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EULER FLOWS AND SINGULAR GEOMETRIC STRUCTURES

ROBERT CARDONA, EVA MIRANDA, AND DANIEL PERALTA-SALAS

Abstract. Tichler proved in [24] that a manifold admitting a smooth non vanishing and closed
one-form fibers over a circle. More generally a manifold admitting k independent closed one-forms
fibers over a torus Tk. In this article we explain a version of this construction for manifolds with
boundary using the techniques of b-calculus [18, 13]. We explore new applications of this idea to
Fluid Dynamics and more concretely in the study of stationary solutions of the Euler equations.
In the study of Euler flows on manifolds, two dichotomic situations appear. For the first one, in
which the Bernoulli function is not constant, we provide a new proof of Arnold’s structure theorem
and describe b-symplectic structures on some of the singular sets of the Bernoulli function. When
the Bernoulli function is constant, a correspondence between contact structures with singularities
[19] and what we call b-Beltrami fields is established, thus mimicking the classical correspondence
between Beltrami fields and contact structures (see for instance [8]). These results provide a new
technique to analyze the geometry of steady fluid flows on non-compact manifolds with cylindrical
ends.

1. Introduction

The existence of closed one-forms on a manifold simplifies the topology of the manifold in a
similar way in which the existence of first integrals of a dynamical system simplifies the topology
of its invariant sets. This idea dates back to the work of Tichler who proved in 1970 that a
compact manifold admitting a nowhere vanishing closed one-form is a fibration over a circle, or more
generally, the existence of k independent closed one-forms implies that the manifold is a fibration
over a k-dimensional torus. In a dual language, the existence of first integrals also adds constraints
on the topology of the invariant manifolds, and the classical Arnold-Liouville theorem shows that
an integrable system on a symplectic manifold has tori as compact invariant submanifolds (see [5]
for an application of Tichler’s ideas to provide a new proof of Arnold-Liouville theorem).

This same order of ideas can be applied to a more general picture in order to consider Fluid
Dynamics and, more concretely, steady Euler flows on manifolds. In particular, we give a new
proof of Arnold’s structure theorem when the Bernoulli function is not constant, which is based on
Tischler’s theorem for manifolds with boundary. This starting point takes us to consider manifolds
with boundary and b2k-forms, thus providing a proof of the b2k-Tichler theorem. Additionally,
we analyze the singular level sets of the Bernoulli function, which are not considered in Arnold’s
theorem, and prove that under some assumptions they can be described as b-symplectic manifolds.
When the Bernoulli function is constant, we reconsider the correspondence between Beltrami fields
and contact structures and extend it to contact manifolds with cylindrical ends (compactified as
b-manifolds) thus obtaining a new correspondence between Beltrami fields in this case with the
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b-contact manifolds recently introduced in [19]. Several questions concerning the Hamiltonian and
Reeb dynamics of b-contact manifolds, such as the existence of periodic orbits, can be extremely
useful to understand some properties of the stream lines of Beltrami flows on manifolds with
cylindrical ends.

Organization of this paper: In Section 2 we introduce bm-forms and study their desingular-
ization. A special focus is given to the study of bm-symplectic and b-contact forms. In Section 3 we
prove a Tischler theorem for manifolds with boundary using b2k-forms. In the smooth case, the re-
sult holds under suitable hypotheses and we use it to provide a new proof, in Section 4, of Arnold’s
structure theorem for steady Euler flows. We analyze some singular level sets of the Bernoulli func-
tion in Section 5, in the context where Arnold’s theorem holds. Assuming the Bernoulli function is
Morse-Bott, we find singular symplectic structures in some of these sets after resolving their topo-
logical singularities. Finally, in Section 6 we study steady Euler flows on manifolds with cylindrical
ends and provide a correspondence between Beltrami fields on b-manifolds and b-contact structures.

Acknowledgements: We are thankful to the referees of this paper for their careful and efficient
work, and their interesting observations.

2. A crash course on bm-forms and their desingularization

In this section we follow closely [13] and [19] to introduce singular symplectic and contact struc-
tures that will be of utter relevance in the study of Fluid Dynamics on manifolds with boundary.

2.1. b-symplectic manifolds. The language of b-forms was introduced by Melrose [18] in order
to study manifolds with boundary. The subject gained attention in the realm of Poisson geometry
as a special class of Poisson manifolds can be studied using b-calculus [13]. Most definitions can be
used replacing the boundary by any given hypersurface of a manifold without boundary:

Definition 2.1. A b-manifold (M,Z) is an oriented manifold M with an oriented hypersurface Z.

Remark 2.2. It is possible to extend this definition to consider non-orientable manifolds. See for
instance [12] and [20].

In order to have the b-category we introduce the notion of b-map.

Definition 2.3. A b-map is a map

f : (M1, Z1) −→ (M2, Z2)

so that f is transverse to Z2 and f−1(Z2) = Z1.

Vector fields and differential forms have to be redefined also.

Definition 2.4. A b-vector field on a b-manifold (M,Z) is a vector field which is tangent to Z at
every point p ∈ Z.

