K. Butz, C. Denk, A. Ullmann, M. Scheffner, and F. Hoppe-seyler, Induction of Apoptosis in Human Papillomaviruspositive Cancer Cells by Peptide Aptamers Targeting the Viral E6 Oncoprotein, Proc. Natl. Acad. Sci, pp.6693-6697, 2000.

O. C. Farokhzad, S. Jon, A. Khademhosseini, T. T. Tran, D. A. Lavan et al., Nanoparticle-Aptamer Bioconjugates: A New Approach for Targeting Prostate Cancer Cells, Cancer Res, vol.64, issue.21, pp.7668-7672, 2004.

U. Rothbauer, K. Zolghadr, S. Tillib, D. Nowak, L. Schermelleh et al., Targeting and Tracing Antigens in Live Cells with Fluorescent Nanobodies, Nat. Methods, vol.3, issue.11, pp.887-889, 2006.

H. Chiu, W. Deng, H. Engelke, J. Helma, H. Leonhardt et al., Intracellular Chromobody Delivery by Mesoporous Silica Nanoparticles for Antigen Targeting and Visualization in Real Time, Sci. Rep, 2016.

M. A. Ghahroudi, A. Desmyter, L. Wyns, R. Hamers, and S. Muyldermans, Selection and Identification of Single Domain Antibody Fragments from Camel Heavy-Chain Antibodies, FEBS Lett, vol.414, issue.3, pp.521-526, 1997.

I. Vaneycken, N. Devoogdt, N. Van-gassen, C. Vincke, C. Xavier et al., Preclinical Screening of Anti-HER2 Nanobodies for Molecular Imaging of Breast Cancer, FASEB J, vol.25, issue.7, pp.2433-2446, 2011.

S. Li, H. Xu, H. Ding, Y. Huang, X. Cao et al., Identification of an Aptamer Targeting HnRNP A1 by Tissue Slide-Based SELEX, J. Pathol, vol.218, issue.3, pp.327-336, 2009.

K. Song, S. Lee, C. Ban, K. Song, S. Lee et al., Aptamers and Their Biological Applications. Sensors, vol.2012, issue.1, pp.612-631

K. Haupt, Imprinted Polymers-Tailor-Made Mimics of Antibodies and Receptors, Chem. Commun, issue.2, pp.171-178, 2003.

A. Bossi, F. Bonini, A. P. Turner, and S. A. Piletsky, Molecularly Imprinted Polymers for the Recognition of Proteins: The State of the Art, Biosens. Bioelectron, vol.22, issue.6, pp.1131-1137, 2007.

Z. Hua, Z. Chen, Y. Li, and M. Zhao, Thermosensitive and Salt-Sensitive Molecularly Imprinted Hydrogel for Bovine Serum Albumin, Langmuir, vol.24, issue.11, pp.5773-5780, 2008.

Y. Qin, C. Jia, X. He, W. Li, and Y. Zhang, Thermosensitive Metal Chelation Dual-Template Epitope Imprinting Polymer Using Distillation-Precipitation Polymerization for Simultaneous Recognition of Human Serum Albumin and Transferrin, ACS Appl. Mater. Interfaces, 2018.

F. Canfarotta, L. Lezina, A. Guerreiro, J. Czulak, A. Petukhov et al., Specific Drug Delivery to Cancer Cells with Double-Imprinted Nanoparticles against Epidermal Growth Factor Receptor, Nano Lett, vol.18, issue.8, pp.4641-4646, 2018.

