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We report on previously unnoticed features of the exact Hartree-exchange and correlation poten-
tials for atoms and ions treated via ensemble density functional theory, demonstrated on fractional
ions of Li, C, and F. We show that these potentials, when treated separately, can reach non-vanishing
asymptotic constant values in the outer region of spherical, spin unpolarized atoms. In the next lead-
ing order, the potentials resemble Coulomb potentials created by effective charges which have the
peculiarity of not behaving as piecewise constants as a function of the electron number. We provide
analytical derivations and complement them with numerical results using the inversion of the Kohn-
Sham equations for interacting densities obtained by accurate quantum Monte Carlo calculations. The
present results expand on the knowledge of crucial exact properties of Kohn-Sham systems, which can
guide development of advanced exchange-correlation approximations.

I. Introduction

Density-functional theory (DFT) [1] is an exact reformu-
lation of the many-body problem, which accesses the to-
tal ground-state energy of an electronic system through a
variational principle based on the electron density rather
than the many-body wave function. DFT is often applied
within the popular Kohn-Sham (KS) approach [2], which
transforms it into a problem of finding orbital solutions for
non-interacting electrons in an effective potential, which is
itself a functional of the density. This transforms the dif-
ficult many-electron problem into a series of simpler one-
electron problems.

Both quantum mechanics and DFT can be generalised to
ensembles of states with different electron numbers, thus
achieving a fractional number of electrons. This can be
thought of in terms of open systems weakly coupled to the
environment,[3] or as an asymptotic limit of a dissocia-
tion process.[4, 5] Such a generalisation offers insights into
subtle quantum mechanical effects that are unavailable
from integer systems, including into how well-separated
systems behave.

Perdew, Parr, Levy and Balduz[3] (PPLB) showed that
the total energy, E, is a piecewise linear function of the
number of electrons, N, and that as one crosses an inte-
ger, the slope of the E(N) curve may change. The density,
and thus electron-ion energy also has this property. It is
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also reflected in DFT, where the sum of the non-interacting
kinetic energy functional and the exact Hartree-exchange-
correlation energy functional must also be a piecewise lin-
ear function of N. As a consequence of the piecewise lin-
earity of the energy, the energy of a “fractional ion” ex-
periences derivative discontinuities as it passes through an
integer. Because this discontinuity must be reflected in the
KS system, the KS potential can and usually does experi-
ence “jumps” by a uniform constant as the electron num-
ber passes through an integer.[3] These derivative discon-
tinuities give rise to surprising yet important phenomena
(e.g., Refs. [3–17] and references therein). They help to
formalise calculations of the ionization potential, the elec-
tron affinity, and the fundamental gap.

In applications one must use various density-functional
approximations (DFAs), due to the fact that the required
exchange-correlation functional is, although well-defined,
unknown in general. Therefore there is a strong motiva-
tion to determine properties of the exact KS system, so that
approximations may be compared against them. Small sys-
tems, such as atoms and ions, can be solved within another
theory such as quantum Monte-Carlo (QMC)[18] or wave-
function techniques like coupled-cluster theory.[19] Accu-
rate densities and energies can thereby be obtained to serve
as benchmarks for testing, and hopefully improving, DFAs.
(e.g., Refs. [5, 20–24]) Given the density of a system, one
can also find the KS potential vs[n](r) through the numer-
ical procedure of “density inversion”, (e.g., Refs. [25–37])
and thus provide benchmarks for effective potentials, as
well as energies.
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Density inversion has been applied many times to sys-
tems with integer numbers of electrons. Previous work has
focused on systems without degeneracies. More rarely, in-
version has been applied to systems with broken symme-
tries or non-integer electron number.[29, 38–42] Only very
recently[32] has inversion been applied to systems with de-
generacies and fractional electron number – for the case of
fractional anions and cations of Li, C, and F.

The fractional charge cases considered by Gould and
Toulouse[32] are especially difficult for approximations.
They can therefore provide insights into how DFAs fail, and
might be improved. However, the question of how the po-
tential resolves into Hartree (H), exchange (x) and corre-
lation (c) components were not addressed in their work.
These terms are typically approximated separately in DFAs,
making it important for us to understand how they behave
separately. Here, we address the question analytically (in
the asymptotic limit) and numerically, by studying and re-
porting Hartree-exchange (Hx) and c components of the KS
potential for fractional ions of Li, C, and F.

The manuscript is organized as follows: First, we define
the key properties of interest, within the framework of en-
semble DFT (EDFT). Second, we derive the main analytic
results, specifically that the exact Hx and c potentials can
have non-zero asymptotic constants and unusual effective
charges in some cases, which cancel when combined. Next,
with the objective of quantifying our analytical findings nu-
merically, we describe the numerical method employed and
provide results for fractional ions of Li, C, and F. Finally, we
conclude.

II. Hartree-exchange and correlation energies in EDFT

EDFT comes in a variety of forms, each dealing with dif-
ferent classes of quantum state ensembles. Here, we are
concerned with a form of EDFT which allows us to mix
ground states with different electron numbers, as well as
to treat high-symmetry densities that are associated with
degeneracies. The lowest ensemble energy, E0[vext], for a
given external potential, vext(r), is found by minimizing an
energy density functional over N-representable densities,
n(r):

E0[vext] =min
n→N

{
F [n]+

∫
drvext(r)n(r)

}
, (1)

where the universal, ensemble-generalised functional[3,
43–46] is

F [n] :=min
Γ̂→n

Tr[Γ̂(T̂ +Ŵ )]≡ Tr[Γ̂I(T̂ +Ŵ )] . (2)

Here T̂ is the usual kinetic-energy operator, and Ŵ is the
Coulomb electron-electron repulsion operator. The min-
imisation in Eq. (2) is carried out over ensemble density
matrices Γ̂ formed out of a set of mutually orthonormal
states, possibly with different number of electrons. We de-
note the minimizing ensemble as Γ̂I , where I indicates it
is an interacting state. Note that the quantities of EDFT
depend on the weights that specify the ensemble (see be-
low). To indicate this succinctly we use calligraphic letters.
All the ensemble density matrices Γ̂ considered in the min-

imisation yield the same density, n(r), i.e. Tr[Γ̂n̂(r)] = n(r)
where n̂(r) is the density operator. The average electron
number, N =

∫
drn(r), may be either integer or fractional.