Observe, in particular, that a b-vector field is tangent to the hypersurface Z, so from a dynamical
point of view Z is an invariant manifold by the flow of these vector fields. These b-vector fields
form a Lie subalgebra of vector fields on M . Let t be a defining function of Z in a neighborhood
U and (t, x2, ..., xn) be a chart on it. Then the set of b-vector fields on U is a free C∞(U)-module
with basis (

t
∂

∂t
,
∂

∂x2
, . . . ,

∂

∂xn

)
.
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We deduce that the sheaf of b-vector fields on M is a locally free C∞-module and therefore it is
given by the sections of a vector bundle on M . This vector bundle is called the b-tangent bundle
and denoted by bTM . Its dual bundle is called the b-cotangent bundle and is denoted bT ∗M .

By considering sections of powers of this bundle we obtain b-forms.

Definition 2.5. Let (M2n, Z) be a b-manifold and ω ∈ bΩ2(M) a closed b-form. We say that ω is
b-symplectic if ωp is of maximal rank as an element of Λ2( bT ∗pM) for all p ∈M .

In the class of Poisson manifolds there is the distinguished subclass of b-Poisson manifolds which
is indeed formed by b-symplectic manifolds together with a bi-vector field naturally associated to
the b-symplectic forms.

Definition 2.6. Let (M2n,Π) be an oriented Poisson manifold. Let the map

p ∈M 7→ (Π(p))n ∈ Λ2n(TM)

be transverse to the zero section. Then Π is called a b-Poisson structure on M . The hypersurface
Z where the multivectorfield Πn vanishes,

Z = {p ∈M |(Π(p))n = 0}
is called the critical hypersurface of Π. The pair (M,Π) is called a b-Poisson manifold.

The transversality condition is equivalent to saying that 0 is a regular value of the map p −→
(Π(p))n. The hypersurface Z has a defining function obtained by dividing this map by a non-

vanishing section of
∧2n(TM).

The set of b-symplectic manifolds is in one-to-one correspondence with the set of b-Poisson
manifolds. This correspondence, detailed in [13], can be formulated as

Proposition 2.7. A two-form ω on a b-manifold (M,Z) is b-symplectic if and only if its dual
bivector field Π is a b-Poisson structure.

In this context we have a normal form theorem analogous to Darboux theorem for symplectic
manifolds. This result is also proved in [13].

Theorem 2.8 (b-Darboux theorem). Let (M,Z, ω) be a b-symplectic manifold. Then, on a
neighborhood of a point p ∈ Z, there exist coordinates (x1, y1, ..., xn, yn) centered at p such that

ω =
1

x1
dx1 ∧ dy1 +

n∑
i=2

dxi ∧ dyi.

Note that with this chart, the symplectic foliation of (M,Π) has a specific form. It has two
open subsets where the Poisson structure has maximal rank given by {x1 > 0} and {x1 < 0}. The
hyperplane {x1 = 0} contains leaves of dimension 2n− 2 given by the level sets of y1.

One of the research directions has been to generalize b-structures and consider more degenerate
singularities of the Poisson structure. This is the case of bm-Poisson structures, for which ωn has a
singularity of An-type in Arnold’s list of simple singularities [2] [3]. A dual approach is also possible
and interesting, working with forms instead of bivector fields.

Definition 2.9. A symplectic bm-manifold is a pair (M2n, Z) with a closed bm-two form ω which
has maximal rank at every p ∈M .

Such as in the b-symplectic case, an analogous bm-Darboux theorem holds. A decomposition for
these forms is given in [22].
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Definition 2.10. A Laurent Series of a closed bm-form ω is a decomposition of ω in a tubular
neighborhood U of Z of the form

ω =
dx

xm
∧ (

m−1∑
i=0

π∗(α̂i)x
i) + β,

where π : U → Z is the projection, where each α̂i is a closed form on Z, and β is form on U.

It is proved in [22] that every closed bm-form admits in a tubular neighborhood U of Z a Laurent
form of this type, when fixing a semi-local defining function.

2.2. b-contact manifolds. Following these ideas and in analogy with contact structures, b-contact
structures are developed in [19].

Definition 2.11. Let (M,Z) be a (2n+1)-dimensional b-manifold. A b-contact structure is the
distribution given by the kernel of a one b-form ξ = kerα ⊂ bTM , α ∈ bΩ1(M), that satisfies
α∧ (dα)n 6= 0 as a section of Λ2n+1(bT ∗M). We say that α is a b-contact form and the pair (M, ξ)
a b-contact manifold.

As in contact geometry one can define the Reeb vector field that satisfies{
iRαdα = 0

α(Rα) = 1.

A Darboux type theorem can be proved, providing a normal local form for these structures.

Theorem 2.12. Let α be a b-contact form inducing a b-contact structure ξ on a b-manifold (M,Z)
of dimension (2n + 1) and p ∈ Z. We can find a local chart (U , z, x1, y1, . . . , xn, yn) centered at p
such that on U the hypersurface Z is locally defined by z = 0 and

(1) if Rp 6= 0
(a) ξp is singular, then

α|U = dx1 + y1
dz

z
+

n∑
i=2

xidyi,

(b) ξp is regular, then

α|U = dx1 + y1
dz

z
+
dz

z
+

n∑
i=2

xidyi,

(2) if Rp = 0, then α̃ = fα for f(p) 6= 0, where

α̃p =
dz

z
+

n∑
i=1

xidyi.

