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ABSTRACT (N=249 words)
Background

Flares in rheumatoid arthritis (RA) and axial spondyloarthritis (axSpA) may influence physical
activity. The objective was to assess longitudinally the association between patient-reported
flares and activity-tracker-provided steps per minute, using machine-learning.

Methods

This prospective observational study (ActConnect) included patients with definite RA or
axSpA. During 3 months, physical activity was assessed continuously by number of
steps/minute, using a consumer grade activity tracker, and flares were self-assessed weekly.
Machine-learning techniques were applied to the dataset. After intra-patient normalization of
the physical activity data, using multiclass Bayesian methods, sensitivities, specificities and
predictive values of the machine-generated models of physical activity to predict patient-
reported flares were calculated.

Results

In all, 155 patients (1339 weekly flare assessments and 224,952 hours of physical activity
assessment) were analyzed: for RA (N=82) and axSpA (N=73) patients respectively, mean
age was 48.9+12.6 and 41.2+10.3 years; mean disease duration was 10.5+8.8 and 10.8+9.1
years; 14 (17.1%) and 41 (56.2%) were males. Disease was well-controlled (mean DAS28:
2.241.2; mean BASDAI: 3.1+2.0) but flares were frequent (22.7% of all weekly assessments).
The model generated by machine-learning performed well against patient-reported flares
(mean sensitivity: 96% [95% confidence interval 94-97%], mean specificity: 97% [96-97%)],
mean positive and negative predictive value: 91% [88-96and 99% [98-100%]). Sensitivity
analyses were confirmatory.

Conclusion

Although these pilot findings will have to be confirmed, the correct detection of flares by a
machine learning processing of activity trackers data opens the way for future studies of
remote-control monitoring of disease activity, with great precision and minimal patient
burden.



Significance and Innovation

Patient-reported flares were associated to less physical activity, measured by activity
trackers, in rheumatoid arthritis (RA) and axial spondyloarthritis (axSpA), confirming
the objective consequences of patient-reported flares.

Using machine-learning, changes in physical activity patterns were found to be
associated to patient-reported flares based on physical activity data with a sensitivity
of 96% and a specificity of 97%.

Given the relatively small sample size and the lack of a separate validation
population, these findings should be further confirmed.

Connected activity trackers with machine-learning processing may be an opportunity
for continuous indication of disease activity in RA and axSpA.



ARTICLE TEXT

The evolution of rheumatoid arthritis (RA) and axial spondyloarthritis (axSpA) is marked by
alternated periods of flares and stable disease activity.[1-7] Flares are important for patients
since they contribute to the unpredictability of the disease.[8,9] Furthermore, due to the link
between inflammation and structural degradation, flares are important to assess for disease
management.[10-12] There is growing interest in both RA and axSpA, to characterize the
reality behind the concept of patient-reported flares.[2,4,13-16] Flares appear to have
objective consequences on daily life and in particular on physical activity.[17,18] Physical
activity including everyday walking as well as aerobic exercise may be objectively and
longitudinally assessed using connected activity trackers. These devices allow an interactive
feedback of physical activity and the visualization of activity patterns, according to duration,
intensity and frequency of physical activity.[19]

The ActConnect study was a 3-months longitudinal study of patients with either RA or axSpA
where patient-reported flares were assessed weekly and physical activity was collected
continuously using a connected activity tracker.[20, 21] The data were analysed using
standard statistics and we found flares were related to a moderate decrease in physical
activity, since during weeks with flares, there was a relative decrease in physical activity of
12-21%, i.e., an absolute decrease of 836-1462 steps/day.[21] This study thus confirmed
objectively the functional impact of patient-reported flares. However at the group level and on
amalgamated data, the link between flares and physical activity was weak and it was not
possible to determine modifications in physical activity patterns which could adequately
reflect patient-reported flares.[21]

Machine-learning allow multiple analyses of large datasets and make the best use of the
available data, with minimal data amalgamation.[22] Although machine-learning methods
have been little used in rheumatology to date [23], their usefulness in other medical fields
has been clearly shown.[24-29] The specificity of such analyses is that the data is fed into a
machine-learning operations tool, which will build — by itself - classification models,
generated most often using an "averaging" of numerous naive Bayesian classifications.

The objective of this reanalysis of the ActConnect dataset was to assess longitudinally the
association between patient-reported flares and activity-tracker-provided continuous flows of
steps per minute, using machine-learning.

