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Abstract

Among a few known techniques the isoparametric version of the finite element method for
meshes consisting of curved triangles or tetrahedra is the one most widely employed to solve PDEs
with essential conditions prescribed on curved boundaries. It allows to recover optimal approxima-
tion properties that hold for elements of order greater than one in the energy norm for polytopic
domains. However, besides a geometric complexity, this technique requires the manipulation of ra-
tional functions and the use of numerical integration. We consider a simple alternative to deal with
Dirichlet boundary conditions that bypasses these drawbacks, without eroding qualitative approxi-
mation properties. In the present work we first recall the main principle this technique is based upon,
by taking as a model the solution of the Poisson equation with quadratic Lagrange finite elements.
Then we show that it extends very naturally to viscous incompressible flow problems. Although the
technique applies to any higher order velocity-pressure pairing, as an illustration a thorough study
thereof is conducted in the framework of the Stokes system solved by the classical Taylor-Hood
method.

Key words: Curved domain, Dirichlet, finite elements, mixed, N -simplex, optimal order, Stokes, straight-edged.

AMS Subject Classification: 65N30, 76M10.

1 Introduction
Consider the finite-element solution of second order elliptic equations posed in curved domains with Dirichlet
boundary conditions. It is well known that a considerable order lowering may occur if prescribed boundary values
are shifted to nodes that are not mesh vertexes of an approximating polygon or polyhedron formed by the union
of straight-edged N -simplexes of a fitted mesh. Over four decades ago some techniques were designed in order to
remedy such a loss of accuracy, and possibly attain the same theoretical optimal orders as in the case of a polytopic
domain, assuming that the solution is sufficiently smooth. Two examples of such attempts in the framework of
two-dimensional problems are the interpolated boundary condition method by Nitsche and Scott (cf. [17] and
[25]), and the method introduced by Zlámal in [32] and extended by Žénišek [30]. Among such techniques the
finite element method’s isoparametric version is by far the one most widely in use since the sixties (cf. [31])
in order to recover the lost optimality. One of the main reasons why it became so popular is the fact that the
isoparametric technique applies to both two- and three-dimensional problems. We recall that this version of the
finite element method is based on elements with curved boundary portions, aimed at better approximating a curved
boundary than straight edges or plane faces. In this case the aforementioned shift of prescribed boundary values
is avoided, since all nodes to which such values apply remain on the true boundary. The price to pay however
is the manipulation of rational functions as both shape and trial functions defined upon the curved elements, and
the resulting compulsory use of numerical integration. While on the one hand this is far from being an obstacle
in most current applications such as linear problems with constant coefficients, numerical integration can be a
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delicate issue in more complex situations. The technique exploited in this work allows overcoming all such issues,
since it is based only on polynomial algebra upon an ordinary (i.e. a straight-edged) N -simplex. Moreover, in
contrast to the simple polygonal approach no erosion of the theoretical order of a given interpolation inherent to
the method occurs, especially for methods which are not of the lowest possible order. In short, our technique
is aimed at ensuring a theoretical order greater or equal to two in the natural norm, without the use of curved
elements and interpolating functions other than piecewise polynomials.
Actually the conception of the finite-element technique for solving boundary value problems with a smooth curvi-
linear boundary considered in this work is close to the interpolated (Dirichlet) boundary condition method studied
in [7]. Though intuitive and known since the seventies, the latter technique has been of limited use so far. Among
the reasons for this lies its difficult implementation, the lack of an extension to three-dimensional problems and
restrictions on the choice of boundary nodal points to reach optimal convergence rates. In contrast our method is
simple to implement in both two- and three-dimensional geometries. Moreover it is particularly handy, whenever
a finite element method has normal component or normal derivative degrees of freedom as illustrated in [22].
Indeed when a method incorporates this type of degree of freedom the definition of isoparametric finite-element
analogs is not always simple or clear (see e.g. [4]).
It is important to point out that efficient finite-element techniques are known since long, to optimally handle
boundary conditions other than Dirichlet’s, such as Neumann or Robin boundary conditions prescribed on curved
boundaries. In this respect the author refers for instance to the works by Barrett and Elliott [2] and [3], besides [28]
where a clear explanation on the issues brought about by Neumann conditions prescribed on curved boundaries is
given.

The technique applied in this paper was introduced in [20], in connection with triangular Lagrange finite el-
ements of any order k greater than one to solve the Poisson equation posed in a smooth curvilinear domain. In
the subsequent work [21] the author addressed the case of tetrahedral Lagrange elements of arbitrary order for
second order elliptic PDEs in the same class of domains. A synthesis of both papers is given in [23]. In [19] the
author and co-worker used the same approach to the solution of Maxwell’s equations with a Hermite finite element
method. In this work we push further such studies in accordance to the following outline. In Section 2 we recall
the main results on the new technique provided in [20] and [21], restricted to the case k = 2. Numerical examples
are given in Section 3 in connection with the two-dimensional Poisson equation as well. A rigorous study of this
technique is carried out in Section 4 in the framework of the finite-element solution of the equations governing
incompressible viscous flows. Although such a study applies to different mixed elements or formulations of these
equations such as GLS and SUPG, we confine ourselves to the case of the popular Taylor-Hood element (cf. [16])
as applied to the Stokes system in standard Galerkin formulation. In Section 5 we supply numerical examples
illustrating the theoretical results of Section 4, and we conclude in Section 6 with a few comments.

2 Technique’s short description
Referring to [20] and [21] for further details, here we describe our technique to solve boundary value problems
with Dirichlet conditions prescribed on smooth curved boundaries, by solving a simple model problem as follows.
Let Ω be a boundedN -dimensional domain forN = 2 orN = 3, and Γ be its boundary assumed to be sufficiently
smooth (Γ must be at least of the C1-class). Given a function f ∈ H1(Ω) we wish to find a function u ∈ H3(Ω)
that solves −∆u = f in Ω with u = g on Γ assuming that g ∈ H5/2(Γ).