Remark 2.13. There is also a dual correspondence between b-contact structures and other struc-
tures that play the role of Poisson in the contact context: Jacobi manifolds. The particular subclass
is the one of b-Jacobi manifolds that satisfy also a transversality condition. For more details you
may consult [19].
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2.3. Desingularizing bm-forms. In [14] a desingularization procedure for bm-symplectic mani-
folds associates a family of folded symplectic or symplectic forms to a given bm-symplectic structure
depending on the parity of m. Namely,

Theorem 2.14 (Guillemin-Miranda-Weitsman, [14]). Let ω be a bm-symplectic structure on
a compact orientable manifold M and let Z be its critical hypersurface.

• If m = 2k, then there exists a family of symplectic forms ωε which coincide with the bm-
symplectic form ω outside an ε-neighborhood of Z and for which the family of bivector fields
(ωε)

−1 converges in the C2k−1-topology to the Poisson structure ω−1 as ε→ 0 .
• If m = 2k + 1, then there exists a family of folded symplectic forms ωε which coincide with

the bm-symplectic form ω outside an ε-neighborhood of Z.

This desingularization can be applied to any bm-form as detailed in [6].

Let us describe how the desingularization works in the even and odd case.

Case I: even m .

Assume m = 2k and let f ∈ C∞(R) be an odd smooth function such that f ′(x) > 0 for all
x ∈ [−1, 1] as shown below,

and satisfying

f(x) =

{ −1
(2k−1)x2k−1 − 2 for x < −1

−1
(2k−1)x2k−1 + 2 for x > 1

outside the interval [−1, 1]. Scaling the function consider the function

fε(x) :=
1

ε2k−1
f
(x
ε

)
.

And outside the interval,

fε(x) =

{ −1
(2k−1)x2k−1 − 2

ε2k−1 for x < −ε
−1

(2k−1)x2k−1 + 2
ε2k−1 for x > ε

Replacing dx
x2k

by dfε in the semi-local expression on U we obtain

ωε = dfε ∧ α+ β.

We call this form an fε-desingularization of ω.
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Case II: odd m.

Consider m = 2k + 1, and consider a function f ∈ C∞(R) satisfying

• f(x) = f(−x)
• f ′(x) > 0 if x > 0
• f(x) = x2 − 2 if x ∈ [−1, 1]
• f(x) = log(|x|) if k = 0, x ∈ R \ [−2, 2]
• f(x) = − 1

(2k+2)x2k+2 if k > 0, x ∈ R \ [−2, 2].

Taking ε the width of a tubular neighborhood of Z define

fε(x) :=
1

ε2k
f
(x
ε

)
and consider the form

ωε = dfε ∧ α+ β.

The fε-desingularization is again smooth and dfε vanishes transversally at Z.

When ω is closed, its Laurent decomposition can be used as done in [14] to conclude that ωε is
also closed.

3. A Tischler theorem for manifolds with boundary

Let us recall Tischler theorem [24] as presented in [5].

Theorem 3.1. Let Mn be a closed manifold endowed with r linearly independent closed 1-forms
βi, i = 1, . . . , r which are nowhere vanishing. Then Mn fibers over a torus Tr.

As a remark in Tischler’s original paper, the theorem also holds for compact manifolds with
boundary with an extra assumption.

Theorem 3.2. Let Mn be a compact connected manifold with boundary endowed with r linearly
independent closed 1-forms βi, i = 1, . . . , r which are nowhere vanishing and satisfy these conditions
when restricted to the boundary. Then Mn fibers over a torus Tr.

Using the language of b2k-forms and the deblogging procedure, one can state a Tischler theorem
for manifolds with boundary. This theorem gives more information than the one we would get by
simply applying the classical Tichler theorem restricted to the boundary.
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Definition 3.3. Let M be a manifold with boundary. Its double M̄ is obtained by taking two
copies of M and gluing along their boundary.

M̄ = M × {0, 1}/ ∼,
where (x, 0) ∼ (x, 1) for all x ∈ ∂M .

Theorem 3.4. Let α1, ..., αr be closed one b2k-forms in a b2k-manifold M such that α1∧· · ·∧αr 6= 0
everywhere in M . If the pullback of the forms to the boundary are also independent then M fibers
over Tr. Otherwise the double M̄ fibers over Tr and the glued boundary fibers over Tr−1.

Proof. If the forms are also independent when pullbacked to the boundary, we can apply the
desingularization that we will detail for the second case in the manifold with boundary and apply
Theorem 3.2.

Otherwise at least one of the forms has a singular part and one considers the extension of the
forms αi into M̄ by symmetry. In this way we obtain a b2k-manifold M̄ with critical hypersurface
Z where the boundaries have been glued. We can proceed to desingularize the 1-forms following
[14]. Namely, the forms are closed and admit Laurent series in a neighborhood U of Z,

αi = (

2k−1∑
j=0

αji t
j)
dt

t2k
+ βi,

for t a positively oriented defining function. Here each αji is a constant function and βi is smooth in
Z. The term α0

i is constant and the only non vanishing term of the singular part at the hypersurface

Z. The rest of terms αji for j 6= 0 are paired with powers of t that vanish at Z. The dividing term

of dt
t2k

does not cancel the powers of t because of the structure of the b2k-cotangent bundle: one has

to think of dt
t2k

as if it was a dt̃ for a coordinate t̃.