By the convexity conjecture [47], the minimising ensem-
ble density matrix can be written as[3]

Γ̂
N =(M+1−N)Γ̂M +(N−M)Γ̂M+1 (3)

≡(1− c)Γ̂M + cΓ̂
(M+1), (4)

where M = bNc is the largest integer less than N, and c =
N −M is the fractional part of the electron number. dNe
indicates the smallest integer greater than N, which is M+1
when c > 0, but M when N is integer. We thus use M + 1
when results are the same regardless of choice (as above),
but use dNe when it matters. The density thus becomes,

nN(r) =Tr[Γ̂N n̂(r)] = (M+1−N)nM(r)+(N−M)nM+1(r) .
(5)

Traditionally, KS theory can be derived by “switching
off” the electron-electron interaction and finding the en-
ergy as a functional of the density. Applying this strategy
to EDFT gives the two most important energy functionals
in the fashion of KS DFT: the kinetic energy functional,

Ts[n] := min
Γ̂→n

Tr[Γ̂T̂ ] = Tr[Γ̂sT̂ ] = ∑
κ

wκ〈κs|T̂ |κs〉 (6)

and the Hartree-exchange-correlation (Hxc) energy func-
tional,

EHxc[n] :=F [n]−Ts[n] . (7)

The trace on the right side of Eq. (6) uses the KS non-
interacting ensemble density matrix,

Γ̂s =∑
κ

wκ |κs〉〈κs|, (8)

where |κs〉 is the κ th KS non-interacting state and wκ is its
associated ensemble weight.

The KS states |κs〉 can be chosen as single Slater deter-
minants (SD) that are constructed from a common set of
orbitals, {ϕiσ (r)}, and defined by means of the occupa-
tion factors {θ κ

iσ}, where θ κ
iσ = 0 or 1. For example, in

Li there are four orbitals, {ϕ1s↑,ϕ1s↓,ϕ2s↑,ϕ2s↓} which fea-
ture in two SD states, with majority up and down electrons.
The two SDs are occupied according to 1s22s↑ (short-hand
for {θ1s↑ = 1,θ1s↓ = 1,θ2s↑ = 1,θ2s↓ = 0}) and 1s22s↓, respec-
tively.

The orbitals can be further separated, using ϕiσ (r) =
φi(r)ξσ , into spin-independent spatial orbitals, φi(r), and
spin-projectors, ξσ . The spatial components φi(r) obey the
KS equations [

−1
2

∇
2 + vs(r)

]
φi(r) =εiφi(r) . (9)
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The electron density is then obtained as

n(r) =∑
i

fi|φi(r)|2, (10)

where fi are the ensemble averaged occupations of the KS
orbitals, fi ≡∑κσ wκ θ κ

iσ . In the case of Li we get f1s = 2 and
f2s = 1, as expected.

By construction, the density from Eq. (10) must yield the
interacting (ensemble averaged) electron densities avail-
able from parametrised exact QMC results[32] (see Sec-
tion IV), for the systems considered. As a consequence of
the underlying symmetry of atoms, the multiplicative KS ef-
fective potential vs(r)≡ vs(|r|) is, provably, both spherically
symmetric and spin independent.

The next functional to consider is the Hartree-exchange
(Hx) energy EHx. For closed-shell pure states, EHx is de-
fined unambiguously. Not so for ensembles. In ensembles,
the Hartree-exchange energy, and thus the correlation en-
ergy, may be defined more flexibly, although, not necessar-
ily more conveniently. In the following discussion we shall
adopt a natural and direct generalization of the ‘Hx’ energy,
given by

EHx[n] := Tr[Γ̂sŴ ] = ∑
κ

wκ〈κs|Ŵ |κs〉 , (11)

for the atomic cases we concern ourselves with here; and
consistent with previous work.[23, 24, 32, 48] Eq. (11)
may be regarded as a regular expression for the ensem-
ble Hartree-Fock energy which, however, is here evaluated
with exact KS orbitals. Correspondingly, the correlation en-
ergy can be finally extracted as follows

Ec[n] := EHxc[n]−EHx[n]≡ Tr[(T̂ +Ŵ )(Γ̂I− Γ̂s)] . (12)

While other decompositions are possible,[34, 49–51]
this particular decomposition comes with formal and prac-
tical advantages.[23, 24, 48] It leads to an explicit piece-
wise linear dependence on N of Ts, EHx, and Ec through the
ensemble weights (additionally, there is an implicit piece-
wise non-linear dependence on N, through the orbitals)
and, in finite systems, to a derivative discontinuity even
when using semilocal DFAs.

In this work we shall show that eqs. (11) and (12), which
we shall call ‘Hx’ and ‘c’ when clarity is required, can be
used to uniquely define ‘Hx’ and ‘c’ potentials. The total
Hxc potential is, of course, unique and thus does not need
quotes for clarity. We explore formal properties of the as-
sociated potentials and thus reveal some surprising proper-
ties.

III. Hxc, ‘Hx’ and ‘c’ potential for ensembles

In this section we first review known facts concerning
the asymptotic behaviour of the Hxc potential, vHxc(r) be-
ginning with the properties of the KS potential, vs(r). Then
we derive our key results for its components, the Hx and c
potentials, vHx(r) and vc(r).

A. Behaviour of the Hxc potential: a brief review

In the traditional derivation of DFT, the KS potential vs(r)
is only defined up to a constant, due to the fact that densi-

ties could only vary up to a fixed electron number. In EDFT
of open systems, we are able to vary both the spatial distri-
bution of the density, and the number of electrons therein.
Consequently, the KS potential vs(r) associated with a den-
sity n(r) becomes a unique potential (i.e., the additive con-
stant is determined), given by the derivative of the energy
with respect to all variations in the density n (see, e.g.,
Ref. [24, 52])

As usual, we may write

vs(r) =vext(r)+ vHxc(r) (13)

where

vHxc(r) =
δEHxc[n]

δn(r)
. (14)

Crucially, however, in computing the exchange-correlation
potential we have to take the functional derivative of
EHxc[n] with respect to all possible variations of n, namely
to account for variations of the density at constant electron
number, but also variation of the electron number itself,
i.e. we regard vHxc(r) as an explicit functional of both N
and n(r). Then, we mathematically express the Hxc poten-
tial as,

vHxc(r) = ṽHxc(r)+ v0
Hxc(r) =

δEHxc[n]
δn(r)

∣∣
N+

∂EHxc[n]
∂N

∣∣
n

δN
δn(r)

.

(15)

In the above expression we distinguish between: a) ṽHxc(r),
which is the functional derivative of the Hxc energy at fixed
electron number N, and b) v0

Hxc(r), which equals the partial
derivative of the Hxc energy with respect to N, at fixed
density (we note that δN

δn(r) = 1, since N =
∫

n(r)dr). By
fixed density, we mean that only N is allowed to explicitly
vary in Eq. (3) and in any related functionals [e.g., nM and
nM+1 are held fixed in Eq. (5)].

The potential ṽHxc(r) is by itself defined up to an arbi-
trary constant shift and thus is synonymous to the “naive”
xc-potential, i.e. the potential obtained without con-
sidering the effect of changing electron number. The
term v0

Hxc(r) requires some further discussion. First, from
Eq. (15) we realize that this term is actually spatially uni-
form. Second, we note that for N approaching an inte-
ger, the value of ∂EHxc/∂N is generally different when ap-
proaching an integer N from the left (N→M−) or from the
right (N → M+), due to the possible discontinuity in the
derivative of the energy as a function of N (for non-integer
N, left and right limits are the same). As our objective
in this work is not directly related to the computation of
fundamental gaps, we shall investigate the long-range be-
havior of the potentials by approaching any given number
of electrons always from the left.