Now let P = {Th}h be a uniformly regular family of finite element meshes consisting of straight-edged
triangle or tetrahedra, according to the space dimension, satisfying the usual compatibility conditions (see e.g.
[9]). Every element of Th is to be viewed as a closed set. Moreover each one of these meshes is assumed to fit Ω
in such a way that all the vertexes of the polygon or the polyhedron ∪T∈ThT lie on Γ. We denote the interior of
this union set by Ωh. Let Γh be the boundary of Ωh, hT be the diameter of T ∈ Th and h := maxT∈Th hT .
We make the very reasonable assumption that every mesh triangle has no more than one edge in Γh and no mesh
tetrahedron has either no more than one face or no more than one edge contained in Γh. The subset of Th consisting
of elements having at least one edge on Γh is denoted by Sh.
Now let Vh be the finite-element space consisting of continuous functions that vanish on Γh, whose restriction to
each T ∈ Th belongs to P2, where Pk is the space of polynomials of degree less than or equal to k. f̃ ∈ L2(Ωh)
being an extension of f to Ωh \ Ω, we further set for u, v ∈ H1(Ωh):{

āh(u, v) :=
∫

Ωh
grad u · grad v dx

and Lh(v) :=
∫

Ωh
f̃v dx.

(1)
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To make ideas clear, and without loss of essential aspects, let us consider the case where g ≡ 0. If we search for
ūh such that,

ūh ∈ Vh and āh(ūh, v) = Lh(v) ∀v ∈ Vh, (2)

it is well-known that the energy norm of u− ūh in Ωh, that is, ‖ u− ūh ‖ē,h, where

‖ · ‖ē,h:=

[∫
Ωh

|grad(·)|2dx
]1/2

, (3)

will be only an O(h1.5).
In order to recover the optimal O(h2)-convergence rate in the energy norm we propose the following.
LetWh be a space consisting of functions defined in Ωh whose restriction to every element T ∈ Th is a polynomial
of degree less than or equal to two, which are continuous at the vertexes of T and at the mid-points of the edges
of T not contained in Γh, ∀T ∈ Th. Besides this, a function w ∈Wh is required to vanish at all the mesh vertexes
lying on Γh, and at certain points of Γ belonging to the set ∆S attached to an elements S ∈ Sh containing the
underlying portion of Γ, constructed as described below ∀S ∈ Sh. We consider beforehand that the expression of
w ∈Wh in every element S ∈ Sh is extended to ∆S \ Ωh.
Referring to Figure 1, in the two-dimensional case ∆S is the closed set delimited by Γ and the edge d of S
contained in Γh. For every S ∈ Sh, the extension of w to ∆S \ Ωh is required to vanish at a point P ∈ Γ located
between two neighboring vertexes of S. To make implementation more straightforward P can be chosen to be the
nearest intersection with Γ of the perpendicular to the edge d passing through its mid-point M . Henceforth ∆S

will be referred to as a skin.
Referring to Figures 2 and 3 (right), in the three-dimensional case, for every boundary edge d of an element
S ∈ Sh we first denote by Π the plane bisecting the dihedral formed by the faces F and F

′
of S and another

tetrahedron S
′ ∈ Sh respectively, whose intersection is d. We generically denote by δd the closed subset of Π

comprised between d and Γ, referred to as a plane skin hereafter, as depicted in Figure 2 for a tetrahedron S having
a face F contained in Γh. Referring to Figure 3 (left), in the case of such a tetrahedron we denote by ∆S the closed
subset of Ω ∪ Ωh delimited by the three plane skins δd, Γ and F . For the other type of tetrahedrons S ∈ Sh there
will be only one such a plane skin δd and we set ∆S = δd. Then for every S ∈ Sh the extension of w to ∆S \Ωh
is required to vanish at a point P ∈ Γ belonging to δd located between the end-points of d, for every edge d of
S contained in Γh. Akin to the two-dimensional case P can be conveniently chosen to be the nearest intersection
with Γ of the perpendicular to d in δd passing through its mid-point M .

Figure 1: Set ∆S for triangles S in Sh with their nodes P ∈ Γ associated with M ∈ Γh

Now instead of solving (2) we search for uh such that,

uh ∈Wh and ah(uh, v) = Lh(v) ∀v ∈ Vh. (4)

where
ah(w, v) :=

∫
Ωh

gradhw · grad v dx ∀w ∈Wh and ∀v ∈ Vh, (5)
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Figure 2: Plane skin δd for two tetrahedra S, S
′

having faces F, F
′ ⊂ Γh with F ∩ F ′ = edge d

Figure 3: Set ∆S for a tetrahedron S∈Sh and its nodes (right) P ∈Γ associated with M ∈Γh

gradh : Wh +H1(Ωh) −→ [L2(Ωh)]N being the broken gradient operator defined by,

[gradhw]|T = grad[w|T ] ∀T ∈ Th.

Of course if w is continuous the forms ah and āh coincide. This always happens in the two-dimensional case,
since Wh ⊂ C0(Ωh). However this inclusion is false in three-dimension space because functions w ∈Wh are not
necessarily continuous on the interfaces of two tetrahedra in Sh (cf. [21]). For this reason in the sequel we will
work with the broken energy norm ‖ · ‖e,h given by,

‖ · ‖e,h:=

[∫
Ωh

|gradh(·)|2dx
]1/2

, (6)

and also with the reduced broken energy norm ‖ · ‖ẽ,h given by,

‖ · ‖ẽ,h:=

[∫
Ω̃h

|gradh(·)|2dx
]1/2

where Ω̃h := Ωh ∩ Ω. (7)

According to [20] and [21], ‖ uh − u ‖e,h (resp. ‖ uh − u ‖ẽ,h) is an O(h2) if Ω is convex (resp. non-convex).
In the remainder of this section we give a detailed proof of these results. One of the keys to the problem is the
following proposition:
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Proposition 2.1 Provided h is sufficiently small, for every w ∈Wh there exists v ∈ Vh such that{
‖ w − v ‖e,h≤ C1h ‖ w ‖e,h,
ah(w, v) ≥‖ w ‖2e,h /2

(8)

where C1 is a strictly positive constant independent of both w and h.