Since at least one of these α0
i is non vanishing, we can assume α0

1 6= 0. Redefining

αi := αi −
α0
i

α0
1
α1, for i = 2, ..., n

we can assume that only the first form has a singular part at the hypersurface and independence
of the forms still holds. Proceeding to the desingularization, one can take a suitable ε and the
desingularized forms

αi,ε = dfε ∧ (

k∑
j=0

αji t
j) + βi.

Since we have α1 ∧ ... ∧ αr 6= 0,dfε 6= 0 and at least one singular form (for instance the first one
α0
1 6= 0) we deduce that α1,ε ∧ ...∧αr,ε 6= 0 using elementary linear algebra as αi,ε and αi determine

the same matrix of coefficients. One has simply changed the form dt
dt2k

of the basis by dfε. Applying

Theorem 3.1 we deduce that M̄ fibers over Tr. Observe that in Z the form α1 was the only one
with a non vanishing singular term. Hence its the only one with a non vanishing term for dfε: we
deduce that α2,ε, ..., αr,ε are independent when restricted to Z again by linear algebra. In particular,
Z fibers over Tr−1.

�

Remark 3.5. The parity (evenness) of m comes from the desingularization procedure. The desin-
gularized form obtained from a non-vanishing bm-form is non-vanishing only when m is even. For
odd m, as explained in Section 2.3, the resulting form has a zero. This zero cannot be eliminated
because the singular part of the form changes sign when crossing the hypersurface. This is why
the conditions of the second statement of Theorem 3.4 cannot be met for odd m. However, the
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first part can be obtained by adding a constant to the desingularization formula to prevent the
desingularized form from vanishing at the boundary.

Example 3.6. An easy example to consider is the compact cylinder C visualized as a subset of
the torus T2 (as quotient of the plane T2 ∼= (R/Z)2). Consider the b2k-forms 1

sin(2πx)2k
dx and dy

on R2. The critical set is the boundary of a compact cylinder. The forms descend to the quotient,
and in the compact cylinder they satisfy the hypotheses of the theorem.

Figure 1. The double of a compact cylinder

Remark 3.7. The second statement can also be applied for honest De Rham forms with the
following changes. Instead of one of the forms having a singular part, we ask one of the forms to
be transversal to the boundary everywhere. Secondly we need that the forms can be extended to
the doubling of the manifold by symmetry which might not be true in general.

As an easy corollary we obtain,

Corollary 3.8. An n-dimensional manifold admitting n independent and closed b2k-forms is a
compact cylinder Tn−1 × [0, 1].

4. Euler equations on 3-manifolds

The Euler equations model the dynamics of an inviscid and incompressible fluid flow on a 3-
dimensional manifold, see e.g. [4, 21]. For a smooth domain in R3 if we denote by X the velocity
field of the fluid and P the pressure, which is a scalar function, then the equations can be written
as follows, {

∂X
∂t + (X · ∇)X = −∇P

divX = 0
.

Another vector field that has an important role in fluid dynamics is the vorticity, which is defined
as

ω := curlX.

This vector field is related to the local rotation of the fluid. Using the vorticity, one can rewrite
the Euler equations as, {

∂X
∂t −X × ω = −∇B

divX = 0
,

where B = P + 1
2 |X|

2 is the Bernoulli function.

For any Riemannian 3-manifold (M, g) one can write the Euler equations{
∂X
∂t +∇XX = −∇P

divX = 0
.
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where ∇X is the covariant derivative, and the operators ∇ and div are computed with the metric
g. Using the Riemannian volume form µ, the second condition can be expressed as follows,

LXµ = 0.

The vorticity is then the only vector field satisfying

ιωµ = dα,

where α(·) = g(X, ·) is the dual one-form of X using the Riemannian metric. In terms of the
vorticity, the equations read as in the Euclidean case:{

∂X
∂t −X × ω = −∇B

divX = 0
,

and the Bernoulli function is defined using the Riemannian form, as well as the vector product.

Stationary solutions. We will be interested in equilibrium configurations, i.e. in stationary
solutions of these equations. A well known fact is that the Bernoulli function is a first integral for
both X and ω. In particular the stream lines are confined into the level sets of B.

The stationary Euler equations with the Bernoulli formulation are{
X × ω = ∇B
divX = 0

.

In the analytic setting, Arnold noticed the following fact about solutions to these equations. Let
(M, g) be an analytic Riemannian manifold and let X be an analytic solution of the equations.
If B is constant and X is non-vanishing, the vorticity is proportional to X everywhere, that is
curlX = fX for some analytic function f . In this case, X is called a Beltrami flow.

If B is not constant, its critical set Cr(B) := {p ∈M | ∇B(p) = 0} has a stratified structure and
its codimension is at least 1. In this case, Arnold showed that the structure of the stream lines of
X is very similar to the one of integrable systems described by the Arnold-Liouville theorem (see
previous sections). We now provide a new proof using the existence of certain closed one-forms as
in [5].

Theorem 4.1 (Arnold’s structure theorem). Let X be an analytic stationary solution of the Euler
equations on an analytic compact manifold with non constant Bernoulli function. The flow is
assumed to be tangent to the boundary if there is one. Then there is an analytic set C of codimension
at least 1 such that M\C consists of finitely many domains Mi such that either

(1) Mi is trivially fibered by invariant tori of X and on each torus the flow is conjugated to the
linear flow,

(2) or Mi is trivially fibered by invariant cylinders of X whose boundaries lie on the boundary
of M , and all stream lines are periodic.