H. Koide, K. Yoshimatsu, Y. Hoshino, S. Lee, A. Okajima et al., Polymer Nanoparticle with Engineered Affinity for a Vascular Endothelial Growth Factor (VEGF165), Nat. Chem, vol.2017, issue.7, pp.715-722

N. Griffete, J. Fresnais, A. Espinosa, C. Wilhelm, A. Bée et al., Design of Magnetic Molecularly Imprinted Polymer Nanoparticles for Controlled Release of Doxorubicin under an Alternative Magnetic Field in Athermal Conditions, Nanoscale, vol.7, issue.45, pp.18891-18896, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01229896

S. Dutz and R. Hergt, Magnetic Nanoparticle Heating and Heat Transfer on a Microscale: Basic Principles, Realities and Physical Limitations of Hyperthermia for Tumour Therapy, Int. J. Hyperthermia, vol.29, issue.8, pp.790-800, 2013.

J. T. Dias, M. Moros, P. Del-pino, S. Rivera, V. Grazú et al., DNA as a Molecular Local Thermal Probe for the Analysis of Magnetic Hyperthermia, Angew. Chem. Int. Ed, vol.52, issue.44, pp.11526-11529, 2013.

D. Pouliquen, J. J. Le-jeune, R. Perdrisot, A. Ermias, and P. Jallet, Iron Oxide Nanoparticles for Use as an MRI Contrast Agent: Pharmacokinetics and Metabolism, Magn. Reson. Imaging, vol.9, issue.3, pp.275-283, 1991.

F. Canfarotta, A. Waters, R. Sadler, P. Mcgill, A. Guerreiro et al., Biocompatibility and Internalization of Molecularly Imprinted Nanoparticles, Nano Res, vol.2016, issue.11, pp.3463-3477

A. Cecchini, V. Raffa, F. Canfarotta, G. Signore, S. Piletsky et al., In Vivo Recognition of Human Vascular Endothelial Growth Factor by Molecularly Imprinted Polymers, Nano Lett, vol.2017, issue.4, pp.2307-2312

Y. Hoshino, H. Koide, T. Urakami, H. Kanazawa, T. Kodama et al., Recognition, Neutralization, and Clearance of Target Peptides in the Bloodstream of Living Mice by Molecularly Imprinted Polymer Nanoparticles: A Plastic Antibody, J. Am. Chem. Soc, issue.19, pp.6644-6645, 2010.

R. Weissleder, D. D. Stark, B. L. Engelstad, B. R. Bacon, C. C. Compton et al., Superparamagnetic Iron Oxide: Pharmacokinetics and Toxicity, AJR Am. J. Roentgenol, vol.152, issue.1, pp.167-173, 1989.

K. Briley-saebo, A. Bjørnerud, D. Grant, H. Ahlstrom, T. Berg et al., Hepatic Cellular Distribution and Degradation of Iron Oxide Nanoparticles Following Single Intravenous Injection in Rats: Implications for Magnetic Resonance Imaging, Cell Tissue Res, vol.316, issue.3, pp.315-323, 2004.

D. A. Kuhn, D. Vanhecke, B. Michen, F. Blank, P. Gehr et al., Rothen-Rutishauser, B. Different Endocytotic Uptake Mechanisms for Nanoparticles in Epithelial Cells and Macrophages, Beilstein J. Nanotechnol, vol.5, pp.1625-1636, 2014.

,

J. ;. Zhao and M. Stenzel, Entry of Nanoparticles into Cells: The Importance of Nanoparticle Properties, Polym. Chem, vol.2018, issue.3, pp.259-272

F. Mazuel, A. Espinosa, N. Luciani, M. Reffay, R. Le-borgne et al., Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels, ACS Nano, vol.10, issue.8, pp.7627-7638, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01518784

A. V. Walle, A. P. Sangnier, A. Abou-hassan, A. Curcio, M. Hémadi et al., Biosynthesis of Magnetic Nanoparticles from Nano-Degradation Products Revealed in Human Stem Cells, Proc. Natl. Acad. Sci, vol.116, pp.4044-4053, 2019.

C. Boitard, A. Rollet, C. Ménager, and N. Griffete, Surface-Initiated Synthesis of Bulk-Imprinted Magnetic Polymers for Protein Recognition, Chem. Commun, vol.2017, issue.63, pp.8846-8849

H. Y. Carr and E. M. Purcell, Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments, Phys. Rev, vol.94, issue.3, pp.630-638, 1954.