With this in mind, we follow Ref. [24] (Supplemental
Material, Sec. III) to derive an expression for v0

Hxc. We ac-
count for the fact that, despite EHxc being formally a func-
tional of n, in practice EHxc, and particularly its component
EHx (see Sec. B below) are implicit functionals of n, being
explicit functionals of the KS orbitals {φi(r)}. Therefore,
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whereas ∂EHxc[n]
∂N

∣∣
n is difficult to obtain, ∂EHxc[n]

∂N

∣∣
{φi}

is avail-
able.

To relate the two aforementioned quantities and derive
a relation for v0

Hxc, we express EHxc as a functional of N
and n(r), which is in turn a functional of N and {φi(r)}:
EHxc = EHxc[N,n[N,{φi(r)}]. Then,

∂EHxc[n]
∂N

∣∣
{φi}

=
∂EHxc[n]

∂N

∣∣
n+
∫

dr
δEHxc

δn(r)
∣∣
N

∂n(r)
∂N

∣∣
{φi}

. (16)

Under the integral of the above expression we recognize
two terms: the first one is ṽHxc(r). The second term repre-
sents the change in the total density that occurs due to the
variation of the electron number, while all orbitals are fixed.
Consequently,

v0
Hxc =

∂EHxc[n]
∂N

∣∣
n=

∂EHxc[n]
∂N

∣∣
{φi}
−
∫

dr
δEHxc

δn(r)
∣∣
N

∂n(r)
∂N

∣∣
{φi}

.

(17)

Recalling that n(r) = ∑i fi|φi(r)|2, we readily understand
that ∂n(r)

∂N

∣∣
{φi}

= ∑i
∂ fi
∂N |φi(r)|2. Due to the aufbau principle,

only the occupation factor(s) fh of the highest occupied
molecular orbital(s) (HOMO, h) vary (linearly) with N.
Therefore, in the absence of degeneracy, ∂n(r)

∂N

∣∣
{φi}

= |φh(r)|2.
Our case is more complex, however, as the HOMO is degen-
erate. Neverertheless, we can obtain

n̄h(r)≡
∂n(r)
∂N

∣∣
{φi}

=
1

Nh
∑
h
|φh(r)|2, (18)

as the average density of the Nh-fold degenerate HOMOs,
which follows from equi-occupancy of the degenerate HO-
MOs (by construction), giving ∂ fh/∂N = 1/Nh for Nh de-
generate orbitals (furthermore, Nh does not change when
taking left derivatives). Note that a similar term has been
reported in spin-DFT of ensembles.[40]. Therefore, we fi-
nally conclude that

v0
Hxc =

∂EHxc[n]
∂N

∣∣
{φi}
−
∫

drṽHxc(r)n̄h(r). (19)

The term v0
Hxc is a spatial constant. Moreover, it serves

to ensure that vHxc is independent of any additive constant
gauge we choose for ṽHxc and is thus unique. Consider two
choices: ṽHxc(r) and ṽHxc(r) +C. Neither choice changes
the orbitals, density or energy. In the second case, however,
Eq. (19) has a term −C

∫
drn̄h(r) = −C, in addition to the

value found using ṽHxc(r). Thus, we get ṽHxc(r)+ v0
Hxc or

[ṽHxc(r)+C] + [v0
Hxc−C] = ṽHxc(r)+ v0

Hxc, so that the total
Hxc potential is independent of our gauge.

We can therefore choose, without loss of generality for
the atomic systems we study here, the gauge in which
ṽHxc(r)→ 0 for |r| → ∞. Then, it may be useful to express

vs(r) =ṽs(r)+ v0
Hxc . (20)

where

ṽs(r) =vext(r)+ ṽHxc(r) , (21)

which also obeys ṽs(r)→ 0 for |r| →∞. Based on this alone,
we cannot say if v0

Hxc = 0, however.

To continue the analysis, we seek to find v0
Hxc. For non-

integer N, the density is given by Eq. (5), which follows
from the convexity conjecture. Thus, the density even-
tually follows the weaker decaying density of M + 1 elec-
trons, giving nN(r)∼ (N−M)nM+1(r) and φh(r)∝

√
nM+1(r)

as r = |r| → ∞. But nM+1(r) must itself decay with the
ionization potential IN = EM−EM+1 as nM+1(r) ∼ e−2

√
2IN r,

and thus we have − 1
2 ∇2φh(r) ∼ −INφh(r) as r→ ∞. Since

− 1
2 ∇2φh(r) = {εh−vs(r)}φh(r) and limr→∞ ṽs(r) = 0, we thus

see that (εh− v0
Hxc) =−IN . Note, this also holds for integer

N = M.

We can then use Janak’s theorem [53] on the frontier
orbital to obtain εh =−IN , which yields

v0
Hxc = 0 , (22)

and therefore limr→∞ vs(r) = 0. Note that this is an exact be-
haviour of the Hxc potential[3, 54]. It does not necessarily
hold true for approximations, which can certainly have a
non-zero constant.[13, 24] Furthermore, adding this con-
stant can improve the calculation of ionisation potentials
and fundamental gaps [55].

Before proceeding further, it is useful to recall that the
KS spatial orbitals in spherical atoms can be written as
φi(r) = Rnl(r)Ylm(r̂), where Rnl is a real function and Ylm are
the real spherical harmonics. Similarly, the corresponding
KS orbital energies εi = εnl depend only on the quantum
numbers n and l.

Another consequence of the spherical symmetry is that
the potential cannot reflect any nodal plane structure of
the orbitals, which can cause problems in some cases,[56]
including systems with 2p orbitals. The reason these nodal
planes are not a problem can be shown by noting that any
property of the potential cannot depend on the angle. The
nodal planes can only occur along the x, y and z axes, for
the 2p orbitals. Furthermore, these axes can be rotated
without changing the problem. Therefore, the only way
the spherical symmetry can be maintained with the nodal
structure is if the nodes do not make any impact on the
potential.

The asymptotic behavior of vs(r) is vs(r) ∼ −Z∞,s/r to
leading order. Here Z∞,s is an asymptotic effective charge
determined by the asymptotic form of the density. For the
exact KS effective potential of integer M electron atomic
systems in the ground-state equi-ensemble, we have ZM

∞,s =
Z−M + 1. This follows[57, 58] from the screening of the
nuclear potential vext(r) =−Z/r by the Hxc potential. From
the same convexity condition reasoning given above, it fol-
lows that for a fractional N we have vs[nN ](r)∼ vs[nM+1](r)
as r→ ∞ and thus Z∞,s = Z− (M + 1)+ 1. Subtracting the
external potential term similarly gives Z∞,Hxc = Z∞,s− Z =
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1− (M+1) =−M. In summary, we thus have

vs(r) ∼
r→∞

−Z∞,s

r
(23)

vHxc(r) ∼r→∞

−Z∞,Hxc

r
, (24)

where

Z∞,s =Z +1−dNe , (25)
Z∞,Hxc =1−dNe . (26)

We remind the reader that dNe = M for N integer, or M +1
otherwise.