Proof : Given w ∈ Wh let v ∈ Vh coincide with w at all mesh nodes, except those located on Γ which are not
mesh vertexes. The latter are precisely the nodes P whose construction is illustrated in Figures 1 and 3, at which
w necessarily vanishes. Clearly enough (v−w)|T ≡ 0 for every T having no edge contained in Γh. Therefore all
we need are estimates of

∫
S
|grad(v − w)|S |2dx for every S ∈ Sh, i.e. having at least one edge d ⊂ Γh. For the

sake of brevity we only consider the case of an S ∈ Sh having exactly one such an edge d; indeed the case of a
tetrahedron having a face contained in Γh can be handled as a trivial extension of the argument that follows.
Let then ϕS ∈ P2 be the Lagrange basis function that vanishes at all the five nodes of S for N = 2 or nine nodes
for N = 3, which are not the mid-point of d. Denoting such a mid-point by MS we clearly have

[v − w]|S = w(MS)ϕS . (9)

First we refer to Figures 1 and 2 where the set ∆S is illustrated, for S ∈ Sh. Recalling that hS is the diameter of
S, by construction there exists a mesh-independent constant CΓ such that

|w(MS)| ≤ CΓh
2
S max

x∈∆S

|grad w(x)|. (10)

Since w is a polynomial in S there must exist another mesh-independent constant Cδ such that (cf [28]):

max
x∈∆S

|grad w(x)| ≤ Cδ max
x∈S
|grad w(x)|. (11)

Furthermore by a classical inverse inequality (cf. [9]) there exists another mesh-independent constant Cι such
that,

max
x∈S
|grad w(x)| ≤ Cιh−N/2S

[∫
S

|grad w|2dx|
]1/2

. (12)

It follows from (9), (10), (11) and (12) that∫
S

|grad(v − w)|2dx ≤ C2
ι C

2
δC

2
Γh

4−N
S

∫
S

|grad w|2dx
∫
S

|grad ϕS |2dx. (13)

Combining (13) with the obvious estimate∫
S

|grad ϕS |2dx ≤ C2
ϕh

N−2
S (14)

for a suitable mesh-independent constant Cϕ, we easily obtain

‖ v − w ‖e,h≤ C1h ‖ w ‖e,h with C1 = CϕCιCδCΓ. (15)

Finally, noting that ah(w, v) =‖ w ‖2e,h +ah(w, v − w) ≥‖ w ‖e,h (‖ w ‖e,h − ‖ v − w ‖e,h), the lower bound,

ah(w, v) ≥‖ w ‖2e,h /2 (16)

trivially follows from (15) for h = h0, where h0 is the largest mesh size in the family P such that 1 − C1h0 is
bounded below by 1/2.

As an immediate consequence of (8) a uniform inf-sup Babuška-Brezzi condition in connection with problem
(4)-(5) is satisfied. More precisely we have:

Corollary 2.2 Provided h is sufficiently small, it holds for some α ≥ 1/3:

∀w ∈Wh 6= 0, sup
v∈Vh\{0}

ah(w, v)

‖ w ‖e,h‖ v ‖e,h
≥ α. (17)

Since obviously dim(Vh) = dim(Wh), and both ah and Lh are uniformly bounded independently of h, the simple
fact that (17) holds implies that (4) is uniquely solvable (cf. [12]).

Next we prove error estimates for problem (4). In this aim we denote by | · |m,D the usual semi-norm of
Sobolev space Hm(D) in a bounded domain D ∈ <N , for m ∈ N (cf. [1]). First we have:
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Theorem 2.3 Assume that Ω is convex. Then provided h is sufficiently small, for a certain mesh-independent
constant C2 it holds:

‖ uh − u ‖e,h≤ C2h
2|u|3,Ω. (18)

where ‖ · ‖e,h is the discrete H1- semi-norm defined by (6).

Proof : From (17) we infer that

‖ uh − w ‖e,h≤ 3 sup
v∈Vh\{0}

ah(uh − w, v)

‖ v ‖e,h
∀w ∈Wh. (19)

Let Ih(u) ∈ Wh be the standard interpolate of u at the mesh nodes associated with Wh. Taking in (17) w =
uh − Ih(u), we add and subtract u in the first argument of ah. Thus by straightforward calculations,

‖ uh − Ih(u) ‖e,h≤ 3

[
‖ u− Ih(u) ‖e,h + sup

v∈Vh\{0}

ah(uh − u, v)

‖ v ‖e,h

]
. (20)

Noting that ah(uh, v) = Lh(v) we come up with:

‖ uh − Ih(u) ‖e,h≤ 3

[
‖ u− Ih(u) ‖e,h + sup

v∈Vh\{0}

|ah(u, v)− Lh(v)|
‖ v ‖e,h

]
. (21)

Since Ωh ⊂ Ω if Ω is convex, we observe that ah(u, v) =

∮
Γh

v
∂u

∂nh
dΓh −

∫
Ωh

v∆u dx, where
∂u

∂nh
is the outer

normal derivative of u on Γh. Noting that −∆u = f in Ωh and v ≡ 0 on Γh, we trivially obtain,

‖ uh − u ‖e,h≤ 4 ‖ u− Ih(u) ‖e,h . (22)

Then (18) is a consequence of standard estimates of the interpolation error in Sobolev norms (cf. [7]).

Remark 1 It is interesting to note that although our method is non-conforming for N = 3, in any case Vh is a
subspace of H1(Ωh). Therefore the variational residual ah(u, v) − Lh(v) vanishes if Ω is convex, in contrast to
usual non-conforming methods.

Now we address the case of a non-convex Ω. Let us consider a smooth domain Ω̃ close to Ω which strictly
contains Ω ∪ Ωh for all h sufficiently small. More precisely, denoting by Γ̃ the boundary of Ω̃ we assume that
meas(Γ̃) −meas(Γ) ≤ ε for ε sufficiently small. For the sake of simplicity henceforth we consider that f was
extended by zero to the whole Ω̃ \ Ω and still denote this extension by f̃ . In doing so the following error estimate
can be proved:

Theorem 2.4 Assume that there exists a function ũ defined in Ω̃, satisfying:

• ũ|Ω = u;

• ũ = 0 a.e. on Γ;

• ũ ∈ H3(Ω̃).

Then as long as h is sufficiently small it holds:

‖ uh − u ‖ẽ,h≤ C̃2[h2|ũ|3,Ω̃ + h5/2 ‖ ∆ũ ‖0,Ω̃], (23)

where C̃2 is a mesh-independent constant and ‖ · ‖ẽ,h denotes the standard H1-semi-norm defined in (7).