PATIENTS AND METHODS

Study design and patients

As previously reported, the ActConnect study was a prospective, multicenter, pragmatic,
longitudinal observational study in France in 2016.[20,21] Briefly, patients had definite
clinician-confirmed RA or axSpA and owned a smartphone or tablet which was compatible
with the connected activity tracker and had an Internet access. There were no inclusion
criteria related to disease activity or to physical activity. Ethical approval was obtained from
the institutional review board (CPP lle de France VI) and the human research ethics
committee (CCTIRS, number 16.057bis).

Data collection

General and patient-reported data



Patient demographics and disease characteristics were collected at baseline including
ongoing pharmacological treatment. Where available, in RA patients, the status for
rheumatoid factor (RF) and for anti-cyclic citrullinated peptide (anti-CCP), the presence of
radiographic erosions and the Disease Activity Score 28 (DAS28) at inclusion were
recorded.[30] In axSpA patients, the Bath Ankylosing Spondylitis Disease Activity Index
(BASDAI, range 0 to 10), [31,32] the HLA B27 status, history of peripheral and of extra-
articular symptoms, and the presence of sacraoiliitis according to the medical file, on X-rays
and/or on Magnetic Resonance Imaging (MRI) were recorded. Physical function was
assessed by the modified Health Assessment Questionnaire (MHAQ).[33] Comorbidities
were collected using the Functional Comorbidity Index, which ranges from 0 (0=no
comorbidity, however the minimal score was 1 in the present study because of the rheumatic
disease) to 18.[33bis]

Flares were assessed from the patient perspective by the question: « has your disease flared
up since the last assessment ? », which has already been used in previous studies.[2] The
categorical response was: no flare, flare lasting 1 to 3 days (short flare) or flare lasting more
than 3 days (persistent flare). Flares were completed online from home each week during 3
months, following a text message reminder.[21]

Physical activity data

Each participant received an activity tracker (the Withings® Activité Pop watch[34]) and was
instructed to wear it every day for 3 months. The Withings® tracker records the number of
steps per minute. Ninety consecutive days from the first Monday following activation of the
device were collected. No instruction about physical activity was given to the participants,
however patients could visualize their physical activity on their smartphones.[21]

Statistical analysis

Patients were analyzed if they had at least one complete time point (i.e., physical activity
data over the 7 days preceding a flare assessment).

Data preparation

Weeks containing more than 12 consecutive hours of missing or blank data, were removed
from the data set (leading to 10559 days of a potential total 13950 which could be analysed).
The remaining short-duration missing activity data (mostly due to non-wear periods and
mostly at night) were not imputed (and were not analysed in the algorithm). For each patient,
the mean and variance of number of steps for each aggregation interval with no flare were
bootstrapped. The data for each patient were then normalized using these values, leading to
a distribution of steps during a given aggregation interval with no flare with a mean of 0 and a
variance of 1. Data preparation was performed on R.[35] The normalization was performed
several times, since data were normalized for each aggregation interval. Physical activity
data aggregation

The ActConnect study collected physical activity information (steps) at the minute level,
during 3 months, leading to 13.5 million information points. Although very limited data
aggregation is necessary for machine-learning software using Bayesian analyses, several
levels of aggregation (24, 12, 4, and 1 hour) were tested, resulting in 4 distinct models.

Longitudinal relationship between physical activity and disease activity

The goal of the analysis was to classify each week as flare/no flare, based on the weekly
physical activity data. The models were built using only the normalized steps and the patient-
reported flare. Steps were analyzed both for deviation with respect to the reference week and
for the importance of the time intervals with deviations. No other covariate was used. Of note,
the models were developed at the population level not at the patient level (but patient data
were individually normalized).For all the analyses, multiclass selective naive Bayesian
methods were performed using Khiops© (Orange Labs).[36-38] Naive Bayes classifiers are
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among the standard classification methods used in machine-learning and are based on a
direct application of Bayes theorem.[26, 39-41]. Models corresponding to the 4 distinct
aggregation intervals were built for 10 training/validation sets, and analyses were initially
performed for the 3 levels of flare (no flare, flare < 3 days, flare > 3 days) but this did not
perform well (online supplementary Table 1 and 2). Thus, the binary variable (flare/no
flare) was used. Then, the performance of the models was evaluated using patient-reported
flares (assessed weekly) as gold standard and sensitivity and specificity, as well as positive
and negative predictive values were assessed. Furthermore, to assess agreement, Cohen’s
kappa was calculated.[42]