To avoid risk of confusion, we recall that the well-known
derivative discontinuity of the potential emerges only by
considering the order of limits in which r is fixed and, then,
the total electron number N approaches an integer from
above.[42, 59] That is to say that limN→M limr→∞ vs[nN ](r) 6=
limr→∞ limN→M vs[nN ](r). Here, we are considering the or-
der of limits where N is fixed as r → ∞, at which vs[nN ]
decays to zero. Moreover, we approach integer numbers of
electrons always from the left.

B. Derivation for the ‘Hx’ and ‘c’ ensemble potentials:
non-trivial asymptotics

Let us decompose the vHxc(r) potential into its ‘Hx’ and ‘c’
components, vHxc(r) = vHx(r)+vc(r). Similarly to Eq. (15),
we start with

vHx(r) =ṽHx(r)+ v0
Hx , (27)

where ṽHx(r) = δEHx[n]/δn(r)|N and

v0
Hx =

∂EHx[n]
∂N

∣∣
{φi}
−
∫

drṽHx(r)n̄h(r). (28)

We shall proceed to investigate both these terms, first ana-
lytically, and later numerically, to show that both are non-
trivial in ensemble calculations.

It is useful to note that Eq. (11) can be conveniently bro-
ken down into its individual Hartree-like and Fock-like con-
tributions as follows [23]

EHx =
1
2 ∑

i j

{[
FS

i j +FD
i j
]
(ii| j j)−FS

i j(i j| ji)
}
, (29)

where

(i j|kl)≡
∫∫ drdr′

|r− r′|
φ
∗
i (r)φ j(r)φ ∗k (r

′)φl(r′) . (30)

are the usual two-electron repulsion integrals, here evalu-
ated on KS orbitals from EDFT. Note that all the informa-
tion about the ensemble is encoded in the coefficients FS

i j
and FD

i j – superscript S denotes same-spin terms (↑↑+ ↓↓)
and D denotes different-spin terms (↑↓+↓↑). After expand-
ing on the orbital occupancy factors,[23] we find

FS
i j =∑

σ

f (2)iσ , jσ , FD
i j =∑

σ

f (2)iσ , jσ̄ , (31)

here σ̄ means the opposite spin to σ i.e., σ/σ̄ = ↑/↓ or ↓/↑;
and, the expressions involve the average pair-occupation
factors

f (2)iσ , jσ ′ =∑
κ

wκ θ
κ
iσ θ

κ

jσ ′ . (32)

The quantities defined in Eq. (31) are the pair-density
equivalent of fi = ∑κσ wκ θ κ

iσ . Thus the energy depends
on the statistical probability (across the ensemble) of find-
ing orbitals iσ and jσ ′ occupied simultaneously. Note that
for closed-shell systems with non-degenerate ground states
(w0 = 1), we recover the ‘Hx’ energy expressed in terms of
the usual Hartree and exchange energies of regular DFT.

From Eq. (29), we get

ṽHx(r) =
1
2 ∑

i j
(FS

i j +FD
i j )v(ii| j j)(r)−FS

i jv(i j| ji)(r). (33)

where

v(ik| jl)(r) =
δ (ik| jl)
δn(r)

∣∣
N , (34)

where these potentials can be determined by nu-
merically solving the optimised-effective-potential (OEP)
equations,[60]∫

dr′v(ik| jl)(r′)
δn(r′)
δvs(r)

= ∑
I

∫
dr′

δ (ik| jl)
δφI(r′)

δφI(r′)
δvs(r)

, (35)

where we have assumed real-valued orbitals.

Unlike its general values, the r→∞ asymptotic behaviour
of ṽHx(r) can be found analytically in finite systems. Fol-
lowing Kreibich et al.[61] and Della Sala and Görling[56],
we obtain

∑
h

fhφh(r)2ṽHx(r) ∼r→∞
∑
h

φh(r)
δEHx

δφh(r)
. (36)

Note that both sides depend only on r = |r| after summation
over the degenerate HOMOs h. Here, we have exploited
again the fact that we have systems with spherical symme-
try. Thus the density must be independent of both angle
and choice of HOMO, with the latter leading to the sum
over h. For the same reason we do not need to worry about
nodal planes.

To obtain the asymptote of ṽHx(r) through Eq. (36), we
use Eq. (29) for EHx, noting that we can easily take deriva-
tives with respect to orbitals. To begin, it is straightforward
to show that

δ (ii| j j)
δφh(r)

=δihφi(r)
∫ dr′

|r− r′|
φ j(r′)φ j(r′)+{i↔ j} (37)

({i↔ j} means swap labels i and j in the previous expres-
sion) and

δ (i j| ji)
δφh(r)

=δihφ j(r)
∫ dr′

|r− r′|
φi(r′)φ j(r′)+{i↔ j}. (38)
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For large r, we can write 1/|r− r′| ≈ 1/r and exploit the
orthonormality of the orbitals to get

δ (ii| j j)
δφh(r)

∼
r→∞

(δih +δ jh)φh(r)
r

, (39)

δ (i j| ji)
δφh(r)

∼
r→∞

δi j(δih +δ jh)φh(r)
r

. (40)

Then, we can use eqs. (39) and (40) on the right-hand side
of Eq. (36) to obtain

∑
h

φh(r)
δEHx

δφh(r)
=

1
2 ∑

h
φh(r)2

∑
i j

×
{
(FS

i j +FD
i j )

(δih +δ jh)

r
−FS

i j
δi j(δih +δ jh)

r

}
=

1
r ∑

h
φh(r)2[

∑
j
(FS

jh +FD
jh)−FS

hh
]
. (41)

Finally, we conclude that

ṽHx(r) ∼r→∞

−Z∞,Hx

r
(42)

with the effective charge

Z∞,Hx =
∑h FS

hh−∑ jh(FS
jh +FD

jh)

∑h fh
≤ 0 (43)

where we have accounted for symmetries.[62] It is easily
shown, as done explicitly later, that for an integer number
of electrons N = M, this gives Z∞,Hx = 1−M, as expected.
Not so in general.

Similarly, the correlation potential can be decomposed
as

vc(r) =ṽc(r)+ v0
c , (44)

and the asymptotic behaviour of vc(r) is found from
eqs (22) and (24) by simply using vc(r) = vHxc(r)− vHx(r).
We readily arrive at

Z∞,c =1−dNe−Z∞,Hx, v0
c =− v0

Hx. (45)

The above analysis does not tell us whether or not v0
Hx = 0,

however. In the next section we will be able to determine
numerically that, in general, the exact v0

Hx can be a non-
vanishing constant, especially when N is non-integer.