Proof : According to (17) ∀w ∈Wh we have,

‖ uh − w ‖e,h≤
1

α
sup

v∈Vh\{0}

|ah(ũ, v)− Fh(v)|+ |ah(ũ− w, v)|
‖ v ‖e,h

. (24)

Since ũ ∈ H3(Ω̃) we can apply First Green’s identity to ah(ũ, v) thereby getting rid of integrals on portions of Γ.
Next we note that ∆ũ + f̃ = 0 in every T ∈ Th \ Sh; this is also true of elements T not belonging to the subset
Rh of Sh consisting of elements R such that R \ Ω is not restricted to a set of vertexes of Ωh. Finally we recall
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that ∆ũ + f̃ vanishes identically in the set R ∩ Ω ∀R ∈ Rh. Denoting by ∆̃R the interior of the set R \ Ω for
R ∈ Rh we can write:

|ah(ũ, v)− Fh(v)| =

∣∣∣∣∣ ∑
R∈Rh

∫
∆̃R

∆ũ v dx

∣∣∣∣∣ ≤ ∑
R∈Rh

‖ ∆ũ ‖0,∆̃R
‖ v ‖0,∆̃R

. (25)

Now taking into account that v ≡ 0 on Γh and recalling the constant CΓ defined in Proposition 8, it holds:

|v(x)| ≤ CΓh
2
R ‖ |grad v| ‖0,∞,∆̃R

, ∀x ∈ ∆̃R,

where ‖ · ‖0,∞,D denotes the standard norm of L∞(D), D being a bounded open set of <N . Next, using the same
arguments as in the proof of Proposition 8, we derive the estimate ‖ |grad v| ‖0,∞,∆̃R

≤ CIh−N/2R ‖ grad v ‖0,R
for a mesh-independent constant CI . Noticing that the measure of ∆̃R is bounded by a constant depending only
on Ω times hN+1

R , after straightforward calculations we obtain for a certain mesh-independent constant CZ :

‖ ∆ũ ‖0,∆̃R
‖ v ‖0,∆̃R

≤ CZh5/2
R ‖ ∆ũ ‖0,∆̃R

‖ grad v ‖0,R ∀R ∈ Rh. (26)

Now plugging (26) into (25) and applying the Cauchy-Schwarz inequality, we easily come up with,

|ah(ũ, v)− Fh(v)| ≤ CZh5/2 ‖ ∆ũ ‖0,Ω̃‖ v ‖e,h . (27)

Finally plugging (27) into (24) and taking w = Ih(ũ), we immediately establish the validity of error estimate (23).

Remark 2 There are many ways to ensure the existence of ũ satisfying the assumptions of Theorem 2.4, as long
as Γ is as smooth as required. For instance we refer to [27] for an interesting construction of ũ.

3 Some numerics for the Poisson equation
Let us illustrate the performance of the new technique to handle Dirichlet conditions on curved boundaries. With
this aim we first solve problems (2) and (4) in case Ω is the unit disk centered at the origin, and a uniformly regular
family of meshes consisting of 8n2 triangles for n = 2m, with m = 1, 2, . . . is constructed in the way described
in [21]. In these experiments we take f(x, y) = 9r where r = (x2 + y2)1/2, and hence the exact solution is
given by u(x, y) = 1 − r3. Owing to symmetry only the quarter disk corresponding to x > 0 and y > 0 is
taken into account in the computations, and therefore meshes containing 2n2 elements are employed. For a fairer
comparison we also supply results obtained for the same problem solved by the classical isoparametric technique.
We denote the solution obtained with this method by ũh.

Takingm = 2, 3, 4, 5, 6 and observing that h = 1/n, in Table 1 the quantities ‖ uh−u ‖e,h, ‖ ũh−u ‖e,h and
‖ ūh − u ‖e,h for the resulting decreasing values of h are displayed. Table 1 confirms second order convergence

n −→ 4 8 16 32 64

‖ uh − u ‖e,h −→ 0.1329×10−1 0.3343×10−2 0.8381×10−3 0.2097×10−3 0.5245×10−4

‖ ūh − u ‖e,h −→ 0.5434×10−1 0.1969×10−1 0.7042×10−2 0.2503×10−2 0.8870×10−3

‖ ũh − u ‖e,h −→ 0.1559×10−1 0.3837×10−2 0.9477×10−3 0.2353×10−3 0.5861×10−4

Table 1: Energy errors for a test-problem in a disk solved by methods (4), (2) and isoparametric FEs

in the energy norm for the approach advocated in this paper, while the polygonal approach (2) yields only O(h1.5)
approximations in the same norm, as predicted in classical books (cf. [9]). Of course the expected second order
convergence of the isoparametric solution is also observed. However the new method is a little more accurate.

Now in order to further illustrate the accuracy of method (4) in case Ω is not convex, we compare it again
with method (2) by solving a problem whose exact solution is not axisymmetric. More specifically, here the
domain described in polar coordinates (r, θ) is given by Ω := {(r, θ)| r ≤ [4 + cos(4θ)]/5}. Taking g ≡ 0
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and f = 16r2 − 5.8r − 11.2x2y2/r3 the exact solution is the function u = r3 − r4 − 1.6x2y2/r. Notice that
f ∈ H1(Ω) and u ∈ H3(Ω).
Here again symmetry allows working with the computational domain corresponding to x > 0 and y > 0. The
meshes also consist of 2n2 elements, generated like in [22], by subdividing the radial coordinate r into n equal
parts and the azimuthal coordinate θ ∈ (0, π/2) into 2n equal parts.

Observing that h = 1/n, we show in Table 2 the quantity ‖ uh − u ‖e,h for n = 2m, with m = 2, 3, 4, 5, 6.
Moreover, in order to give a better idea of how effective our method is, we also supply the errors ‖ uh−u ‖0,h and
|uh − u|∞,h, where ‖ · ‖0,h and | · |∞,h stand for the standard norm of L2(Ωh) and the maximum absolute error
at the nodal points, respectively. Table 2 validates method’s second order convergence in energy norm established

n −→ 4 8 16 32 64

‖ uh − u ‖e,h −→ 0.1566×10−1 0.4235×10−2 0.1089×10−2 0.2751×10−3 0.6910×10−4

‖ uh − u ‖0,h −→ 0.4875×10−3 0.5859×10−4 0.7315×10−5 0.9195×10−6 0.1156×10−6

|uh − u|∞,h −→ 0.8110×10−3 0.1790×10−3 0.2745×10−4 0.3701×10−5 0.4915×10−6

Table 2: Errors in different senses for a test-problem in a non-convex domain solved by method (4)

in Theorem 2.4. Even better news come from the observed convergence rates of three in the norm of L2(Ωh) and
of a little less than three in the L∞-semi-norm | · |∞,h.