Training and validation sets

In order to evaluate the performance of a classifier (and of any machine-learning model in
general), the classifier is designed using a set of data (the training set) and its performance is
evaluated using the classification of a distinct set of data (the validation set). To select a
model (here the aggregation interval) and to take into account its mean performance but also
the variation of the performance (i.e., the bias-variance trade-off [39]), 10 different
training/validation sets were built. The generation of training/validation set was set at the
weekly observation level On each of the 10 sets, the analyses were then performed for each
aggregation interval. Each training/validation set was constructed using a random stratified
70% of the total weekly dataset (i.e. 936 weeks) as the training set, and the 30% remaining
data as validation set (403 weeks). Each training/validation set used all of the available data
(and the sets were not at all mutually exclusive). Thus, the datasets overlapped and on
average, a given week was counted in 3 different validation sets. Data were stratified on
flare/no flare. Performances were calculated for each set and on the pooled validation sets.
Of note, in the pooled analysis, each week's data were used several times since the
training/validation sets overlapped —thus these results should be considered as indicative
only.

Illustration of results

The variations of the main statistical characteristics of the classifications in relation with the
aggregation interval were reported for two training/validation examples. To illustrate changes
for a single patient, a patient correctly classified as flare/no flare was chosen based on
having age, number of flares and overall physical activity close to the population means. For
this patient, mean physical activity for weeks without flare and for weeks with flare was
graphically presented.

In the results of the modeling phase, Khiops provides an evaluation of the importance (the
weight) of each explanatory variable in the model. Using these weights, a time-line map of
“significant” moments of activity during the week was created. This time line shows the
weight of the moments of the days used by the algorithm to perform the score calculation for
the classification. The aggregation being hourly, these weights characterize the importance
of each hour of each day of the week in the resulting flare classification.

Sensitivity analyses

All analyses were performed twice, from the data preparation to the model building, on
Khiops®, independently by 2 statisticians. The analyses were also performed again using
another machine-learning method (random forests classifiers [43]) on R and the code for this
is given in online supplementary appendix.

RESULTS



Patients

Among the 170 patients included in the study, 155 (82 RA and 73 axSpA patients) were
analyzed. This corresponds to 1339 weekly flare assessments and 224,952 hours physical
activity assessment timeframes. Physical activity being provided at the minute, the dataset
contained close to 13.5 million activity points.

For the 155 patients, mean age was for RA (n=82) 48.9+12.6 years, mean disease duration
10.5+8.8 years; 14 (17.1%) were males and for axSpA (n=73) 41.2+10.3 years, mean
disease duration 10.8+9.1 years; 41 (56.2%) were males. Disease was well-controlled (mean
DAS28: 2.2+1.2; mean BASDAI: 3.1+2.0) (Table 1). RA patients had a mean DAS28 at
baseline of 2.2 (+1.2); 48/82 (58.5%) had radiographic erosions, and 63/79 (79.7%) had
positive rheumatoid factor and/or anti-CCP. Among axSpA patients, 44/73 (60.3%) had
experienced extra-articular symptoms, 42/70 (60.0%) had past or present peripheral
symptoms; 50/65 (76.9%) carried HLA B27, and 54/64 (84.4%) had radiographic and/or MRI
sacroiliitis. At baseline the mean BASDAI was 3.1 (+2.0). Overall, 81/155 (52.3%) patients
were receiving biologics and 106/155 (68.4%) were stable in terms of treatment over the 3
months prior to inclusion (Table 1).

Among the 155 patients, 112 (72.2%) patients reported at least one flare over the 3 months
follow up. Patients reported having experienced a flare on average at 22.7% of the
guestionnaires.

Over all the assessments, the mean number of steps was 6838 (+4033) steps/day with a
median of 6265 (interquartile range [quartile 1 3843; quartile 3 9144]; range [minimum
0,maximum 38212] steps per day..

Detection of flares

The Khiops© program detected correctly both flares and absence of flare (mean sensitivity
95.7% [95% confidence interval: 94.4-97.0], mean specificity 96.7% [95% confidence
interval: 96.0-97.3]) with high predictive values as well (Table 2 and 3).

Performances increased as the aggregation interval decreased: the best performance in
terms of proportion of correctly/incorrectly classified instances was evidenced for 1-hour
intervals (Table 2). The increase in the agreement between flares and predicted flares was
also reflected in the substantial increase of the Kappa coefficient when the size of the
aggregation intervals decreased (Eigure 1).

The variations of the main statistical characteristics of the classifications in relation with the
aggregation interval are reported for two training/validation examples in online
supplementary Table 3.