Let us study the effective charge in more detail. first con-
sider a closed-shell system with an even integer M number
of electrons, which has only one state with wκ=0 = 1. For
this state, θ κ=0

iσ = 1 for i ≤ h = M/2 and zero otherwise.
Therefore, fi = ∑σ θiσ = 2 for all occupied states i≤ h. Sim-
ilarly, FS

i j = FD
i j = 2. Then, from (43) we obtain

ZM
∞,Hx(pure) =

2−∑
M/2
j=1 4

2
= 1−M, (46)

for the potential. This is the usual result[60], i.e. vext(r)+
vHx(r)∼−(Z +1−M)/r up to a constant. This means that

the outermost electron feels an attractive potential from
the Z nuclear charges, balanced by a repulsive force from
the remaining M−1 electrons. In such systems we get the
“typical” result ZM

∞,c(pure) = 0.

2 4 6 8 10
# electrons N

1

3

5

7

9

e
ff

e
ct

iv
e
 s

cr
e
e
n
in

g
 −
Z
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Li

C

F

Hx

Hxc

Figure 1 Z∞,Hx and Z∞,Hxc versus N for all the systems (Li, C,
and F ions) considered in this work.

Extending our result to ensembles by using Eq. (31) lets
us rewrite Eq. (43) as

Z∞,Hx =
∑κσ wκ ∑h θ κ

hσ
θ κ

hσ
−∑κσσ ′ wκ ∑h j θ κ

hσ
θ κ

jσ ′

∑h fh

=1− ∑κhσ wκ θ κ
hσ

Nκ

∑h fh
, (47)

where we used θ κ
hσ

θ κ
hσ

= θ κ
hσ

, ∑κσ wκ θ κ
hσ

= fh, and defined
Nκ ≡ ∑ jσ ′ θ

κ

jσ ′ to be the number of electrons in state κ.
Eq. (47) then lets us obtain results for the various cases
considered in this work.

Let us continue our analysis by considering the case
when all ensemble members have the same number of elec-
trons; i.e. when the electron number is integer, but the
ground state is degenerate. In the integer case Nκ = M in
all members, and we get the simple expression

ZM
∞,Hx(ensemble) =1− ∑κhσ wκ θ κ

hσ
M

∑h fh
= 1−M ≡ 1−dNe,

(48)

and ZM
∞,c(ensemble) = 0.

Next, consider a fractional Li cation with N = 2+ c elec-
trons. Here we have the states κ ∈ {1s2,1s22s↑,1s22s↓} with
the weights wκ ∈ {1− c,c/2,c/2}. After some work we can
show that

Z∞,Hx(2 < N ≤ 3) =−2 = 1− (M+1)≡ 1−dNe, (49)

which is the same as for Z∞,s, making Z∞,c(2 < N ≤ 3) = 0.
It may be tempting to think that the result ZN

∞,Hx =

1− dNe holds in general. However, let us now consider
a system with N = 3 + c electrons. This has states κ ∈
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{1s22s↑,1s22s↓,1s22s2} with weights wκ ∈ {(1− c)/2,(1−
c)/2,c} which leads, after some work, to

Z∞,Hx(3≤ N ≤ 4) =
−2(2N−5)

N−2
. (50)

Here, Z∞,Hx = 1−dNe only for N = 3 and 4, i.e. the integers
which we previously showed had the expected behaviour.
It otherwise has a non-trivial and non-linear dependence
on N.

Similar arguments for the open p-shell systems consid-
ered here give

Z∞,Hx(5≤ N ≤ 6) =
−2(3N−13)

N−4
, (51)

Z∞,Hx(6≤ N ≤ 7) =
−2(4N−19)

N−4
, (52)

for fractional ions of C, and

Z∞,Hx(8≤ N ≤ 9) =
−4(3N−17)

N−4
, (53)

Z∞,Hx(9≤ N ≤ 10) =
−4(7N−43)

N−4
, (54)

for fractional ions of F. They thus show that this non-trivial
screening is common, rather than an exceptional case for
Li anions. Note that in these cases the denominator is N−
4. This reflects the fact that only the outermost 2p shell
plays a role in the asymptotics, with the four core electrons
excluded. A similar result can be seen above for Li−c, where
the denominator is N − 2 reflecting the exclusion of two
core electrons.

Finally, we observe that eqs. (49)-(54) all have the same
form, namely Z∞,Hx =

AN−B
N−Ncore

, where A and B are constants.
This result is not a coincidence. Rather, it follows directly
from the fact that all terms in the numerator and denomi-
nator of Eq. (47) depend linearly on the ensemble weights
wκ , and thus linearly on N. The denominator comes from
∑h fh = N−Ncore. As discussed above, Ncore is the number
of core electrons (e.g., two for 1s electrons in Li, or four for
1s and 2s electrons in C or F). Thus, given M < N ≤M + 1
for M integer and M ≥ Ncore electrons in a degenerate equi-
ensemble ground-state, one obtains,

Z∞,Hx(N) =
(N−1)Ncore +(M+1−2N)M

N−Ncore
, (55)

by ensuring that limiting cases are satisfied, i.e.,
Z∞,Hx(M) = 1−M and Z∞,Hx(M+1) =−M for M > Ncore, or
Z∞,Hx(M+1)=−M and dZ∞,Hx(M+1)/dN = 0 for M =Ncore.
It is easily seen by substitution that Eq. (55) covers all pre-
vious expressions.

The values for Z∞,Hx and Z∞,Hxc are shown in Figure 1
for the systems considered here. Note that Z∞,Hx is con-
tinuous at most (but not all) integer electron numbers. It
always takes the “typical” value for N integer. By contrast,
∂Z∞,Hx/∂N is discontinuous at integer electron numbers.
As the combined contributions of the Hx and c potentials
give Z∞,Hxc = 1−dNe, the non piecewise constant behavior

of Z∞,Hx points, in turn, to a strong non-local functional de-
pendence on the density in the remainder correlation po-
tential. This leads to Z∞,c 6= 0 for some non-integer N.

These asymptotic constants are closely related to the
idea of freedom from self-interaction in DFT. Thus, prior
to concluding this section, let us briefly consider this rela-
tion. The result that Z∞,s = Z + 1−dNe can be interpreted
as the outermost orbital feeling a nuclear potential that
is screened by electrostatic repulsion from the remaining
dNe−1 electrons, i.e., all electrons not in the outermost or-
bital. This is known as freedom from self-interaction, and
is an important quality of the KS potential[63], albeit one
that is rarely met by approximations. The effect of their
absence is known as a self-interaction error. In contrast,
the correct asymptotic decay of a potential is not always
equivalent to freedom from self-interaction, as discussed in
detail by Schmidt et al.[64]

Typically, we expect the Hx potential to be self-
interaction free, meaning it is responsible for the 1−dNe
contribution to the screening. This is indeed the case for in-
teger electron number and for Li cations, as shown above.
However, this freedom from self interaction is manifestly ab-
sent from Hx in the other fractional cases mentioned. It must
therefore be compensated for by the c potential.

We conclude that, in general, Z∞,Hx 6= Z∞,Hxc and the en-
semble Hx potential has a different long-range behavior
compared to the one of the total Hxc potential. Attempts
to ensure a correct asymptotic behavior in exchange poten-
tial alone based on what is known about the pure-state Hx
potential requires a careful revisiting in EDFT.