S. Meiboom and D. Gill, Modified Spin-Echo Method for Measuring Nuclear Relaxation Times, Rev. Sci. Instrum, vol.29, issue.8, pp.688-691, 1958.

M. Lévy, F. Lagarde, V. Maraloiu, M. Blanchin, C. Gendron;-wilhelm et al., Degradability of Superparamagnetic Nanoparticles in a Model of Intracellular Environment: Follow-up of Magnetic, Structural and Chemical Properties, Nanotechnology, vol.2010, issue.39, p.395103

M. Levy, N. Luciani, D. Alloyeau, D. Elgrabli, V. Deveaux et al., Long Term in Vivo Biotransformation of Iron Oxide Nanoparticles, Biomaterials, vol.32, issue.16, pp.3988-3999, 2011.
URL : https://hal.archives-ouvertes.fr/ineris-00963273

L. Gu, R. H. Fang, M. J. Sailor, and J. Park, In Vivo Clearance and Toxicity of Monodisperse Iron Oxide Nanocrystals, ACS Nano, vol.2012, issue.6, pp.4947-4954

M. A. Hink, R. A. Griep, and J. W. Borst,

M. H. Eppink, A. Schots, and A. J. Visser, Structural Dynamics of Green Fluorescent Protein Alone and Fused with a Single Chain Fv Protein, J. Biol. Chem, issue.23, pp.17556-17560, 2000.

X. Kan, Q. Zhao, D. Shao, Z. Geng, Z. Wang et al., Preparation and Recognition Properties of Bovine Hemoglobin Magnetic Molecularly Imprinted Polymers, J. Phys. Chem. B, vol.2010, issue.11, pp.3999-4004

R. Gao, S. Zhao, Y. Hao, L. Zhang, X. Cui et al., Facile and Green Synthesis of Polysaccharide-Based Magnetic Molecularly Imprinted Nanoparticles for Protein Recognition, RSC Adv, vol.2015, issue.107, pp.88436-88444

Q. Gai, F. Qu, Z. Liu, R. Dai, and Y. Zhang, Superparamagnetic Lysozyme Surface-Imprinted Polymer Prepared by Atom Transfer Radical Polymerization and Its Application for Protein Separation, J. Chromatogr. A, vol.2010, issue.31, pp.5035-5042

,

A. S. Arbab, L. B. Wilson, P. Ashari, E. K. Jordan, B. K. Lewis et al., A Model of Lysosomal Metabolism of Dextran Coated Superparamagnetic Iron Oxide (SPIO) Nanoparticles: Implications for Cellular Magnetic Resonance Imaging, NMR Biomed, vol.18, issue.6, pp.383-389, 2005.

D. Santos-afonso, M. Morando, P. J. Blesa, M. A. Banwart, S. Stumm et al., The Reductive Dissolution of Iron Oxides by Ascorbate, J. Colloid Interface Sci, vol.138, issue.1, pp.74-82, 1990.

T. Skotland, P. C. Sontum, and I. Oulie, In Vitro Stability Analyses as a Model for Metabolism of Ferromagnetic Particles (Clariscan TM ), a Contrast Agent for Magnetic Resonance Imaging, J. Pharm. Biomed. Anal, vol.28, issue.2, pp.592-593, 2002.

A. Roch, R. N. Muller, and P. Gillis, Theory of Proton Relaxation Induced by Superparamagnetic Particles, J. Chem. Phys, vol.110, issue.11, pp.5403-5411, 1999.

Y. Gossuin, P. Gillis, A. Hocq, Q. L. Vuong, and A. Roch, Magnetic Resonance Relaxation Properties of Superparamagnetic Particles, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol, vol.1, issue.3, pp.299-310, 2009.

