 1, calculated by the total coefficents

(Left), and only by the BSC in column m = 1 (Right). (color online)

precision because it is sensitive to the noise outside column m′ = 1 of the matrix of the BSC.391

392

With the help of these methods, we are able to anticipate the radiation forces by mea-393

suring the acoustic field. As presented in previous sections, a very important component of394

three dimensional radiation force is the axial force which is much smaller than the transverse395

ones. In our experiments, we were capable to measure the axial force with a low relative396
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error of 0.14. For further measurements, this accuracy can be improved by increasing the397

axial force, for example, in the case of an acoustic vortex we can increase the aperture angle398

α0 (Fig.1) to get larger axial forces. At the same time, reducing the noise by any methods:399

shielding, averaging, filtering would help. The SNR leading to spurrious standing wave is400

the main limitation for axial or azimuthal force measurements.401
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