4 Application to the Taylor-Hood element
The classical Taylor-Hood element was introduced in [16] for the solution of the incompressible Navier-Stokes
equations. It consists of continuous piecewise polynomial representations of both velocity and pressure in triangles
or tetrahedra, of degree two for the former variable and of degree one for the latter. Second order convergence
results for this method were established by Verfürth [29] in the case of a polygonal domain and by Boffi [5] in the
case of polyhedrons. In this section we apply the method described in Section 2 in order to extend such results to
the case of smooth curvilinear domains.
This study will be restricted to the linearized form of the stationary incompressible Navier-Stokes equations, which
governs incompressible viscous flows at a very low Reynolds number. More specifically our theory applies to the
following Stokes system in a bounded domain Ω of <N at least of the C1-class, for N = 2 or N = 3:
Given a field f ∈ [H1(Ω)]N , and a velocity profile g defined on Γ assumed to belong to [H5/2(Γ)]N and to satisfy
the conservation property

∮
Γ
g · n ds = 0, where n is the unit outer normal vector on Γ, we wish to determine a

velocity field u ∈ [H1(Ω)]N and a hydrostatic pressure p ∈ L2(Ω)/<, where A/B denotes the quotient between
two vector spaces A and B, such that: −∆u + grad p = f

div u = 0

}
in Ω

u = g on Γ.
(28)

A suitable regularity assumption on Ω, besides those applying to f and g, legitimately allows assuming in turn
that u ∈ [H3(Ω)]N and p ∈ H2(Ω).
Although all the results to be derived hereafter apply to the inhomogeneous case, in order to avoid non essential
difficulties, we further restrict the analysis conducted in this section to the case where g ≡ −→0 .

Our working spaces here will be the pair (Vh,Wh) of vector field spaces defined by Vh := [Vh]N and
Wh := [Wh]N , together with the function space Qh := Q̃h ∩ L2

0(Ωh), with Q̃h := {q | q ∈ C0(Ωh), q|T ∈
P1, ∀T ∈ Th}, where L2

0(Ωh) = {q | q ∈ L2(Ωh),
∫

Ωh
q dx = 0}. For the sake of simplicity, henceforth we

denote by |w|1,h the semi-norm ‖ gradhw ‖0,h of a field w ∈ Wh + [H1(Ωh)]N , where ‖ · ‖0,h stands for
standard norm of L2(Ωh).
We make the same assumptions as in Section 2 on a given family P of meshes Th of Ω into N -simplexes. In
doing so we consider the extension by zero f̃ of f to Ωh \ Ω, if applicable, and define the broken divergence
operator divh : Wh + [H1(Ωh)]N −→ L2(Ωh) by [divhw]|T = div w|T ∀T ∈ Th. We further set for w ∈
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Wh + [H1(Ωh)]N , v ∈ [H1(Ωh)]N and q ∈ L2(Ωh):
ch(w,v) :=

∫
Ωh

gradh w : grad v dx

bh(v, q) := −
∫

Ωh
q div v dx

dh(w, q) := −
∫

Ωh
q divhw dx

Lh(v) :=
∫

Ωh
f̃ · v dx.

(29)

Now we pose the corresponding finite-element counterpart of (28) as: Find uh ∈Wh and ph ∈ Qh such that:
ch(uh,v) + bh(v, ph) = Lh(v) ∀v ∈ Vh,
dh(uh, q) = 0 ∀q ∈ Qh.

(30)

According to the classical theory of linear variational problems (see e.g. [12]) problem (30) is well-posed
thanks to the validity of the underlying Babuška-Brezzi condition, or yet the inf-sup condition (31), that is,

Proposition 4.1 Provided h is sufficiently small, there exists a strictly positive constant A independent of h such
that

inf
(w,p)∈Wh×Qh\{(

−→
0 ,0)}

sup
(v,q)∈Vh×Qh\{(

−→
0 ,0)}

ch(w,v) + bh(v, p) + dh(w, q)

[|w|21,h+ ‖ p ‖20,h]1/2[|v|21,h+ ‖ q ‖20,h]1/2
≥ A. (31)

Proof: Let the pair (w, p) 6= (
−→
0 , 0) be given in Wh ×Qh.

First we observe that, since Taylor-Hood elements are uniformly stable, the following condition holds:

sup
v∈Vh\{

−→
0 }

bh(v, p)

|v|1,h
≥ β ‖ p ‖0,h . (32)

for a constant β > 0 independent of both p and the mesh. Actually (32) is the consequence of well-known
arguments (cf. [8]), according to which there exist two mesh-independent constants C3 and C4 also independent
of p, such that one can find v0 ∈ Vh satisfying{

bh(v0, p) ≥ C3 ‖ p ‖20,h
|v0|1,h ≤ C4 ‖ p ‖0,h .

(33)

Noticing that ch is nothing but ah applied to vector fields instead of functions, let v1 ∈ Vh satisfy the obvious
vector analog of (8) for our given w ∈ Wh. For a certain parameter η > 0 we define v := ηv0 + v1 and take
q ≡ −p. From the obvious vector analog of (15) we easily obtain

|v1|1,h ≤ (1 + C1h)|w|1,h,

which together with (33) immediately yields: ch(w,v)+bh(v, p)+dh(w, q) ≥
|w|21,h

2
−ηC4|w|1,h ‖ p ‖0,h+bh(v1, p)−dh(w, p)+ηC3 ‖ p ‖20,h

and |v|1,h+ ‖ q ‖0,h≤ (1 + C1h)|w|1,h + (ηC4 + 1) ‖ p ‖0,h .
(34)

Next we note that

bh(v1, p)− dh(w, p) =

∫
Ωh

p divh(w − v1)dx ≤
√
N |w − v1|1,h ‖ p ‖0,h .

Thus using Young’s inequality and recalling that C1h ≤ 1/2, from (34) we obtain, ch(w,v) + bh(v, p) + dh(w, q) ≥
|w|21,h

4
−
√
N |w − v1|1,h ‖ p ‖0,h +(ηC3 − η2C2

4 ) ‖ p ‖20,h

and |v|1,h+ ‖ q ‖0,h≤
3|w|1,h

2
+ (ηC4 + 1) ‖ p ‖0,h .

(35)

Moreover, plugging the natural vector version of (15) into the first inequality of (35), we derive
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 ch(w,v) + bh(v, p) + dh(w, q) ≥
|w|21,h

4
−
√
NC1h|w|1,h ‖ p ‖0,h +(ηC3 − η2C2

4 ) ‖ p ‖20,h

and |v|1,h+ ‖ q ‖0,h≤
3|w|1,h

2
+ (ηC4 + 1) ‖ p ‖0,h .

(36)

Taking η = C3/(2C
2
4 ), setting C5 = min{1/8, [C3/(2C4)]2} and assuming that

√
NC1h ≤ 2C5 from (36)

we come up with, {
ch(w,v) + bh(v, p) + dh(w, q) ≥ C5(|w|21,h+ ‖ p ‖20,h)

and [|v|21,h+ ‖ q ‖20,h]1/2 ≤ C6[|w|21,h+ ‖ p ‖20,h]1/2.
(37)

with C6 = {9/4 + [C3/(2C4) + 1]2}1/2.
In view of both inequalities in (37), as long as h ≤ min[2C5/

√
N, 1/2]/C1, (31) holds with A = C5/C6.