Illustration of results

Figure 2 shows mean physical activity over weeks with versus without flares, for a random
RA patient. As seen, there were considerable fluctuations overall and variations in patterns.

The model generated by the machine established “significant” moments of activity during the
week that were more strongly related to flares (Eigure 3). It appeared working day mornings
were not highly “significant” while the ends of the afternoons as well as Saturday afternoons
appeared strongly associated with flare detection. These might be moments when patients
can rest more, when in flare. In other words: when physical activity is different (from previous
weeks) at a "significant” time point (eg Saturday afternoons) this is a flare state change
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indicator for the machine. Reversely, a physical activity change in a "non significant" time
point in the week, would be less contributive to flare state detection.

Sensitivity analyses

The second round of analyses and the analyses using another statistical technique on R,
were confirmatory with >95% sensitivities and specificities (online supplementary Table 4).

DISCUSSION

This study demonstrated that patient-reported flares were strongly linked to physical activity
and that machine-learning processing of patient-level physical activity can be used to detect
flares with great accuracy. Furthermore, this study also demonstrated the usefulness of
machine-learning applied to large rheumatology datasets.

This study has strengths and weaknesses. Firstly, the sample size in the present study was
only moderate, and the relatively low number of flares may lead to power issues. However,
the dataset for physical activity time points was very large. Furthermore, patients had either
RA or axSpA, and as the analyses were pooled, this study does not allow to interpret
possible differences between these 2 diseases. Secondly, this was a French, Paris-based
study thus extrapolation to other cultures and social habits merits discussion, given the role
of cultural background in perception and expression of patient-reported outcomes [44]. The
strong link found between modifications in physical activity and patient-reported flares should
not be directly interpreted as demonstrating causality. Confounding factors may have
intervened. Indeed, other factors than flares that may impact physical activity (e.g., illness,
mood, weather) were not collected, and it is currently uncertain how machine learning
methods solely based on physical activity can distinguish between activity variation caused
by disease flare and by other causes, although the model performances were remarkable
here. The analyses were run several times on several subsets of the data which is a
strength. However, the subsets were selected for frequency of flares; which could introduce a
bias if the obtained models were used on another dataset since the proportions of week with
flares may be different. Night movements and thus impact of flares on sleep could not be
analysed here. Another point refers to the definition of flares — here, flares were classified as
‘short’ or ‘long’ but these definitions have not been validated. Finally, the obtained
classifications are not easy to interpret since the machine chooses its criteria to build models,
without human guidance.

Flares significantly impacted physical activity. These results confirm that patient-reported
flares have an observable functional impact. The reality of the concept of flares has been
much discussed.[1-7,16] Here, changes in physical activity patterns allowed to accurately
detect patient-reported flares — in particular short flares, rather than longer (more than 3 day)
flares — probably because shorter flares were much more frequent, although their clinical
relevance is not well-established. The classification model generated by the machine allowed
accurate detection of both periods of flare and periods of absence of flare. It is interesting to
note that although flares were reported weekly (thus with moderate granularity), shorter
intervals of aggregation for the physical activity data led to better prediction of flares than
longer ones. Reasons for this include that flares may be more represented by the “way” the
patients move during the day, implementing their own copying strategy, than the total
number of steps during the day. Indeed, the model generated by the machine, established
“significant” moments of activity during the week, which were markers of flares. These were
patient-dependent, but we observed that they were often —but not only- the “less stressful”
moments where patients can slow down or post-pone their physical activity (e.g. in the
evenings or on Saturdays). In contrast, weekday mornings seemed less “significant” to detect
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flares. This indicates flares of moderate severity may not lead to huge changes in physical
activity such as being bed-ridden, but rather to the patient self-pacing his/her efforts.[6,16]
We hypothesize patients may force themselves to deal with every day activities and work,
even when in flare; and slow down mainly when this is not too disruptive to their lives; in
particular in cases of moderate flares not necessitating medical intervention, as was the case
here. It would be interesting to explore the long-term consequences of such moderate
flares.[12]

The present reanalysis was centered on machine-learning. In this study, flares were
collected from the patient regularly, once a week, and cross-tabulated with objective
measurements of physical activity using a connected activity tracker. The dataset was first
analyzed using traditional statistical methods for longitudinal datasets, and a significant but
moderate decrease in physical activity was noted concomitantly to patient-reported flares.
Furthermore, it was not possible to determine specific cutoffs of decrease in activity which
would allow to predict a flare (for example, a decrease of 20% of steps or of 500 steps per
day).[21] The interesting finding in the present reanalysis is that when applying different,
innovative statistics with machine-learning, it was possible to find strong associations with
excellent predictive capacities, between steps performed and patient-reported flares. This
may be in part due to the capacity of the machine to compare the patient to himself.