IV. Numerical results

In this section, we complete our analysis with numerical
results obtained for the exact vHxc(r), vHx(r), and vc(r). The
exact KS potentials vs(r) (and thus their components) were
calculated using the densities and methods described by
Gould and Toulouse.[32]

All our calculations were carried out on logarithmic ra-
dial grids with Nr = 256 abscissae arranged to accurately
capture both core (r → 0) and asymptotic (r → ∞) be-
haviours. The same grid is used for radial quadrature,
derivatives, orbitals, and Green functions (which are used
directly and in χ0).

Orbitals {φk} are calculated by direct diagonalisation
of the KS Hamiltonian expressed as an Nr × Nr matrix.
Greens functions are evaluated by summing over all avail-
able solutions of the KS equations, i.e. Nr orbitals in total
from Nr radial points. Spatial symmetries allow us to fur-
ther break the ground state and response problems up via
spherical harmonic expansions, in the fashion described in
Refs. [23, 65].

A. Outline of the procedure

In order to calculate the potential vHx(r) [and thus, by
difference, vc(r)], we need to solve Eq. (35). This equation
involves the KS linear-response function

χ0(r,r′) =
δn(r)

δvs(r′)
(56)
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Figure 2 Hxc (orange solid line), Hx (navy dashed line), and c (magenta dash–dot line) potentials (with the electron number derivative
contribution) for selected ions of Li (left), C (centre), and F (right). The Hx and Hxc potentials are shown as v+Z′/r ≡ v+(1−dNe)/r

to allow direct comparison with the c potential. These plots illustrate, most obviously, the effect of the asymptotic constant on the
different potentials. Less obviously they reveal the effect of differing effective charges, since they are constructed to approach zero (or

a constant) faster than 1/r for integer electron number cases, but not necessarily for non-integer cases.

and the associated Greens functions

Gi(r,r′) = ∑
j,ε j 6=εi

ρ j(r,r′)
(εi− ε j)

(57)

where ρi(r,r′) = φi(r)φi(r′), such that χ0(r,r′) =
2∑i fiGi(r′,r)ρi(r,r′). Therefore, we can rewrite Eq. (35),
as follows ∫

dr′χ0(r,r′)ṽHx(r′) = dHx(r) (58)

where

dHx(r) = ∑
k

∫
dr′Gk(r,r′)φk(r)

δEHx

δφk(r)
. (59)

Normally, when one seeks an OEP for exchange, one has
access to various minimization procedures. Then, one can
use variational techniques or virial theorems to efficiently
compute vHx.[66] Our case, however, is complicated by two
features. Firstly, we have a non-integer number of electrons
which may or may not cause problems for exact theorems
obtained assuming integers. Secondly, rather than obtain-
ing an OEP self-consistently, we instead need to find the
functional derivative after “reading” in the potential vs(r)
that correspond to some given KS orbitals and orbital en-
ergies – those which are obtained from the KS inversion on
exact QMC densities.[32]

Instead, we approach the problem by basis set expan-
sion, using a good starting guess and additional functions
for remaining terms. As our starting guess, we use a KLI
approximation, which is known to be correct in the asymp-
totic limit, and generally good elsewhere. We the follow
Yang and Wu [67] and introduce a basis set to represent
the difference between the real OEP, and the KLI one. That

is, we seek to find values for {cb}, in

ṽHx(r) =ṽHx,KLI(r)+∑
b

cbξb(r), (60)

where ξb(r) are a set of basis functions that depend only
on r = |r| due to the spherical symmetry. To determine the
coefficients {cb}, we use Eq. (60) in Eqs (58) and (59),
then integrate over {ξb} to give the matrix equation:

cb =∑
b′
[A−1]bb′Xb′ , (61)

where,

Abb′ =
∫

4πr2dr 4πr′2dr′ ξb(r)χ0(r,r′)ξb′(r
′) , (62)

Xb =
∫

4πr2dr ξb(r)∆dHx(r) , (63)

and ∆dHx(r) = dHx(r)−
∫

4πr′2dr′χ0(r,r′)ṽHx,KLI(r′). Again,
we take advanatge of spherical symmetry.

It remains to describe the basis functions, and how to
avoid a spurious numerical constant in the determined po-
tential that appears in some cases. Details are in the ap-
pendices.

B. Results

We report results for the exact KS potential and its com-
ponents for Li, C, and F with fractional numbers of elec-
trons. The neutral atoms are important examples of an
electron donor (Li), an electron acceptor (F), and an atom
with flexible bonding (C). Moreover, they clearly demon-
strate self-interaction errors when treated with semi-local
DFAs.[68]

In Figure 2 we present components of the potentials for
atoms, anions, and cations, at N ∈ {Z − 1,Z − 0.6,Z,Z +
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Table I Asymptotic potential constant v0
Hx in Ha, and its

contributions ∂EHx/∂N and 〈ṽHx,KLI〉h =
∫

drṽHx,KLI(r)n̄h(r) using
Eq. (28). We use ṽHx,KLI as a proxy for ṽHx to avoid spurious

constants (see Appendix B). Errors from the KLI approximation
are expected to be just a few mHa.

System N ∂EHx/∂N 〈ṽHx,KLI〉h v0
Hx

Li+ 2 1.650 1.650 0.000
Li+0.6 2.4 0.645 0.645 0.000
Li 3 0.645 0.645 0.000
Li−0.4 3.4 0.720 0.673 0.047
Li− 4 0.669 0.669 0.000
C+ 5 2.837 2.837 0.000
C+0.6 5.4 3.125 2.998 0.127
C 6 3.013 3.013 0.000
C−0.4 6.4 3.110 2.981 0.129
C− 7 2.938 2.938 0.000
F+ 8 7.214 7.086 0.129
F+0.6 8.4 7.637 7.283 0.353
F 9 7.402 7.357 0.045
F−0.4 9.4 7.589 7.320 0.269
F− 10 7.270 7.270 0.000

0.4,Z + 1}, to illustrate the asymptotics of each term. Val-
ues for v0

Hx, and related quantities, are reported in Table I.
The numerical results also confirm that, for non-integer

electron numbers (c 6= 0), the potential from the ensem-
ble Hx energy functional defined here does not follow the
asymptotic behavior of the Hxc potential given in Eq. (26),
except in limited cases (e.g., Li(1−c)+). Thus, at the Hx
level, the outermost orbital spuriously “feels” its own field
since Z∞,Hx 6= 1−dNe, e.g. Z∞,Hx = −2(2N− 5)/(N− 2) 6= 3
for Lic− with 0< c< 1 and N = 3+c. This means that the Hx
potential cannot be regarded as self-interaction free. Its ef-
fect is manifested in the asymptotic behaviour of vc, which
decays more rapidly than 1/r when vHx is self-interaction
free, and as −Z∞,c/r otherwise.