Now we endeavor to derive error estimates for problem (30). Essentially this task is not more complicated
than the one carried out in Theorems 2.3 and 2.4. Indeed (30) can be rewritten as follows:

Find Uh ∈ Wh such that Ah(Uh, V ) = Lh(V ) ∀V ∈ V, (38)

where

• Uh = (uh, ph);

• V = (v, q);

• Wh := Wh ×Qh;

• Vh := Vh ×Qh;

• Ah((w, p), (v, q)) := ch(w,v) + bh(v, p) + dh(w, q);

• Lh(V ) := Lh(v).

Now we denote by ‖ · ‖X,h the norm over {Wh + [H1
0 (Ωh)]N} × L2(Ωh), given by

‖ V ‖X,h:= [|v|21,h+ ‖ q ‖20,h]1/2. (39)

Then letting A play the same role as the constant 1/3 in (17), analogously to (19) we obtain:

‖ Uh −W ‖X,h≤
1

A
sup

V ∈Vh\{O}

Ah(Uh −W,V )

‖ V ‖X,h
∀W ∈ Wh. (40)

Finally noticing that here also the variational residual Ah((u, p), (v, q)) − Lh((v, q)) vanishes for every
(v, q) ∈ Vh if Ω is convex, using standard estimates for the interpolation error in Sobolev spaces, akin to Theorem
2.3, (40) leads to:

Theorem 4.2 Provided h is small enough and Ω is convex, for a certain mesh-independent constant C it holds:

[|u− uh|21,h+ ‖ p− ph ‖20,h]1/2 ≤ Ch2[|u|3,Ω + |p|2,Ω]. (41)

The case where Ω is not convex can be treated quite in the same manner as in Section 2. The key to the
problem is the existence of suitable extensions ũ of u and p̃ of p to the domain Ω̃ \ Ω, where Ω̃ is defined in
Section 2. More precisely, we extend f by zero to Ω̃ \ Ω̄ and still denote by f̃ such an extension. However,
naturally enough, more technicalities come into play here.
To begin with we need the following preliminary result:

Lemma 4.3 Let φ be a function inH1(Ω̃) that vanishes on Γ. There exists a mesh-independent constant CX such
that

‖ φ ‖0,∆̃R
≤ CXh2

R|φ|1,∆̃R
∀R ∈ Rh. (42)
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Proof : We refer to [15] for the terminology and some properties of diffeomorphisms used in this proof.
Let us cover the whole non-convex region of Γ by a set of M overlapping local maps, say, ωi, i = 1, . . . ,M .
Owing to our regularity assumptions, there exists a C1-diffeomorphism Fi that transforms ωi into a set ω̂i such
that Γ̂i := Fi(Γ ∩ ωi) is a line segment for N = 2 or a plane bounded set for N = 3. Without loss of generality
we assume that the measure of Γ̂i is not zero, and moreover that we can assign each R ∈ Rh to a certain local
map ωi, in such a way that R ⊂ ωi.
We generically denote by x̂ = (t̂, n̂) the local Cartesian coordinate system of <N with coordinates t̂ = t̂ for
N = 2 or t̂ = (t̂1, t̂2) for N = 3 along or upon Γ̂i, and by n̂ the coordinate along the axis orthogonal to Γ̂i
oriented from this manifold outwards the image of ωi∩Ω under Fi. Let R ∈ Rh and ∆̂R be the transformation of
∆̃R under Fi for the appropriate i. We denote by φ̂ the transformation of φ under Fi defined in ω̂i. Since φ̂ = 0
on Γ̂i we can write

φ̂(t̂, n̂) =

∫ ν=n̂

ν=0

[
∂φ̂

∂n̂

]
(t̂, ν) dν.

Hence, we obtain successively,∫
∆̂R

|φ̂|2 dx̂ ≤
∫

∆̂R

∣∣∣∣∣
∫ ν=n̂

ν=0

[
∂φ̂

∂n̂

]
(t̂, ν) dν

∣∣∣∣∣
2

dt̂dn̂,

∫
∆̂R

|φ̂|2 dx̂ ≤
∫

∆̂R

l(t̂)


∫ ν=l(t̂)

ν=0

∣∣∣∣∣
[
∂φ̂

∂n̂

]
(t̂, ν)

∣∣∣∣∣
2

dν

 dt̂dn̂,

where l(t̂) is the width of ∆̂R measured in the direction normal to Γ̂i from point (t̂, 0). Then denoting by l̂ the
maximum of l(t̂) over (t̂, 0) ∈ Γ̂i ∩ ∆̂R, we trivially obtain,∫

∆̂R

|φ̂|2 dx̂ ≤ l̂2
∫

∆̂R

∣∣∣∣∣
[
∂φ̂

∂n̂

]
(t̂, n̂)

∣∣∣∣∣
2

dn̂dt̂,

and further, ∫
∆̂R

|φ̂|2 dx̂ ≤ Ĉih2
R

∫
∆̂R

|ĝrad φ̂|2 dx̂

where ĝrad(·) represents the gradient operator of a function defined in ω̂i, and the constant Ĉi depends only on
Ω and ω̂i.
Next we make straightforward changes of variables in the above integrals, thereby transforming them into integrals
in ∆̃R, and observe that ĝrad φ̂ = F−1

i grad φ where Fi is the Jacobian matrix of Fi. From a basic property of
diffeomorphisms the spectral norm of Fi can be uniformly bounded above by a constant independent of the mesh,
as much as the Jacobian of both Fi and F−1

i . Finally taking the extrema over i of those constants and of Ĉi in the
required senses, the result follows.

Now we have

Theorem 4.4 Assume that there exists ũ and p̃ satisfying the following conditions:

• ũ|Ω = u and p̃|Ω = p

• ũ =
−→
0 a.e. on Γ;

• ũ ∈ [H3(Ω̃)]N and p̃ ∈ H2(Ω̃).

Then, as long as h is small enough, for a certain mesh-independent constant C̃ it holds:

[|u− uh|21,Ω̃h
+ ‖ p− ph ‖2Ω̃h

]1/2 ≤ C̃{h2[|ũ|3,Ω̃ + |p̃|2,Ω̃] + h5/2[|ũ|2,Ω̃ + |p̃|1,Ω̃]}, (43)

where Ω̃h := Ωh ∩ Ω.

