
HAL Id: hal-02337787
https://hal.sorbonne-universite.fr/hal-02337787

Submitted on 29 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HyPoRes: An Hybrid Representation System for ECC
Paulo Martins, Jérémy Marrez, Jean-Claude Bajard, Leonel Sousa

To cite this version:
Paulo Martins, Jérémy Marrez, Jean-Claude Bajard, Leonel Sousa. HyPoRes: An Hybrid Represen-
tation System for ECC. 2019 IEEE 26th Symposium on Computer Arithmetic (ARITH), Jun 2019,
Kyoto, Japan. pp.207-214, �10.1109/ARITH.2019.00049�. �hal-02337787�

https://hal.sorbonne-universite.fr/hal-02337787
https://hal.archives-ouvertes.fr

HyPoRes: An Hybrid Representation System for
ECC

Paulo Martins∗, Jérémy Marrez†, Jean-Claude Bajard†, Leonel Sousa∗
∗INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

paulo.sergio@netcabo.pt, las@inesc-id.pt
†Sorbonne Université, CNRS, LIP6, Paris, France
jeremy.marrez@lip6.fr, jean-claude.bajard@lip6.fr

Abstract—The Residue Number System (RNS) is a numeral
representation enabling for more efficient addition and multipli-
cation implementations. However, due its non-positional nature,
modular reductions, required for example by Elliptic Curve (EC)
Cryptography (ECC), become costlier. Traditional approaches to
RNS modular reduction resort to the Montgomery algorithm, un-
derpinned by large basis extensions. Recently, Hybrid-Positional
Residue Number Systems (HPRs) have been proposed, providing
a trade-off between the efficiency of RNS and the flexibility
of positional number representations. Numbers are represented
in a positional representation with the coefficients represented
in RNS. By crafting primes of a special form, the complexity
of reductions modulo those primes is mitigated, relying on
extensions of smaller bases. Due to the need of crafting special
primes, this approach is not directly extensible to group opera-
tions over currently standardised elliptic curves. In this paper,
the Hybrid-Polynomial Residue Number System (HyPoRes) is
proposed, enabling for improved modular reductions for any
prime. Experimental results show that the modular reduction
of HyPoRes, although at most 1.4 times slower than HPR for
HPR-crafted primes, is up to 1.4 times faster than a generic
RNS approach for primes of ECC standards.

Index Terms—Residue Number System, Elliptic Curve Cryp-
tography, Modular Arithmetic

I. INTRODUCTION

The RNS has found extensive application on cryptographic
systems [1], since it reduces the complexity of long-integer ad-
ditions and multiplications. However, due to the non-positional
nature of RNS, operations such as modular reductions and
comparisons are more difficult to implement in an efficient
manner. The complexity of most RNS-based modular mul-
tiplications is dominated by RNS basis extensions [2], [3].
In [4], this problem is mitigated through a mixed positional-
RNS representation, called Hybrid-Positional Residue Num-
ber System (HPR). Numbers are expressed in a positional
representation with the coefficients represented in RNS. This
approach reduces the size of the RNS bases, thus reducing the
complexity of basis extensions, while still benefiting from the
arithmetic independence of RNS channels.

Bigou and Tisserand have applied [4] to ECC by crafting
special primes with the form P = Bn

1 − β, where B1

corresponds to the dynamic range of an RNS basis, n is the
number of positional digits and β is a small integer. This
enables efficient reductions modulo P . After a product, the
Most Significant Digits (MSDs) are multiplied by β and added

to the Least Significant Digits (LSDs). Then, the size of the
coefficients is reduced through carry propagation. Since carry
propagation requires computing a division and flooring, basis
extensions are still required, but with bases of a smaller size
than a generic RNS approach.

While the methods described in [4] are an efficient approach
to ECC, one does not often have the opportunity to choose
the underlying prime P since these are standardised for most
cryptographic applications. Herein, we propose the Hybrid-
Polynomial Residue Number System (HyPoRes) that is of an
hybrid nature, but allows for efficient reductions for any prime.
We achieve so by decoupling the positional representation
radix from the RNS dynamic range. After a product, one can
still multiply the MSDs by a small constant and add them to
the LSDs. However, carry propagation is no longer possible.
Hence, to reduce the size of the coefficients, a Montgomery
reduction that exploits a redundant representation of zero is
used.