We see that the asymptotic constant v0
Hx is zero for both

Li and C at integer electron numbers. But for F – surpris-
ingly – it is zero only in the closed-shell case N = 10 (F−).
v0

Hx is also quite significant in most partial ions, but this is
less surprising given the asymptotic self-interaction contri-
bution in those systems. The non-zero values in F likely
reflect the fact that the upper “channel” of a shell (i.e., the
second electron in an s-shell or 4th-6th electron in a p-
shell) is more sensitive to ensemble effects than the lower
channel, owing to the need to treat electrons of opposite
spin within the same ensemble members [meaning FD

hh′ = 0
in the lower channel but FD

hh′ 6= 0 in the upper channel, e.g.
in Eq. (29), where h and h′ indicate electrons in the frontier
orbital]. For this reason, partial anions of Li have a non-
zero value and unusual asymptotic potentials but partial
cations do not. Consequently, e.g., we expect netural and
fully anionic O (not studied here because high-quality ref-
erence densities[32, 33] are not available) to have a non-
zero constant, whereas fully cationic O likely will not.

It is also notable how unvarying the correlation poten-
tials are for cations, even in cases where vc(r) has a long-

range Coulombic asymptotic behaviour. This is not entirely
surprising, given the dominance of exchange in cations.
But it nonetheless bodes well for the ability to approximate
vc(r) in such systems. Anions paint a different story. There,
correlation is known to be more important, due to the weak
binding of the outermost electrons. This is reflected in the
greater role played by vc(r) in governing the behaviour of
the KS orbitals.

Finally, we note that the findings of this manuscript
are also likely to be valid for molecules with degenerate
ground-states. A detailed analysis of molecular cases is
rather challenging numerically, however, due to the diffi-
culty of obtaining sufficiently accurate reference electron
densities[33]. It is therefore outside the scope of this work.

V. Conclusions

In this work, we analytically and numerically investi-
gated exact DFT properties of the ‘Hx’ and ‘c’ potentials, for
Li, C, and F atoms and fractional ions. Of primary theoret-
ical interest, we revealed two important facts: 1) the exact
Hx and c potentials can have equal and opposite asymp-
totic constants in some cases [Eq. (22) and Eq. (28)]; and
2) the effective charge “felt” by the outermost electron can
imply a self interaction for the frontier orbitals [Eq. (43)],
at a fractional number of electrons. This conclusion is con-
trary to the common wisdom that exact exchange is always
one-electron self-interaction free.

The Hx and c potentials of neutral atoms and cations
are reasonably well-behaved, with the notable exception
(in our tests) of F, which attains asymptotic constants in
the Hx and c potentials in its atomic and cationic form, but
not in its anion form. The role of the correlation potential
in anions is, as might be expected, more complex both for
integer and non-integer electron number cases.

Our findings also call for new considerations of how self
interaction in the ensemble KS framework may be inter-
preted. For example, as mentioned above the division into
Hx and c we employ here is not the only one. Understand-
ing how similar effects manifest in other definitions may
assist further functional development efforts. Similar ef-
fects to those found here may also be expected to appear
in excited-state EDFT, and this should be investigated.
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Appendix

A. Basis functions for the potential

For the potential basis functions {ξb(r)} we begin with
the orbital-derived functions{

nk(r)
n(r)

}
k<h

,

{∫ dr′

|r− r′|
ρkk′(r

′)

}
k,k′

, (A1)

that comprise terms that enter into the KLI po-
tential. Here nk(r) = ∑m |φnklkm(r)|2 and ρkk′(r) =
δlklk′ ∑m φnklkm(r)φnk′ lkm(r) are shell averaged densities and
mixed densities, respectively. We expect terms of these
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forms to contribute significantly to the potential. Thus,
e.g., we get ξ1(r) = n1s(r)/n(r), ξ2(r) =

∫
dr′ρ1s1s(r′)/|r−r′|,

ξ3(r) =
∫

dr′ρ1s2s(r′)/|r−r′| and ξ4(r) =
∫

dr′ρ2s2s(r′)/|r−r′|
for Li and its ions.

The orbital-derived basis in Eq. (A1) is then augmented
by a set of Gaussian functions

{
e−ζkr2}

for k ∈ {1, . . . ,NAug}
to capture details missed by the orbital-derived functions.
In our calculations we use 16 augmenting functions. Thus,
e.g., ξ5(r) = e−ζ1r2

, . . . ,ξ20(r) = e−ζ16r2
for Li and its ions.

During testing, we varied these functions to investigate the
stability of various integrated quantities to changes in the
basis – these tests revealed the issue discussed in the next
section.

All together, these basis functions let us capture the im-
portant properties of the potential, including manifesta-
tions of shell structure. Results near the nucleus (r �
Z−1/3) are imperfect, however. Fortunately they are also
unimportant given the dominance of the nuclear potential
−Z/r over vHxc(r) for small r. We thus exclude them from
most of our plots in Sec. IV

B. Avoiding spurious numerical constant terms

In addition to the general numerical considerations given
above, we highlight an important detail in our analysis of
the potentials ṽHx(r), namely how to avoid a spurious nu-
merical constant.

To begin with, let us consider the mathematical details
of the problem. It is clear from the form of the KS Hamilto-
nian that the electron density of any quantum system is un-
changed by a constant shift in its effective potential. Thus
the density linear-response function has an eigenfunction
with eigenvalue 0. Its inverse is thus ill-defined in general,
and constant terms must thus be excluded from χ

−1
0 for

meaningful numerical results.
In the case of an exact inversion, this is not a problem.

However, in our calculations we expand χ
−1
0 on a finite ba-

sis. In some cases this basis truncation leads to an effective
pseudo-constant shift in the potential, when compared to
the asymptotically decaying and otherwise similar KLI po-
tential vHx,KLI(r). That is, we find

vHx(r) =vHx,KLI(r)+∆vHx(r)+Ch(r) (B1)

where ∆vHx(r) is the true difference between the potentials,
that decays to zero faster than 1/r.

The additional term involves a constant C and pseudo-
step function h(r) obeying h(r < rc) ≈ 1 and h(r > rc) ≈ 0.
When this error is present, the density at the cutoff radius
rc is typically n(rc) ≈ 10−12, meaning that

∫
drn(r)h(r) ≈

N and
∫

drni(r)h(r) ≈ 1 for all i. This contribution Ch(r)
to the potential is almost certainly an artifact of numerics
rather than a real effect. This is made especially apparent
by varying the basis set, which leads to large changes to
〈ṽHx〉h in the anomalous cases, and virtually no changes to
〈ṽHx〉h in cases when it is close in value to 〈ṽHx,KLI〉h.

Unfortunately, the presence of Ch(r) can make analy-
sis difficult in cases where we requires ṽHx(r), since it
introduces an uncontrolled (and physically meaningless)
“gauge”. To ensure reasonable results for all systems we
thus add a correction

C′ =
∫

drn̄h(r)[ṽHx,KLI(r)− ṽHx(r)]≈−C (B2)

to our potentials to avoid the spurious pseudo-constant,
i.e. C′ determined above cancels Ch(r) in the region where
it causes problems. In cases where we need 〈ṽHx〉h =∫

drn̄h(r)ṽHx(r) this is equivalent to replacing ṽHx(r) by
ṽHx,KLI(r) inside the average.