Proof : The proof of this theorem is based on the same arguments as the proof of Theorem 2.4. Therefore we skip
some details.
First we set Ũ := (ũ, p̃). For every W = (w, r) ∈ Wh we have:

‖ Uh −W ‖X,h≤
1

A
sup

V=(v,q)∈Vh 6=O

|Ah(Ũ , V )− Lh(V )|+ |Ah(W,V )−Ah(Ũ , V )|
‖ V ‖X,h

. (44)
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The second term in the numerator of (44) can be handled in a standard manner by means of classical interpolation
theory. This yields for a mesh-independent constant CJ :

inf
W∈Wh

|Ah(W,V )−Ah(Ũ , V )|
‖ V ‖X,h

≤ CJh2[|ũ|3,Ω̃ + |p̃|2,Ω̃]. (45)

Next, thanks to the fact that ũ ∈ [H3(Ω̃)]N and p̃ ∈ H2(Ω̃) we can write,

|Ah(Ũ , V )− Lh(V )| ≤
∑
R∈Rh

{∫
∆̃R

[|∆ũ|+ |grad p̃|]|v| dx +

∫
∆̃R

|q| |div ũ| dx
}
. (46)

Similarly to Theorem 2.4 the summation of the first integral on the right hand side of (46) can be bounded above
as follows, for a suitable mesh-independent constant CY :∑

R∈Rh

∫
∆̃R

[|∆ũ|+ |grad p̃|]|v| dx ≤ CY h5/2[‖ ∆ũ ‖0,Ω̃ +|p|1,Ω̃]|v|1,h. (47)

On the other hand we have, ∫
∆̃R

|q| |div ũ| dx ≤‖ q ‖0,∆̃R
‖ div ũ ‖0,∆̃R

. (48)

Now, since div ũ vanishes on Γ, using Lemma 4.3, it holds for a certain mesh-independent constant CX :

‖ div ũ ‖0,∆̃R
≤ CXh2

R|div ũ|1,∆̃R
(49)

Moreover using the fact that meas(∆̃R) ≤ CQh
N+1
R for a mesh-independent constant CQ, together with the

inverse inequality ‖ q ‖0,∞,R≤ CIh−N/2R ‖ q ‖0,R, from (48) and (49) we derive,∫
∆̃R

|q| |div ũ| dx ≤ CICQCXh5/2
R |div ũ|1,∆̃R

‖ q ‖0,R . (50)

This trivially yields ∑
R∈Rh

∫
∆̃R

|q| |div ũ| dx ≤
√
NCICQCXh

5/2 ‖ q ‖0,h |ũ|2,Ω̃. (51)

Finally combining (44), (45), (46), (47) and (51) we come up with (43).

As pointed out in Remark 2, the construction of a pair (ũ, p̃) satisfying the assumptions of Theorem 4.4 can
be performed in different manners. In this respect we refer for instance to [27].

5 Numerical validation for confined rotating flows
One of the most remarkable applications of the method studied in the previous section is the simulation of con-
fined rotating flows. Indeed in this case a viscous fluid adhere to the curved wall of the flow region, and thus
handling the underlying Dirichlet boundary condition with a method of order higher than one requires the use of
an accurate technique. In this section we present results obtained with ours, for two test-problems governed by
the Stokes system.

In the tables of this section the acronym OCR stands for observed convergence rate.

5.1 Test-problem with a manufactured solution
First we apply the Taylor-Hood method combined with our technique to solve (28) with a manufactured solution
corresponding to the following data: Ω is the unit disk (centered at the origin), f = (8, 8)(x − y), and g ≡ −→0 .
Prescribing p(

√
2/2,
√

2/2) = 0, the exact solution has polynomial expressions, namely u = (y,−x)(1−x2−y2)
and p = x2 − y2.
We use meshes constructed like in the first test-problem of Section 3, but here the computational domain is the
whole disk. More specifically now we compute with (2n×2n)-meshes containing 8n2 triangles, each mesh being
symmetric with respect to the axes x = 0 and y = 0, for n = 2m with m = 2, 3, 4, 5. We recall that h = 1/n.
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In order to discard any particularity inherent to the problem being solved, we compared the numerical solution
with the one obtained by the simple polygonal approach.
We display in Table 3 the velocity and pressure errors in the norms | · |1,h and ‖ · ‖0,h for both approaches.
The notations ūh and p̄h are employed to represent the velocity and pressure obtained by the simple polygonal
approach. These results completely validate the analysis carried out in the previous sections for the case of a
convex domain (cf. Theorem 4.2). It is no surprise that the polygonal approach does erode the order of the
velocity approximation. It is interesting to note however that, at least in this test-case, this simple approach does
not affect the pressure approximation.

2n −→ 8 16 32 64 OCR

|uh − u|1,h −→ 0.3585×10−1 0.8833×10−2 0.2157×10−2 0.5299×10−3 O(h2)

|ūh − u|1,h −→ 0.7959×10−1 0.2746×10−1 0.9588×10−2 0.3370×10−2 O(h1.5)

‖ ph − p ‖0,h −→ 0.4266×10−1 0.1047×10−1 0.2567×10−2 0.6332×10−3 O(h2)

‖ p̄h − p ‖0,h −→ 0.4264×10−1 0.1047×10−1 0.2567×10−2 0.6332×10−3 O(h2)

Table 3: Errors for a test-(flow) problem in a disk solved by method (30) and the polygonal approach

5.2 Pseudo circular Couette flow
In order to check our method’s performance in the case of a non-convex flow domain we used it to solve the
problem described as follows.
Circular Couette flow of an incompressible viscous fluid with density ρ in a region comprised between two con-
centric cylinders, where the inner one of radius ri rotates at an angular velocity ω and the outer one with radius
re is kept fixed, is governed by the stationary Navier-Stokes equations with a zero body-force right hand side. As
long as the Reynolds number is sufficiently low, the flow is laminar and the solution to the problem is given by
u = (sinθ,−cosθ)uθ(r) where uθ(r) = ωr2

i (r
2
e − r2)/[r(re2 − ri2)] and p(r) = ρω2r4

i /(r
2
e − r2

i )
2[r2/2 −

r4
e/(2r

2)−2r2
e log(r)] + c, c being a constant. If we enforce zero pressure on the outer wall, then c takes the value

2r2
e log(re)ρω

2r4
i /(r

2
e − r2

i )
2.