D. Kruk, A. Korpa?a, S. M. Taheri, A. Koz?owski, S. Förster et al., 1H Relaxation Enhancement Induced by Nanoparticles in Solutions: Influence of Magnetic Properties and Diffusion, J. Chem. Phys, vol.2014, issue.17, p.174504

R. Kimmich and . Nmr:-tomography, , 1997.

A. Rollet, S. Neveu, P. Porion, V. Dupuis, N. Cherrak et al., New Approach for Understanding Experimental NMR Relaxivity Properties of Magnetic Nanoparticles: Focus on Cobalt Ferrite, Phys. Chem. Chem. Phys, vol.2016, issue.48, pp.32981-32991
URL : https://hal.archives-ouvertes.fr/hal-02175749

J. Fresnais, Q. Ma, L. Thai, P. Porion, P. Levitz et al., NMR Relaxivity of Coated and Non-Coated Size-Sorted Maghemite Nanoparticles, Mol. Phys, issue.0, pp.1-10, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02173384

F. Ye, S. Laurent, A. Fornara, L. Astolfi, J. Qin et al., Uniform Mesoporous Silica Coated Iron Oxide Nanoparticles as a Highly Efficient, Nontoxic MRI T2 Contrast Agent with Tunable Proton Relaxivities, Contrast Media Mol. Imaging, vol.2012, issue.5, pp.460-468

S. L. Pinho, G. A. Pereira, P. Voisin, J. Kassem, V. Bouchaud et al., Fine Tuning of the Relaxometry of ?-Fe2O3@SiO2 Nanoparticles by Tweaking the Silica Coating Thickness, vol.4, pp.5339-5349, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00530395

S. Kachbi-khelfallah, M. Monteil, M. Cortes-clerget, E. Migianu-griffoni, J. Pirat et al., Towards Potential Nanoparticle Contrast Agents: Synthesis of New Functionalized PEG Bisphosphonates, Beilstein J. Org. Chem, vol.12, pp.1366-1371, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01997574

D. D. Mccollister, C. L. Hake, S. E. Sadek, and V. K. Rowe, Toxicologic Investigations of Polyacrylamides, Toxicol. Appl. Pharmacol, vol.7, issue.5, pp.90119-90124, 1965.

I. Sjöholm and P. Edman, Acrylic Microspheres in Vivo. I. Distribution and Elimination of Polyacrylamide Microparticles after Intravenous and Intraperitoneal Injection in Mouse and Rat, J. Pharmacol. Exp. Ther, vol.211, issue.3, pp.656-662, 1979.

F. Mazuel, A. Espinosa, G. Radtke, M. Bugnet, S. Neveu et al., Magneto-Thermal Metrics Can Mirror the Long-Term Intracellular Fate of Magneto-Plasmonic Nanohybrids and Reveal the Remarkable Shielding Effect of Gold, Adv. Funct. Mater, vol.27, issue.9, p.1605997, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01479779

A. Espinosa, A. Curcio, S. Cabana, G. Radtke, M. Bugnet et al., Intracellular Biodegradation of Ag Nanoparticles, Storage in Ferritin, and Protection by a Au Shell for Enhanced Photothermal Therapy, ACS, vol.12, issue.7, pp.6523-6535, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01973569

,

X. Liu and E. C. Theil, Ferritins: Dynamic Management of Biological Iron and Oxygen Chemistry, Acc. Chem. Res, vol.38, issue.3, pp.167-175, 2005.

L. Lartigue, D. Alloyeau, J. Kolosnjaj-tabi, Y. Javed, P. Guardia et al., Biodegradation of Iron Oxide Nanocubes: High-Resolution In Situ Monitoring, ACS Nano, vol.7, issue.5, pp.3939-3952, 2013.

N. Gálvez, B. Fernández, P. Sánchez, R. Cuesta, M. Ceolín et al., Comparative Structural and Chemical Studies of Ferritin Cores with Gradual Removal of Their Iron Contents, J. Am. Chem. Soc, vol.130, issue.25, pp.8062-8068, 2008.