The effect of the correction C′ can be tested on “good”
cases where no shift is apparent. These case suggest that
〈ṽHx〉h differs from 〈ṽHx,KLI〉h by at most a few mHa, more
than an order of magnitude less than correlation ener-
gies. We further note that in calculations where we use
vHx(r) = ṽHx(r)+ v0

Hx, the pseudo-constant does not make
any difference at all to final results as C it is cancelled out
through the term −

∫
drnh(r)ṽHx(r) in v0

Hx (at least in the
region r < rc of interest).

We note that it might be possible to obtain v0
Hx more

directly, by using relationships between Kohn-Sham and
Hartree-Fock quantities.[58, 69] However, this requires
further scrutiny in the case of using the exact (as done
here), rather than OEP (as done previously), orbitals in
vHx; and a proper ensemble generalization of Hartree-Fock
quantities in several cases. Due to these outstanding theo-
retical issues, this strategy is not pursued in this work.
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[19] J. Čížek, J. Chem. Phys. 45, 4256 (1966).
[20] O. A. Vydrov, G. E. Scuseria, and J. P. Perdew, J. Chem.

Phys. 126, 154109 (2007).
[21] A. J. Cohen, P. Mori-Sánchez, and W. Yang, J. Chem. Phys.

126, 191109 (2007).
[22] E. R. Johnson and J. Contreras-García, J. Chem. Phys. 135,

081103 (2011).
[23] T. Gould and J. F. Dobson, J. Chem. Phys. 138, 014103

(2013).
[24] E. Kraisler and L. Kronik, Phys. Rev. Lett. 110, 126403

(2013).
[25] A. Görling, Phys. Rev. A 46, 3753 (1992).
[26] Y. Wang and R. G. Parr, Phys. Rev. A 47, R1591 (1993).
[27] Q. Zhao, R. C. Morrison, and R. G. Parr, Phys. Rev. A 50,

2138 (1994).
[28] P. Gori-Giorgi and A. Savin, J. Phys: Conf. Ser. 117, 012017

(2008).
[29] P. Gori-Giorgi and A. Savin, Int. J. Quantum Chem. 109,

2410 (2009).
[30] J. D. Ramsden and R. W. Godby, Phys. Rev. Lett. 109,

036402 (2012).
[31] M. J. P. Hodgson, J. D. Ramsden, J. B. J. Chapman, P. Lilly-

stone, and R. W. Godby, Phys. Rev. B 88, 241102 (2013).
[32] T. Gould and J. Toulouse, Phys. Rev. A 90, 050502 (2014).
[33] D. Varsano, M. Barborini, and L. Guidoni, J. Chem. Phys.

140, 054102 (2014), https://doi.org/10.1063/1.4863213.
[34] Z.-h. Yang, J. R. Trail, A. Pribram-Jones, K. Burke, R. J.

Needs, and C. A. Ullrich, Phys. Rev. A 90, 042501 (2014).
[35] I. G. Ryabinkin, S. V. Kohut, and V. N. Staroverov, Phys. Rev.

Lett. 115, 083001 (2015).
[36] E. Ospadov, I. G. Ryabinkin, and V. N. Staroverov, J. Chem.

Phys. 146, 084103 (2017).
[37] A. Kumar, R. Singh, and M. K. Harbola, J. Phys. B: At., Mol.

Opt. Phys. 52, 075007 (2019).
[38] O. V. Gritsenko and E. J. Baerends, J. Chem. Phys. 120, 8364

(2004).
[39] K. Boguslawski, C. R. Jacob, and M. Reiher, J. Chem. Phys.

138, 044111 (2013).
[40] G. K.-L. Chan, J. Chem. Phys. 110, 4710 (1999).
[41] E. Sagvolden and J. P. Perdew, Phys. Rev. A 77, 012517

(2008).
[42] J. P. Perdew and E. Sagvolden, Can. J. Chem. 87, 1268

(2009).
[43] S. M. Valone, J. Chem. Phys. 73, 4653 (1980).
[44] E. H. Lieb, Int. J. Q. Chem. 24, 243 (1983).

[45] P. W. Ayers, Phys. Rev. A 73, 012513 (2006).
[46] R. van Leeuwen, Adv. Quantum Chem. 43, 24 (2003).
[47] R. M. Dreizler and E. K. U. Gross, “Density functional the-

ory,” (Springer-Verlag, Berlin, 1990) p. 22.
[48] T. Gould and S. Pittalis, Phys. Rev. Lett. 119, 243001

(2017).
[49] H. Brandi, M. D. Matos, and R. Ferreira, Chem. Phys. Lett.

73, 597 (1980).
[50] N. I. Gidopoulos, P. G. Papaconstantinou, and E. K. U. Gross,

Phys. Rev. Lett. 88, 033003 (2002).
[51] E. Pastorczak and K. Pernal, J. Chem. Phys. 140, 18A514

(2014), https://doi.org/10.1063/1.4866998.
[52] A. Görling, Phys. Rev. B 91, 245120 (2015).
[53] J. F. Janak, Phys. Rev. B 18, 7165 (1978).
[54] M. Levy, J. P. Perdew, and V. Sahni, Phys. Rev. A 30, 2745

(1984).
[55] E. Kraisler, T. Schmidt, S. Kümmel, and L. Kronik, J. Chem.

Phys. 143, 104105 (2015).
[56] F. Della Sala and A. Görling, Phys. Rev. Lett. 89, 033003

(2002).
[57] J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36

(1976).
[58] J. B. Krieger, Y. Li, and G. J. Iafrate, Phys. Rev. A 45, 101

(1992).
[59] J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).
[60] S. Kümmel and L. Kronik, Rev. Mod. Phys. 80, 3 (2008).
[61] T. Kreibich, S. Kurth, T. Grabo, and E. Gross, in Density

Functional Theory, Advances in Quantum Chemistry, Vol. 33,
edited by P.-O. Löwdin (Academic Press, 1998) pp. 31–48.

[62] Here, we use that φh(r) = Rnl(r)Ylmh(r̂) where only mh varies
with h, i.e. the radial term is the same across the degenerate
states. By construction, each orbital is occupied equally, giv-
ing ∑h φ 2

h (r)F(r)∝ R2
nl(r)F(r) for an arbitrary radial function

F(r). This holds for all potential-like properties by symmetry
and thus leads to the left and right hand sides of Eq. (36).

[63] U. von Barth and L. Hedin, J. Phys. C: Solid State Phys. 5,
1629 (1972).

[64] T. Schmidt, E. Kraisler, L. Kronik, and S. Kümmel, Phys.
Chem. Chem. Phys. , 14357 (2014).

[65] T. Gould and J. F. Dobson, J. Chem. Phys. 138, 014109
(2013).

[66] S. Kümmel and J. P. Perdew, Phys. Rev. B 68, 035103
(2003).

[67] W. Yang and Q. Wu, Phys. Rev. Lett. 89, 143002 (2002).
[68] P. Mori-Sánchez, A. J. Cohen, and W. Yang, J. Chem. Phys.

125, 201102 (2006).
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