Proof. We define first the analytic set C. Consider C1 = {B−1(c) : c is a critical value of B} and
C2 the level sets such that they are tangent at some point to the boundary. Take

C = C1 ∪ C2.

By compactness and analyticity [4], it is a finite union of level sets of the function B and hence it
is an analytic set of codimension greater or equal to one.

Consider the following one-forms. On the one hand,

β = ιXµ2,
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where µ2 = ι ∇B
|∇B|2

µ and µ is the volume in M . The form µ2 is sometimes called the Liouville form

and satisfies µ = dB ∧ µ2. On the other hand consider

α(·) = g(X, ·)

where g is the Riemannian metric in M . We claim that the pullback of these forms to a regular
level set i : N ↪→M , i∗α and i∗β, are closed and independent. We recall that the 2-form i∗µ2 is an
area-form on N .

To prove their independence, first notice that the velocity field X is tangent and non-vanishing
on any regular level set of B, so the one-forms i∗α and i∗β are non-degenerate on N . Since the
kernel of i∗β is given by X|N , and the kernel of i∗α is transverse to X|N because i∗α(X|N ) > 0,
we conclude that i∗β and i∗α are linearly independent at each point of N .

To prove that these one-forms are closed, recall the Euler stationary equations in terms of α:{
ιXdα = −dB
dιXµ = 0

.

When restricted to a level set, the first equation implies that ιXd(i∗α) = 0. Since it is a two
dimensional submanifold and X is tangent to the level set this yields d(i∗α) = 0. Observe now that
µ2 satisfies dB ∧ µ2 = µ. Using that expression and the second Euler equation we obtain,

dιXµ = d(ιX(dB ∧ µ2)) = d(ιXdB ∧ µ2 − dB ∧ ιXµ2)
= −d(dB ∧ ιXµ2) = −dB ∧ dιXµ2 = 0.

This equality stands everywhere. Since in the neighborhood of the regular level set we have that
dB 6= 0, we infer that dιXµ2 = dB∧γ for some one-form γ. Accordingly, we obtain that d(i∗ιXµ2) =
0, thus proving that i∗β is also closed.

Now, suppose that N has no boundary component. Then applying Theorem 3.1 we deduce that
it is a torus. If N has a boundary, it must lie on ∂M and since it is invariant under a non-vanishing
field X, the boundary consists of finitely many periodic orbits. The fact that X is non-vanishing
and tangent to the boundary of the level set, implies that the pullback of α to the boundary is
non-vanishing as well. By Remark 3.7 the first case of Theorem 3.4 can be applied. Hence N is
an orientable surface with boundary that fibers over S1, thus it is a cylinder. This determines the
topology of the regular level sets of B. The rest of the proof is standard. Indeed, let φt be the flow
of the vector field S = ∇B

dB(∇B) , which satisfies dB(S) = 1. Then we have

∂

∂t
B(φt(x)) = dB(S) = 1, B(φ0(x)) = B(x).

We deduce that B(φt(x)) = B(x) + t and hence the open set Mi is a trivial fibration T2 × I for a
real interval I in the case that the level sets have no boundary. The same holds when the level sets
are cylinders (due to the fact that in the complement of the set C the level sets of B intersecting
the boundary have a transverse intersection). Since the vector field X commutes with curlX it
follows that it is conjugated to a linear flow on each level set diffeomorphic to a torus. For the
cylinder, all orbits are periodic as an easy consequence of the Poincaré-Bendixon theorem and the
fact that X preserves the area form i∗µ2. �

Remark 4.2. This proof also works to obtain the topology of the regular level sets in the four
dimensional Euler equations studied in [11]. The way to obtain the closed and independent one
forms is done as in [5].
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Arnold’s theorem shows that for non constant Bernoulli functions, the situation is very similar
to integrable systems. However for a constant B a contact structure appears and the situation is
the opposite: a non integrable one. This case will be analyzed in Section 6.

5. Geometric structures on singular level sets

In this section we would like to understand the geometric structure induced on some of the
singular level sets of the Bernoulli function. In the analytic setting a lot can be said about the
structure of the level sets of B, both regular or singular with some assumptions, as studied in [1]
and [7]. In Proposition 2.6 in [7] a topological classification of the singular level sets is obtained
when B is analytic and X is assumed to be non-vanishing. Namely,

Proposition 5.1. Let B be analytic and X a non-vanishing Euler flow on a closed 3-manifold M .
Then, each singular level set of B (finitely many) is a finite union of embedded X-invariant sets
that are periodic orbits, 2-tori, Klein bottles, open cylinders or open Möbius strips.

In this section we shall assume that B is a Morse-Bott function instead of analytic and we shall
not impose any assumptions on X. The standard Arnold’s theorem is studied under analyticity
assumptions. The next natural scenario would be to consider Morse-Bott functions as they are
well-behaved at the critical set and are dense in the set of smooth functions. This assumption is
not uncommon in our context: for instance Arnold’s structure theorem is known to hold for Morse-
Bott Bernoulli functions if the manifold has no boundary. In [9] the assumption considered is that
of stratified singularities, which would go one step further. For Morse-Bott singular level sets we
will see that some b-symplectic structures appear, which provides a new connection between these
Poisson structures and physics. For these structures to appear, we need the existence of a singular
submanifold in a level set thay might end up being the critical hypersurface of a b-symplectic
manifold. For this to make sense we need level sets with a regular part and a singular one. Since
the singularities are of Morse-Bott type, the only two options that admit this structure are the
following two local forms for B:

(1) An isolated critical point of saddle type: B = x2 + y2 − z2.
(2) A 1-dimensional critical set of saddle type: B = x2 − y2.