Since the Montgomery reduction is more computationally
expensive than carry propagation, experimental results show
that HyPoRes is at most 1.4 times slower than the HPR.
Nevertheless, while the HPR does not support primes currently
standardised for ECC, the proposed approach is applicable for
any prime, achieving speed-ups of up to 1.4 when compared
to generic RNS approaches. These results show a connection
between the strength of the assumptions a representation relies
on and its efficiency. First, the HPR restricts itself to primes of
a special form and achieves the best performance. Second, the
HyPoRes relies on the precomputation of values that require
one to know the factorisation of the underlying modulus,
producing good performance. Finally, RNS generic approaches
make no assumption about the underlying modulus, achieving
reasonable performance.

The remaining of the paper is organised as follows. Sec-
tion II provides the necessary background on modular arith-
metic, the RNS and lattices to build the proposed HyPoRes.
The proposed representation system is described in Section III.
Section IV presents the related art. The proposed approach
is compared with the related art in Sections V and VI from
theoretical and practical perspectives, respectively. Representa-
tional techniques to improve resistance against Side-Channel
Attacks (SCAs) are introduced in Section VII. Finally, Sec-
tion VIII concludes the paper.

II. BACKGROUND

In this section, fundamental results about modular arith-
metic, the RNS and lattices are reviewed. In this paper, [·]P
is used to denote the centred remainder of the division by P
and lcm the least common multiple. Note that the techniques
herein proposed can be slightly modified to handle positive
instead of centred remainders.

A. Modular Arithmetic

Most branches of cryptography deal with modular arith-
metic. In such a system, two integers a, b ∈ Z are said to
be congruent if their difference (a − b) is divisible by a
modulus P . This is denoted as a = b mod P . Furthermore,
we denote by ZP the set of all congruency classes modulo
P . After each addition (a + b) or multiplication (a × b) in
ZP , the results c are mapped to a smaller integer congruent
with c modulo P to reduce memory requirements and the
computational cost of further operations. Still, in ECC, P is
a large prime, typically hundreds of bit wide, and there is a
need to map operations modulo P to smaller moduli bi,j that
are compatible with current computer architectures. To do so
efficiently, the representation system herein proposed requires
precomputing nth roots in Z×P . Lemma II.1 states under which
conditions a value r has an nth root in Z×P , i.e. there exists
x ∈ Z×P such that [xn]P = r. This root may be computed
with [5]. Moreover, herein a−1 mod P and 1/a mod P are
both used to denote the modular inverse of a modulo P , i.e.
the integer −P/2 ≤ x < P/2 such that xa = 1 mod P .

Lemma II.1. r ∈ Z×P has an nth root modulo P , where P is
a prime number, iff [rt]P = 1 for lcm(n, P − 1) = nt.

Proof. When lcm(n, P − 1) = n(P − 1), gcd(n, P − 1) = 1
and [rt]P =

[
rP−1

]
P

= 1. A root of r can be computed as[
r[1/n]P−1

]
P

. Otherwise, let g be a generator of Z×P . Then
r = gu mod P for some u ∈ Z. rt = gtu = 1 mod P iff
P − 1 divides tu. In this case,

tu

P − 1
=

ntu

n(P − 1)
=

lcm(n, P − 1)/(P − 1)u

n
∈ Z,

and so n divides u since lcm(n, P −1)/(P −1) does not.

Modular arithmetic extends naturally to polynomials. Two
polynomials in Z[X]/f(X) are congruent when their dif-
ference is divisible by f(X); and in ZP [X]/f(X) when
their difference is divisible by f(X) or their coefficients are
congruent in ZP .

B. RNS

The Chinese Remainder Theorem (CRT) states that for
coprime integers b1,0, . . . , b1,h1−1 and for B1 = b1,0 × . . . ×
b1,h1−1, the ring ZB1

is isomorphic to Zb1,0 × . . .× Zb1,h1−1

with the following map:

g : ZB1
→ Zb1,0 × . . .× Zb1,h1−1

g(a) = (a1,0, . . . , a1,h1−1)
= (a mod b1,0, . . . , a mod b1,h1−1)

and inverse

a =

[
h1−1∑
i=0

ξ1,i
B1

b1,i

]
B1

=

h1−1∑
i=0

ξ1,i
B1

b1,i
− αB1 (1)

where ξ1,i =
[
a1,i

b1,i
B1

]
b1,i

.