Machine-learning statistics are complex procedures. Typically, the machine will use a dataset
to develop a model, then a validation phase is necessary.[45] In the present study, this 2-
phase approach was applied; but the lack of a separate validation group is a weakness.
Indeed, the present findings should be seen as ‘pilot findings’ and it will be important to
reproduce these findings in another cohort. Several techniques have been proposed for
machine-learning. The random forest method performs well on datasets of reasonable
size.[43] However, it is a lengthy process and is hard to industrialise with very large datasets.
The other main method relies on Bayesian statistics and was applied here. Both methods
appear to perform similarly.[46, 47] Although Bayesian modeling performed extremely well
here, as in all machine-learning processes, some part of mystery remains since the exact
decision mechanism of the machine when predicting flares is internal and implicit rather than
explicit, making the interpretation difficult. Khiops© is based on sophisticated Naive Bayes
method (using both features selection and models averaging). It was initially developed as an
easy to use and efficient tool in marketing.[36-38] Khiops®© is used in many domains where
classification or clustering is the subject and where massive data need to be analyzed. This
study is a pilot for the use of Khiops© on healthcare data.

Connected devices and Internet of Things bring continuous flows of data that cannot be
handled with traditional statistical tools without important complexity reduction and data
aggregation. Using machine-learning, here the data could be analysed with minimal data
aggregation. However, the comparison of models for different time aggregations was
necessary. The fact that smaller timeframes performed better probably reflects the fact that,
for flare characterization, the way patients are moving during the day is more indicative than
their total activity over one day.

Data preparation was an essential (and time-consuming) step in the present analyses.
Preliminary analyses confirmed that patterns of physical activity of two distinct patients may
be quite different: a given physical activity for a patient during a week with flare may be
similar to the physical activity of another patient during a week with no flare (data not shown).
The normalization of steps led to all patients becoming comparable during weeks without
flare and, from there, classification models were possible. It is probable that such
normalization would allow analyses in different datasets with different characteristics, but this
remains to be proven by further studies. Of note, measurement error (variability) in the
device was not taken into account since trends over time were studied here.

Despite the conception choices made to limit take-off cases and so non-wear periods,
including choosing a device that does not require to be plugged to a power source for
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months or removed to wash, non-wear period were detected. This means we lost some
information due to non-wear.

Furthermore, the use of overlapping subsets of patients and the lack of an independent
testing set is an important issue which means that overfitting is a possibility. Other studies
are needed. Overall, machine-learning technologies are still a growing field and require high-
level technology but also relevant human expertise. These constraints need to be taken into
account when planning future studies.

The correct detection of flares by the activity tracker and adapted statistics is of great
interest. Indeed, activity trackers have great accuracy and lead to minimal patient burden,
compared to online questionnaires or in-person visits. These results open perspectives to
integrate in the future of connected devices in the monitoring of patients with chronic arthritis,
in clinical research as well as in clinical practice. It is possible to imagine mixed-methods
monitoring with continuous data collection via activity trackers, and physical assessments in
person in case of frequent flares, for example. Of course, the cost of the wearable device
needs to be taken into account. In a context of treating to a target, such continuous
assessments (passively for the patient) may be of capital importance as the healthcare
organization could benefit from more targeted outpatient visits (i.e., in case of flares). Finally,
machine-learning methods may contribute to a more precise quantification of existing links or
to the identification of new links in rheumatologic datasets.

In conclusion, this pilot application of machine-learning to physical activity assessment will
open the way to future studies. The design of operational monitoring systems based on
machine-learning models would however require careful validations on much larger datasets
and the present analyses should be considered as a proof of concept of such an approach.
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Table 1: Characteristics of 82 RA and 73 axSpA patients

inclusion, N (%)

RA (N=82) axSpA (N=73)

Sex, N (%), males 14 (17.1) 41 (56.2)
Age, mean (SD), years 48,9 (12.6) 41.2 (10.3)
BMI, mean (SD), kg/m2 24.7 (4.5) 24.6 (4.6)
Disease duration, mean (SD), years 10.5 (8.8) 10.8 (9.1)
Work status, N (%), employed 61 (74.4) 61 (83.6)

Of whom,

Manual work 3 (4.9) 2 (3.3)