We are interested in the case where the level set is compact, which will have a topological
singularity. In the first case the singularity is a point in a surface. In the second case the singularity
is a circle. In both cases there is a topological desingularization to obtain a manifold with a
codimension one singular submanifold. The structure that we are interested in is the following. If
µ is the Riemannian volume in the 3-manifold then the area form preserved by X in a level set of
B is i∗µ2, as explained in the proof of Theorem 4.1, where

µ2 = ι ∇B
|∇B|2

µ,

and i is the inclusion of the level set of B into M . Let us answer to the following question: what
kind of geometric structure is i∗µ2 in these desingularized singular level sets?

Case 1. Consider that B around the singularity looks like B = x2 + y2 − z2. The volume form will
be locally µ = dx ∧ dy ∧ dz. The gradient of B is (2x, 2y,−2z) and hence the vector field we are
interested in is

X =
∇B
|∇B|2

= (
x

x2 + y2 + z2
)
∂

∂x
+ (

y

x2 + y2 + z2
)
∂

∂y
− (

z

x2 + y2 + z2
)
∂

∂z
.
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Denoting r2 = x2 + y2 + z2 and computing the two-form we obtain

µ2 =
x

r2
dy ∧ dz − y

r2
dx ∧ dz − z

r2
dx ∧ dy.

Let i : N ↪→ M be the inclusion of the level set N into M , in coordinates i : (θ, ω) 7→
(ω cos θ, ω sin θ, ω). A simple computation yields,

i∗µ2 = dθ ∧ dω.

This already extends to an area form, one can think of it as a polar blow-up. However, to end up
with a concrete smooth manifold we can also realize the topological singularity in a cylinder. Let
σ be the desingularization

σ :


x = u.w

y = v.w

z = w

.

This desingularization sends the cone to a cylinder.

σ

Figure 2. Case 1 desingularization

Letting j : (θ, ω) 7→ (cos θ, sin θ, ω) be the inclusion of the cylinder, we obtain

j∗σ∗µ2 = dθ ∧ dω,

which is a symplectic structure. This is a local model but using bump functions one obtains a
symplectic surface globally defined.

Case 2. Consider now a point in a 1-dimensional critical set of B of saddle type; hence the function
looks locally as B = x2−y2. Again the volume form will be written µ = dx∧dy∧dz. The gradient
of B is (2x,−2y, 0) and the vector field is

X = (
x

x2 + y2
)
∂

∂x
− (

y

x2 + y2
)
∂

∂y
.

Denoting r2 = x2 + y2 the two form is µ2 = x
r2
dy ∧ dz + y

r2
dx ∧ dz. The desingularization applied

now is

σ :


x = u.v

y = v

z = w

.
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It sends the two intersecting planes to two separate ones. We are realizing the topological singularity
of the level, and hence forgetting now about the function B. We analyze the structure of µ2 after
desingularization and restricted to the level set.

σ

Figure 3. Case 2 desingularization

If j is the inclusion of any of the two planes, then we have

j∗σ∗µ2 =
1

v
dv ∧ dω,

where the change of sign depends on which one of the planes we consider. One could be confused
by the change of induced orientations on the hyperplanes outside of the critical curve: However µ2
was already well defined in the regular part of the level and there is not a problem of sign.

This model is local, but since the function is Morse-Bott, the desingularization is applied through
a circle. Assuming that the negative (and positive) normal bundles of the singular set are orientable
(to avoid problems as in [23]), the normal form B = x2− y2 holds on a neighborhood of the critical
circle (for appropriate coordinates). Therefore one obtains globally a b-surface. Accordingly, we
have produced a b-symplectic structure on each component, and globally a b-surface having two
circles as critical set.

For the sake of simplicity in the analysis, we have used a model where the metric looks like the
Euclidean one near the singular sets. This is true for nice metrics with respect to the Morse-Bott
function B as the ones introduced in Hutching’s thesis [15, 16]. Nevertheless, the qualitative picture
described above is independent of this choice.

For our purposes, the most interesting situation is Case 2, where the singular locus is a whole
curve. Observe that the area form µ2 always satisfies the following identity:

(1) dB ∧ µ2 = µ.

By construction, when restricted to the planes obtained after the desingularization procedure, the
form i∗µ2 is an area form that goes to infinity when approaching the critical curve Z. Letting
i : N ↪→M be the inclusion of any of the two planes {x = y} or {x = −y} we have

i∗µ2 =
1

f
ω,

for a function f ∈ N that vanishes along Z and an area form ω. Taking coordinates such that
ω = du ∧ dv we can consider the dual vector field Π2 = f ∂

∂u ∧
∂
∂v . Observe also that equation (1)

holds everywhere and dB = 2xdx−2ydy induces different orientations on each side of Z inside N .