More concretely, the RNS exploits the CRT to replace
additions, subtractions and multiplications over large integers
in ZB1

by the coefficient-wise additions, subtractions and
mutltiplications over the smaller channels Zb1,0 , . . . ,Zb1,h1−1

.
While these operations are made faster with the RNS, opera-
tions such as divisions and modular reductions are harder to
implement. One often has to use basis extensions to deal with
these operations. This procedure exploits (1) to extend the
representation of a number in basis B1 = {b1,0, . . . , b1,h1−1}
to another basis B2 = {b2,0, . . . , b2,h2−1}. In cases where an
error of αB1 can be tolerated, extensions may be performed
with FastBConv to approximate (1) in an efficient way [2]:

a2,i = FastBConv(a,B1) =

h1−1∑
i=0

ξ1,i
B1

b1,i
mod b2,i

When such an error cannot be tolerated, an extra residue ask =
a mod bsk may be computed. This enables the computation of
α as

α =
[
(FastBConv(a,B1)− ask)B−11

]
bsk

for |a| < λB2, an integer λ and bsk ≥ 2(h2 + λ) [6, Lemma
6]. In this case, the basis extension may be terminated with
FastBConvSK:

a2,i = FastBConvSK(a,B1, α) =
h1−1∑
i=0

ξ1,i
B1

b1,i
− αB1 mod b2,i (2)

C. Lattices

Given a basis

R =


r0,0 r0,1 . . . r0,n−1
r1,0 r1,1 . . . r1,n−1

...
...

. . .
...

rm−1,0 rm−1,1 . . . rm−1,n−1


the lattice L(R) generated by the rows of R ∈ Rm×n

corresponds to the following discrete subgroup of Rn:

L(R) = {v|∃z∈ZmzR = v}

Herein, we will only be dealing with full rank integer lattices,
corresponding to the case where m = n and R ∈ Zn×n.
In this case, the lattice L(R) induces a congruence relation
over Zn×n. Two vectors are said to be congruent when their
difference is in L(R):

v = u mod L(R)⇔ v − u ∈ L(R)

Reducing a vector u modulo a basis R corresponds to finding
the vector v satisfying v = u mod L(R) and

v = zR with − 1/2 ≤ zi < 1/2 ∀0≤i<n

III. PROPOSED HYPORES SYSTEM

The proposed representation system can be seen as a gener-
alisation of [7], and is described in Definition III.1. A number
a ∈ ZP is represented as a polynomial A(X) with coefficients
of norm smaller than ρ that when evaluated in γ produces:

A(γ) = a mod P (3)

γ satisfies [γn]P = β for a small integer β. Thus, operating
with these polynomials modulo Xn − β is isomorphic to
operating with the corresponding integers modulo P . In [7],
it is proven that for digits satisfying |a(i)| < ρ, a ρ ≥ βP 1/n

suffices to represent all congruency classes a ∈ ZP . Herein,
digits are represented with respect to two RNS bases B1
and B2 and a modulus bsk. The need for these moduli will
become evident when describing the HyPoRes multiplication
algorithm.

Definition III.1 (HyPoRes). An Hybrid-Polynomial
Residue Number System (HyPoRes) is a sextuple
H = (P, n, ρ,B1,B2, bsk). β is defined to be the smallest
integer that is not an nth power over Z, but that has an nth

root modulo P (see Lemma II.1). We identify this root with
γn = β mod P . Positive integers 0 ≤ a < P are represented
as a polynomial of n coefficients (a(0), . . . , a(n−1)), wherein
each coefficient a(i) is represented with respect to the two RNS
bases B1 = {b1,0, . . . , b1,h1−1} and B2 = {b2,0, . . . , b2,h2−1}
and the modulus bsk, satisfying:

a =

n−1∑
i=0

h1−1∑
j=0

ξi,1,j
B1

b1,j


B1

γi mod P

with ξi,1,j =
[
ai,1,j

b1,j
Bj

]
b1,j

, |a(i)| < ρ and ai,k,j = a(i) mod

bk,j . We use ai,k to denote a(i) mod Bk, capital values A
to denote a representation of a under H, A1 to denote the
representation of a under B1, A2 the representation of a under
B2, ask the representation of a modulo bsk and define the norm
||A||∞ = max(|a(0)|, . . . , |a(n−1)|).