Intellectual work 58 (95.1) 62 (96.7)
Studies > high school, N (%) 69 (84.1) 66 (90.4)
Functional comorbidity Index (range, 1-18), mean (SD) 1.6 (0.9) 1.4 (0.9)
mMHAQ (0-3), mean (SD) 0.23 (0.39) 0.30 (0.33)
Ongoing treatment

NSAIDs, N (%) 17 (20.7) 44 (60.3)

Glucocorticoids, N (%) 19 (23.2) 1(1.4)

Conventional synthetic DMARDSs, N (%) 76 (92.7) 17 (23.3)

Of whom, methotrexate, N (%) 66 (86.8) 13 (76.5)
Biological therapy, N (%) 37 (45.1) 44 (60.3)
Of whom, antiTNF, N (%) 23 (62.2) 44 (100)

No change in arthritis drugs over the 3 months prior to | 59 (72.0) 47 (64.4)

Percentages are calculated on all complete data; RA=

rheumatoid arthritis,

SpA=

spondyloarthritis, SD= standard deviation, BMI= body mass index, mHAQ: modified Health
Assessment Questionnaire,[27] NSAIDs= nonsteroidal anti-inflammatory drugs, DMARDs=

disease-modifying antirheumatic drugs.
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Table 2: Association between physical activity and self-reported flares.

validation Kappa

set (95% CI)

L 0.88 (0.83-
0.94)

) 0.89 (0.84-
0.94)

3 0.91 (0.86-
0.96)

A 0.88 (0.82-
0.93)

c 0.92 (0.87-
0.96)

5 0.88 (0.82-
0.94)

. 0.92 (0.88-
0.96)

8 0.90 (0.85-
0.95)

9 0.92 (0.88-
0.97)
0.89 (0.85-

10 0.95)

Pooled 0.90 (0.89-

results 0.92)

Sensitivity

(95% Cl)

0.96 (0.91-0.99)

0.98 (0.95-1.00)

0.95 (0.90-0.99)

0.93 (0.88-0.98)

0.98 (0.95-1.00)

0.90 (0.84-0.96)

0.97 (0.93-1.00)

0.96 (0.91-0.99)

0.96 (0.90-0.99)

0.99 (0.96-1.00)

0.96 (0.94-0.97)

Specificity
(95% ClI)

0.96 (0.94-0.98)

0.95 (0.93-0.98)

0.97 (0.95-0.99)

0.96 (0.94-0.98)

0.97 (0.95-0.99)

0.97 (0.96-0.99)

0.97 (0.96-0.99)

0.97 (0.95-0.99)

0.98 (0.96-0.99)

0.95 (0.93-0.98)

0.97 (0.96-0.97)

PPV
(95% Cl)

0.87
(0.81-
0.94)

0.87
(0.80-
0.93)

0.91
(0.86-
0.98)

0.88
(0.82-
0.95)

0.90
(0.85-
0.96)

0.91
(0.86-
0.97)

0.92
(0.87-
0.98)

0.89
(0.84-
0.96)

0.93
(0.87-
0.98)

0.89
(0.88-
0.91)

0.89
(0.88-
0.91)

NPV
(95% Cl)

0.99 (0.98-
1.0)

0.99
1.0)

(0.98-

0.98
1.0)

(0.97-

0.98
1.0)

(0.97-

0.99
1.0)

(0.98-

0.97
0.99)

(0.96-

0.99
1.0)

(0.98-

0.99
1.0)

(0.97-

0.99
1.0)

(0.98-

0.99
0.99)

(0.98-

0.99 (0.98-
1.00)

Kappa statistics, sensitivity and specificity, positive and negative predictive values (PPV and
NPV) of the model against self-reported flares as gold-standard, reported here for the 10

validation sets (403 weekly data) and for the aggregation of 1 hour.

(95% CI): 95% confidence interval
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Table 3: Detection of patient-reported flares by physical activity: pooled results:

[ : _
N (% of 4030 | No patient-reported Patient-reported flare
weeks) flare
No flare
according to | 3006 (74.6%) 40 (1.0%)
Khiops
Flare
according to | 104 (2.6%) 880 (21.8%)
Khiops