Also dB vanishes when restricted to one of the planes {x = y} or {x = −y} in first order. This
ensures that the pole of µ2 is of order one since µ in M is a volume form. In the desingularized
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y

x

Figure 4. Orientation induced by dB

manifold, which is a surface, the bivector field defines a Poisson structure that vanishes along a
curve in order 1 (which we call critical curve). Thus we have obtained a b-symplectic structure on
the desingularized surface. Thus proving,

Proposition 5.2. Singular sets of the second kind can be desingularized into surfaces with a b-
symplectic structure that is preserved by the flow of the fluid.

Remark 5.3. By using regularization-type techniques like in [19], one can produce artificially
singularities or order 2k + 1 for any k ∈ N.

6. Beltrami fields in b-manifolds

When the Bernoulli function is constant, Beltrami fields are obtained. These are vector fields
that are parallel to their vorticity i.e. curlX = fX for a function f ∈ C∞(M). When f and X
are non-vanishing we speak about nonsingular rotational Beltrami fields. In [8] a correspondence
between these fields and rescaled Reeb vector fields of contact structures is established.

We recall that the motivation for b-manifolds is studying manifolds with cylindrical ends. The
critical surface captures the asymptotic behavior of geometric structures. We see a Riemannian
manifold with a cylindrical end as the interior of a compact manifold with boundary.

M M̄

Z
t = 0 t→∞

s = e−t

s = 1

s = 0
δM̄ ∼= Z

Figure 5. Compactification to a b-manifold

If we take the Euler equations in a manifold of this kind, one can consider them after the
transformation to a b-manifold. The equations obtained are the same but with a resulting b-metric
g and b-volume form µ that capture the asymptotical behavior of the geometric structures. Now
working in the b-tangent and cotangent bundles, in terms of the form α(·) = g(X, ·) and the
Bernoulli function, the Euler equations are still of the form:{

ιXdα = −dB
dιXµ = 0,
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The special case of Beltrami fields is, {
dα = fιXµ

dιXµ = 0,

for a non-vanishing function f ∈ C∞(M). Following similar arguments as in the contact case, we
can prove a correspondence between Beltrami fields in b-manifolds and b-contact structures. This is
the formalization of the following idea: in the cylindrical manifold we can apply the usual correspon-
dence of Beltrami fields with contact structures. When obtaining the b-manifold the interior admits
again a contact structure, but the b-manifold looks only locally as the original manifold. Globally
speaking the b-contact structure gives more information about the global asymptotic behavior close
to the boundary.

Remark 6.1. For the discussion in this section let us put emphasis in a particularity of b-vector
fields illustrating it with an example. Consider the b-manifold (R2, Z = {(x, y)|x = 0}) with basis
〈 ∂∂y , x

∂
∂x〉. The b-vector field X = x ∂

∂x vanishes in the usual sense of a vector field when x = 0.

However as a section of the b-tangent bundle the term (x ∂
∂x) is not vanishing. When paired with

the dual form α = dx
x it satisfies α(X) = 1 even in Z.

The statement of the b-Beltrami fields and b-contact correspondence is now presented.

Theorem 6.2. Let M be a b-manifold of dimension three. Any rotational Beltrami field and non-
vanishing as a section of bTM on M is a Reeb vector field (up to rescaling) for some b-contact form
on M . Conversely given a b-contact form α with Reeb vector field X then any nonzero rescaling of
X is a rotational Beltrami field for some b-metric and b-volume form on M .

Proof. The proof is very similar to the one for usual Beltrami fields. One just needs to work
with the b-tangent bundle bTM and its dual instead of the tangent bundle. Let X be a Beltrami
field in (M,Z), a b-manifold of dimension three. For this implication we can follow [8]. Denote
e1 = X/ ‖X‖ which is globally defined as a b-vector field since X is a non-vanishing section of bTM
and take a couple e2, e3 to have an orthonormal frame. Then consider α(·) = g(X, ·) = ‖X‖ e1
where e1 is the dual to e1. This form is the dual of a b-vector field by a b-metric and hence defines
a one b-form. Recall that dα = fιXµ which is also a b-form of degree 2 since it is a contraction of
a b-vector field by a b-volume form.

The b-volume form has the form µ = he1 ∧ e2 ∧ e3 for a non-vanishing function h ∈ C∞(M).
Then it is clear that

α ∧ dα = g(X, ·) ∧ fιxµ = fh ‖X‖2 e1 ∧ e2 ∧ e3 6= 0.

Also ιXdα = fιXιXµ = 0 and X is a rescaled Reeb vector field of a b-contact structure given by α.

Conversely, consider a b-contact form α and a rescaling of its Reeb vector field Y = hR for
h ∈ C∞(M) a non-vanishing function. We will follow the idea in [10] for this implication. Using
the Darboux theorem for b-contact forms, Theorem 2.12, the subbundle kerα is generated by
ξp = 〈z ∂

∂z ,
∂
∂y1
〉 or ξp = 〈− ∂

∂x1
+ z ∂

∂z ,
∂
∂y1
〉 if the Reeb vector field does not vanish as a smooth

vector field. When R vanishes as a smooth vector field (but not as a bTM section) then R = z ∂
∂z

and ξp = 〈 ∂
∂x1

, x1z
∂
∂z −

∂
∂y1
〉. Hence ξ is a vector bundle of constant rank 2 over M , it is indeed a

subbundle of bTM . Recall now from [17] the following proposition:

Proposition 6.3. Let E → M be a 2n-dimensional vector bundle with a non degenerate bilinear
form ωq in each fiber Eq which varies smoothly with q ∈ M . Then there exists an almost complex
structure which is compatible with ω, i.e. such that ω(·, J ·) is positive definite.
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Let g be the b-metric

g(u, v) =
1

h
(α(u)⊗ α(v)) + dα(u, Jv).