Although there is no particular difficulty to solve the Navier-Stokes equations with our method, in order to focus
on our essentially validating goal, we apply it to a modified problem, in which the exact inertia term ρ[grad u]u
with a minus sign is input as right hand side datum f . Of course the pair (u, p) is still the solution to the resulting
Stokes system (28) in the annulus Ω with inner radius ri and outer radius re. The datum g in turn equals

−→
0 for

r = re, while its value for r = ri conforms to the given azimuthal velocity riω and a zero radial velocity.
Taking re = 1, ri = 0.5, ω = 1 and ρ = 1, we proceeded to the numerical solution of thus defined (pseudo)
circular Couette flow problem with the Taylor-Hood method combined with our technique to approximate the
boundary conditions. In order to avoid non physical boundary conditions, computations were carried out for the
whole annulus. With this aim we used again (2n × 2n) symmetric meshes, for n = 2m, with m = 3, 4, 5, 6,
constructed in the way described in the previous subsection, except for the fact that now the elements inside the
disk with radius ri were disregarded. This yields meshes consisting of 6n2 triangles, with h = 1/n.
We display in Table 4 the velocity errors measured in the norms | · |1,h and ‖ · ‖0,h, together with the pressure
errors measured in the ‖ · ‖0,h-norm. It is interesting to note that the latter are decreasing at a rate faster than the
O(h2) observed in the test-problem of the previous sub-section. This seems to be due to the fact that in circular
Couette flow the inertia term with a minus sign is nothing but the pressure gradient. On the other hand the velocity
errors in the H1-semi-norm are in perfect agreement with the theoretical predictions. The velocity errors in the
L2-norm in turn seem to decrease like an O(h3), which is optimal.

6 Extensions to other mixed elements and final comments
In the four previous sections we focused on the application of the technique introduced in [20] and [21] to solve
boundary value problems in smooth curved domains with Dirichlet boundary conditions, in the particular case of
quadratic Lagrange interpolation in N -simplexes. More specifically we considered the solution of the Poisson
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2n −→ 16 32 64 128 OCR

|uh − u|1,h −→ 0.1592×10+0 0.4261×10−1 0.1090×10−1 0.2741×10−2 O(h2)

‖ uh − u ‖0,h −→ 0.3833×10−2 0.5339×10−3 0.6923×10−4 0.8744×10−5 O(h3)

‖ ph − p ‖0,h −→ 0.1209×10+0 0.2095×10−1 0.3952×10−2 0.6638×10−3 O(h≈2.5)

Table 4: Errors for the pseudo circular Couette flow problem solved by method (30)

equation as a basis for the solution of incompressible viscous flow problems by the popular Taylor-Hood element.
However this second order mixed finite element was chosen here only for illustrative purposes. As a matter of fact
our technique basically applies to most known reliable mixed methods of order greater than one, to solve this kind
of problems, as long as velocity degrees of freedom must be prescribed at boundary points different from vertexes.
Let us be more specific about some of these methods.

1. If we stick to second-order methods based on the standard Galerkin formulation (such as Taylor-Hood ele-
ments), the convergence results that apply to the Crouzeix-Raviart method on triangles [11] for the polygo-
nal case extend to method’s obvious modification using our technique. Notice however that the application
of this technique to the Crouzeix-Raviart method’s extension to tetrahedra considered in [18] must be the
object of a specific study. This is because it employs certain mean values along element edges as velocity
degrees of freedom, instead of nodal values.

2. Methods using a piecewise quadratic representation of the velocity combined with the Petrov-Galerkin for-
mulation due to Franca & Hughes [14] or the one of Douglas & Wang [13] can be combined with our
technique quite in the same manner as Taylor-Hood elements. The final (second-order) qualitative results
remain unchanged.

3. Any third-order method in the natural norms using a cubic velocity representation can also be optimally
handled in association with our technique. This is true of Taylor-Hood element’s cubic extension using
the standard Galerkin formulation considered by Boffi [6], and also of the method in the Petrov-Galerkin
formulation mentioned in the previous item. In both cases the analysis is based on the arguments developed
in [20] and [21] for cubic Lagrange finite elements.

4. Methods of order k ≥ 4 in the natural norm, though of limited interest, can also be combined with our tech-
nique. More particularly this is the case of the generalized Taylor-Hood pairing consisting of the continuous
PK − Pk−1 velocity-pressure representation considered in [6], or yet the continuous Pk - discontinuous
Pk−1 velocity-pressure method studied by Scott & Vogelius [26]. However here optimal convergence re-
sults hold under the condition that a numerical quadrature formula with a compatible order and without
integration points in the interior of boundary edges or faces be employed to compute the right hand side
term. We refer to [20] and [21] for more details about such a restriction, which also applies to isoparametric
elements (cf. [10]).

In conclusion the author emphasizes that the scope in Computational Engineering of the approach adopted in
this work to handle Dirichlet conditions prescribed on curved boundaries is much wider than the one of classical
techniques such as isoparametric finite elements. This was shown in [19] and [22] in the framework of Maxwell’s
equations of Electromagnetism and deformations of elastic membranes in mixed formulation, respectively. More-
over, even in cases where the use of classical techniques is consolidated, our approach is at least as reliable and
competitive in terms of accuracy.
We would also like to point out that, as far as we can see, our technique has only two drawbacks: first of all
it is necessary to solve a non symmetric problem, even when the original problem is symmetric. Moreover for
each boundary element a small matrix has to be inverted in order to determine the local basis functions. However
none of both issues are a real problem nowadays, taking into account the state-of-the-art of Computational Linear
Algebra.
A final remark on the choice of nodal points on Γ different from vertexes is in order. As one can easily infer
from the analysis carried out throughout the paper, the construction of these nodes advocated in Section 2 is not
compulsory at all. Actually, referring to Figures 1 and 3, any other choice in ∆S ∩Γ for S ∈ Sh will do. However
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intuitively we can say that these nodes should not be too close to the boundary vertexes of element S, since this
may lead to a worse conditioning of the resulting linear system.

Remark 3 Besides those considered in [22], applications to Solid Mechanics of the technique studied in this paper
can be found in [24].
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of piecewise polynomials. RAIRO-Modélisation mathématique et analyse numérique, 19-1 (1985), 111-143.

[27] D. B. Stein, R. D. Guy, B. Thomases. Immersed boundary smooth extension: A high-order method for solv-
ing PDE on arbitrary smooth domains using Fourier spectral methods. Journal of Computational Physics,
304 (2016), 252–274.

[28] G. Strang and G. Fix. An Analysis of the Finite Element Method. Prentice Hall, 1973.

[29] R. Verfürth. Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO
Numerical Analysis, 18-2 (1984), 175-184.
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