Footnote. Results presented are the sum over the 10 training/validation sets of the confusion
matrices with 1 hour aggregation (4030 weeks containing 3110 weeks patient-reported as
no-flare and 920 reported as flare). Each week’s data is used several times since the

training/validation sets overlapped —thus these results should be considered indicative only.
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Online supplementary Table 1: Patient-reported flares as 3 categories (no flare, short
flare, long flare) versus machine-learning predicted flares

sensitivit sensitivit | sensitivit specificit specificit | specificit
validatio | kapp |y y y y y y
R B (YR v B Y CE R o S
1 0.76 | 0.96 0.91 0.0 0.93 0.91 0.99
2 0.77 |0.96 0.96 0.0 0.98 0.91 0.99
3 0.78 |0.97 0.95 0.0 0.95 0.92 1.0
4 0.75 |0.97 0.69 0.0 0.91 0.92 1.0
5 0.81 | 0.98 0.95 0.0 0.96 0.93 1.0
6 0.78 | 0.97 0.95 0.0 0.88 0.94 1.0
7 0.79 | 0.97 0.96 0.0 0.96 0.92 1.0
8 0.81 | 0.98 0.95 0.0 0.92 0.94 1.0
9 0.81 |0.98 0.96 0.0 0.95 0.93 1.0
10 0.79 |0.96 0.97 0.0 0.98 0.91 1.0

3-levels classification: Kappa statistics, sensitivity and specificity for the 10 validation sets
(403 weekly data) and for the aggregation of 1 hour.
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Online supplementary Table 2. Patient-reported flares in 3 categories (no flare, short
flare, long flare) versus machine-learning predicted flares overall and corresponding
bootstrapped indicators

3-levels

classification

No patient-reported
flare

Patient-reported

flare < 3 days

Patient-reported

flare > 3 days

No flare

according
Khiops©

to

3016

30

24

Flare < 3 days

according
Khiops©

to

94

693

166

Flare >= 3 days

according
Khiops©

to

Sum over all training/validation sets of the confusion matrices with 1 hour aggregation (4030
weeks: ie, patient-reported as no-flare: 3110, flare < 3 days: 730, flare> 3 days: 190) for the
3-levels classification

‘ sensitivity sensitivity sensitivity | specificity specificity specificity
appa

(No flare) ]flsahrz)” (long flare) | (no flare) ]flsahrz)” long flare)
0.78 0.97 0.95 0.0 0.94 0.92 1.0
[0.76,0.80] | [0.96,0.98] | [0.93,0.96] ' [0.92,0.96] | [0.91,0.93] '

Comment: The model failed to precisely make the distinction between short and long flares,
but was sensitive to the distinction flare vs. no flare.

17




Online supplementary Table 3: Variations of agreements between patient-reported
flares and flares predicted by physical activity (steps) using multiclass Bayesian
classification for two examples of training/validation sets.

Validation |Se |Sp | PPV | NPV |Kappa |a b c d

set 4

(403

weeks)

24h 0.49 | 0.94 | 0.71 | 0.86 | 0.4851 | 45 18 47 293
(11%) (4%) (12%) (73%)

12h 0.70 | 0.93 | 0.76 | 0.91 | 0.6540 | 65 21 27 (7%) | 290
(16%) (5%) (72%)

4h 0.87 | 0.94 | 0.80 | 0.96 | 0.7874 | 80 19 12 (3%) | 292
(20%) (5%) (72%)

1h 0.93|0.96 | 0.88 | 0.98 | 0.8761 | 86 12 6 (2%) 299
(21%) (3%) (74%)

Validation

set9

(403

weeks)

24h 0.45|0.98 | 0.89 | 0.86 | 0.5214 | 41 501%) |51 306
(10%) (13%) (76%)

12h 0.57 | 0.98 | 0.91 | 0.88 | 0.6341 | 52 5(1%) |40 306
(13%) (10%) (76%)

4h 0.84 | 0.96 | 0.87 | 0.95 | 0.8076 | 77 12 15 (4%) | 299
(19%) (3%) (74%)

1h 0.9- | 0.98 | 0.93 | 0.99 | 0.9234 | 88 7(2%) | 4 (1%) 304
(22%) (75%)

Results are presented for 2 validation sets, one with high kappa (validation set 9 in Table 2)
and one with low kappa (validation set 4 in Table 2).