The vector field Y satisfies ιY g = α. Take µ = 1
hα∧dα as b-volume form in M . It obviously satisfies

ιY µ = dα. Hence Y is a Beltrami field (with constant proportionality factor) for this choice of g
and µ.

�

Example 6.4 (ABC flows). A very well-known family of Beltrami flows in T3 are the ABC flows:

X(x, y, z) = [A sin z + C cos y]
∂

∂x
+ [B sinx+A cos z]

∂

∂y
+ [C sin y +B cosx]

∂

∂z
.

Everything is computed in R3 and then quotiented depending on which hypersurface we consider.
Taking as hypersurface Z = {z = 0} one can check for which values of the parameters the b-vector
field

X(x, y, z) = [A sin z + C cos y]
∂

∂x
+ [B sinx+A cos z]

∂

∂y
+ [C sin y +B cosx]z

∂

∂z

is a Beltrami field in the corresponding b-manifold. The metric and volume forms are

g = dx2 + dy2 + (
dz

z
)2, µ = dx ∧ dy ∧ dz

z
.

We compute the one form

α = g(X, ·) = [A sin z + C cos y]dx+ [B sinx+A cos z]dy + [C sin y +B cosx]
dz

z
,

and the contraction by the volume

ιXµ = [−B sinx−A cos z]dx ∧ dz
z

+ [A sin z + C cos y]dy ∧ dz
z

+ [C sin y +B cosx]dx ∧ dy.

It is clear that dιXµ = 0, it remains to check the equation dα = fιXµ. Computing the derivative
of alpha

dα = [−B sinx− zA cos z]dx ∧ dz
z

+ [zA sin z + C cos y]dy ∧ dz
z

+ [C sin y +B cosx]dx ∧ dy.

When differentiating with respect to z in the b-cotangent bundle, a z factor appears. For dα = fιXµ
to be satisfied, we need A = 0 and f = 1. The two-parameter family of vector fields

X(x, y, z) = C cos y
∂

∂x
+B sinx

∂

∂y
+ [C sin y +B cosx]z

∂

∂z

is b-Beltrami on the b-manifold T2 × R with a T2 as critical hypersurface. To obtain a vector
field in a compact manifold, one can chose sin z instead of z as defining function of the critical set
(which is now defined in the quotient to T3) and hence work with sin z ∂

∂z and dz
sin z . We obtain a

Beltrami field on T3 with two T2 as critical hypersurfaces. It is an easy computation to check that
the b-vector field X is non-vanishing as a section of bTM if and only if |B| 6= |C|.

Remark 6.5. For this b-manifold the corresponding original manifold can be thought as M =
R × T2. When compactifying each of the cylindrical ends we obtain a manifold diffeomorphic to
T2 × [0, 1]. When considering its double the resulting b-manifold is T3 with two T2 as critical
hypersurfaces.
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As an example of b-contact structure, let us compute it in the simple case C = 0 and B > 0 for
ABC fields in T3, i.e. the defining function is sin z. The one b-form α in this case is

α = g(X, ·) = B sinxdy +B cosx
dz

sin z
.

It is clearly a b-contact structure since

α ∧ dα = B2dx ∧ dy ∧ dz

sin z
,

and its Reeb vector field is R = 1
B sinx ∂

∂y + 1
B cosx sin z ∂

∂z , a rescaling of the original Beltrami

field.

Remark 6.6. This correspondence holds true if we consider Beltrami fields on bm-manifolds. The
associated structure is then a bm-contact structure.

The Weinstein conjecture [25] on periodic orbits of Reeb flows claims that any Reeb vector field
admits a periodic orbit on a compact manifold. In [19] a plug-like construction is used to give a
counterexample to the Weinstein conjecture on a b-contact manifold: the associated Reeb vector
field does not have a smooth periodic orbit and the notion of singular periodic orbits is introduced.

Corollary 6.7. A Beltrami field on a b-manifold does not necessarily have a smooth periodic orbit.

In [19] the authors conjecture a singular version of the Weinstein conjecture claiming that the
Reeb vector field of any compact b-contact manifold possesses at least one periodic orbit which may
be singular in the following sense:

Definition 6.8. Let M be a manifold with hypersurface Z. A singular periodic orbit is either a
periodic orbit in M\Z or an orbit γ such that limt→±∞ γ(t) ∈ Z.

One could obtain information about the stream lines of a b-Beltrami flow depending on the
possible casuistics that this conjecture opens. In particular, this would allow to establish the
existence of either a periodic orbit or an unbounded orbit that escapes (in both directions) through
a cylindrical end.

M

γ2

γ1

Figure 6. Two possible singular periodic orbits
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sité, 77 Avenue Denfert-Rochereau, 75014 Paris, France

Daniel Peralta-Salas, Instituto de Ciencias Matemáticas-ICMAT, C/ Nicolás Cabrera, no 13-15
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