Algorithm 1 Proposed Modular Multiplication Algorithm
Require: ||A||∞, ||C||∞ < kρ
Require: M ′ = −M−1 mod B1
Ensure: ||R||∞ < ρ with r = acB−11 mod P
D = A ? C mod B1 ∪ B2 ∪ {bsk}
Q1 = D ?M ′ mod B1
Q2 = FastBConv(q,B1) mod B2
qsk = FastBConv(q,B1) mod bsk
R2 = D+Q?M

B1
mod B2

rsk = dsk+qsk?M
B1

mod bsk
α =

[
(FastBConv(r,B2)− rsk)B−12

]
bsk

R1 = FastBConvSK(r,B2, α) mod B1
R = (R1, R2)

A. Proposed Modular Multiplication Algorithm
The proposed modular multiplication can be found in Al-

gorithm 1. Therein, the operation A?C denotes the following
vector-matrix multiplication:

A ? C = AC mod (Xn − β) =

[
a(0) a(1) . . . a(n−1)

]


c(0) c(1) . . . c(n−1)

βc(n−1) c(0) . . . c(n−2)

...
...

. . .
...

βc(1) βc(2) . . . c(0)


(4)

where element-wise multiplications are conducted in RNS.
The vector M used in Algorithm 1 corresponds to a small

nonzero representation of zero under H. A representation of
M with norm smaller than P 1/n is guaranteed to exist, as
described in Lemma III.1.

Lemma III.1. A nonzero representation of zero of norm
smaller than P 1/n exists under H

Proof. We start by building the lattice L(Γ) of the represen-
tations of zero under H where

Γ =


P 0 . . . 0
−γ 1 . . . 0

...
...

. . .
...

−γn 0 . . . 1


Each line in Γ corresponds to either P = 0 mod P or
−γi + Xi, which when evaluated at X = γ produces a
value congruent with 0. Minskowski’s theorem [8] guaran-
tees that L(Γ) contains a nonzero vector of norm at most
(detL(Γ))

1/n
= P 1/n. Thus M can be obtained by finding

the nonzero shortest lattice point in L(Γ). While this problem
is complex in general, herein we are dealing with lattices of
a small dimension, making it solvable in a short time.

In essence, Algorithm 1 starts by computing D = A ?C ∼=
A×C mod P . Then, to reduce the size of the coefficients, a
multiple of a nonzero representation of zero M is added to
D, making the result divisible by B1. Since the scaling factor
Q is computed modulo B1, it is first produced in B1 and then
extended to B2. Afterwards, R = D+Q?M

B1
is outputted. The

division by B1 guarantees that the norm of the result is small.
However, since this division is not possible in B1, this value
is first produced in B2 and then extended to B1.

Algorithm 1 requires that an inverse of M exists in the ring
ZB1

[X]/ (Xn − β). Lemma III.2 guarantees that this is the
case when B1 is built from prime numbers b1,i that do not
divide the resultant of M and Xn − β and M 6= 0 mod B1.

Lemma III.2. When B1 = {b1,0, . . . , b1,h1−1} such that all
b1,i are primes not dividing the resultant of M and Xn − β
and M 6= 0 mod B1, M is invertible in ZB1 [X]/(Xn − β).

Proof. Since Xn−β is irreducible, M with deg(M) < n and
Xn − β are coprime. Hence, there exists (U, V) ∈ Z[X]2 s.t.

UM + V (Xn − β) = r

where r is the resultant of M and Xn− β and r 6= 0 [9]. We
find the inverse of M modulo B1 and Xn − β by computing
Ur−1 mod b1,i for 0 ≤ i ≤ h1 − 1 and lifting the result to
ZB1

with the CRT. The resultant r must be invertible modulo
b1,i, i.e. coprime to b1,i. Since b1,i is prime, it must not divide
r.