Se:sensitivity and Sp: specificity, against the gold standard (patient reported flares)
PPV, NPV: positive and negative predictive values; CI: confidence interval

a, b, c, d: corresponds to the 2x2 tables, specifically, a=flare correctly predicted, b=no flare
according to the patient but flare predicted, c= flare according to the patient, not predicted;
d= absence of flare correctly predicted (each number is n (% of total which is 403 in all
cases)).
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Online supplementary Table 4: Sensitivity analyses using random forest methods.
Patient-reported flares versus random forest predicted flares overall

Aggregation

Kappa (95% ClI)

Sensitivity (95% CI)

Specificity (95% CI)

interval (h)

1 0.88 (0.86-0.90) 0.84 (0.82-0.86) 0.99 (0.99-0.99)
4 0.83 (0.81-0.85) 0.79 (0.76-0.82) 0.99 (0.99-0.99)
12 0.65 (0.62-0.68) 0.63 (0.60-0.66) 0.96 (0.96-0.97)
24 0.54 (0.51-0.58) 0.52 (0.49-0.55) 0.96 (0.95-0.97)
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Figure 1 Title Agreement between patient-reported flares and predicted flares for
different time-aggregation intervals: kappa statistics.

Figure 1 Footnote Footnote: box plots for the kappas observed on the different validation
sets are presented. Scale for kappa: very bad: <0, weak: ]0,0.2], decent: ]0.2,0.4],
moderate: ]0.4,0.6], substantial: ]0.6,0.8], almost perfect: 10.8,1[, perfect: 1.

Figure 2 Title. One example of activity for weeks with versus without flare, for a randomly
chosen patient over all weeks of activity (mean values are presented for weeks with or
without flares)

Figure 2 Footnote.

X-axis: hours over one week (starting on Sunday 1 AM), Y-axis: physical activity in steps per
hour (mean values for weeks with or without flare).

The dotted line represents mean steps per hour in weeks with flare, and the full line mean
steps per hour in weeks without flare.

Figure 3 Title. lllustration of importance (weight) of the various time intervals over a
week to predict flares.

Figure 3 Footnote

This figure shows how the moments of the week (and the day) are weighted by the algorithm
to perform the classification, in one example (ie, one instance of training/validation sets). The
X axis present the days of the week, split in one-hour intervals (the dotted line divides AM
and PM for each day). The darker the colour, the more important is a time interval in the
classification.
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Figure 1 Agreement between patient-reported flares and predicted flares for different
time-aggregation intervals: kappa statistics.

Distributions of the kappa statistics
(2-levels classification)
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aggregation interval

Footnote: box plots for the kappas observed on the different validation sets are presented.
Scale for kappa: very bad: <0, weak: ]0,0.2], decent: ]0.2,0.4], moderate: ]0.4,0.6],
substantial: ]0.6,0.8], almost perfect: ]0.8,1[, perfect: 1.
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Figure 2. One example of activity for weeks with versus without flare, for a randomly
chosen patient over all weeks of activity (mean values are presented for weeks with or
without flares)
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Footnote.

X-axis: hours over one week (starting on Sunday 1 AM), Y-axis: physical activity in steps per
hour (mean values for weeks with or without flare).

The dotted line represents mean steps per hour in weeks with flare, and the full line mean
steps per hour in weeks without flare.
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Figure 3. lllustration of importance (weight) of the various time intervals

to predict flares.
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Footnote
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over a week

This figure shows how the moments of the week (and the day) are weighted by the algorithm
to perform the classification, in one example (ie, one instance of training/validation sets). The
X axis present the days of the week, split in one-hour intervals (the dotted line divides AM
and PM for each day). The darker the colour, the more important is a time interval in the

classification.
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Figure 1 Agreement between patient-reported flares and predicted flares for

different time-aggregation intervals: kappa statistics.

Distributions of the kappa statistics
(2-levels classification)
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Footnote: box plots for the kappas observed on the different validation sets are
presented. Scale for kappa: very bad: <0, weak: ]0,0.2], decent: ]0.2,0.4],
moderate: ]0.4,0.6], substantial: ]10.6,0.8], almost perfect: ]10.8,1[, perfect: 1.



Figure 2. One example of activity for weeks with versus without flare, for a
randomly chosen patient over all weeks of activity (mean values are presented

for weeks with or without flares)
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Footnote.

X-axis: hours over one week (starting on Sunday 1 AM), Y-axis: physical activity in

steps per hour (mean values for weeks with or without flare).

The dotted line represents mean steps per hour in weeks with flare, and the full line

mean steps per hour in weeks without flare.



Figure 3. lllustration of importance (weight) of the various time intervals over a

week to predict flares.
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Footnote

This figure shows how the moments of the week (and the day) are weighted by the
algorithm to perform the classification, in one example (ie, one instance of
training/validation sets). The X axis present the days of the week, split in one-hour
intervals (the dotted line divides AM and PM for each day). The darker the colour, the

more important is a time interval in the classification.
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