Finally, Theorem III.1 proves that Algorithm 1 produces
the correct result. Even though values represented under H
will normally satisfy ||A||∞ < ρ, their norm might grow after
non-reduced additions. Hence, we assume that the inputs to
Algorithm 1 have their norm bounded by ||A||∞ < kρ. One
of the main conditions of Theorem III.1 is that B1 > ρ/ε for

0 < ε <
ρ− βnh1||M ||∞

βnk2ρ

Since B1 should be minimised, it is crucial to pick a large
enough ρ such that the second term of ε < 1/(βnk2) −
h1||M ||∞/(k2ρ) is small, but not so large that the numerator
of B1 > ρ/ε is greatly increased. A possible choice is of
ρ ∼ 10000||M ||∞/k2. Moreover, an appropriate choice of λ
might in some cases reduce the number of moduli of B2 by
one when compared with the case λ = 1.

Theorem III.1. Algorithm 1 is correct (i.e. it outputs R =
ACB−11 mod P with ||R||∞ < ρ for ||A||∞, ||C||∞ < kρ)
when B1 is built from prime numbers b1,i not dividing the
resultant of M and Xn − β, M 6= 0 mod B1, B1 > ρ/ε,
B2 > ρ/λ, ρ > βnh1||M ||∞, bsk ≥ 2(h2 + λ), for an integer
λ, pairwise coprime B1, B2 and bsk and

0 < ε <
ρ− βnh1||M ||∞

βnk2ρ

Proof. To prove that Algorithm 1 produces a correct result, we
notice that D+Q?M = D−(D?M−1+αB1)?M = 0 mod
B1 (for a polynomial error α that results from an inexact basis
extension) and hence D+Q?M is divisible by B1. Moreover,
since M is a representation of zero modulo P , we have that
R ≡ D+Q?M

B1
= D

B1
= DB−11 mod P .

We assume that the inputs to Algorithm 1 satisfy
||A||∞, ||C||∞ < kρ. Furthermore, we assume that ρ < εB1.
Notice that since the value of Q is extended from B1 to B2
in an inexact way, its norm is bounded by h1B1. In this case,
the norm of R will satisfy

||R||∞ =

∥∥∥∥A ? C +Q ?M

B1

∥∥∥∥
∞

<
βnk2ρ2 + βnh1B1||M ||∞

B1
< βnεk2ρ+ βnh1||M ||∞

(5)

Since we require that ||R|| < ρ, ε should satisfy:

0 < ε <
ρ− βnh1||M ||∞

βnk2ρ

As a result, Algorithm 1 produces values with the expected
norm as long as B1 > ρ/ε and ρ > βnh1||M ||∞. In addition,
FastBConvSK produces the correct value when ρ < λB2 and
bsk ≥ 2(h2 + λ).

a ∈ ZP

×B1

/B1

aB1 ∈ ZP

Addition/
Subtraction

Proposed
Multiplication

Fig. 1: Values in ZP are premultiplied by B1 before the
proposed arithmetic routines are applied

B. Other Operations

Since the modular multiplications in Algorithm 1 are af-
fected by a B−11 factor, one should multiply values by B1 mod
P before representing them in HyPoRes, as represented in
Fig. 1. Additions and subtractions are performed without any
modular reduction. While this implies that coefficients may
grow, we have taken this into account during the design of
the modular multiplication algorithm. Therein, one assumes
the inputs’ coefficients to be bounded by kρ where ρ is
the maximum norm of the coefficients of the output. It is
clear that the format aB1 is maintained after additions since
aB1 + bB1 = (a+ b)B1. This format is also maintained after
modular multiplications. In particular, Algorithm 1 computes
(aB1)(bB1)B−11 = abB1 mod P .

A first approach to convert a value a from a binary repre-
sentation to the HyPoRes system would start by considering
the lattice generated by M ?Xi where M is the nonzero rep-
resentation of zero referred to in Lemma III.1 and 0 ≤ i < n.
This lattice has a basis

R =


m(0) m(1) . . . m(n−1)

βm(n−1) m(0) . . . m(n−2)

...
...

. . .
...

βm(1) βm(2) . . . m(0)


with vectors of norm at most β||M ||∞. Since M ? Xi are
representations of 0 under H, the vector U that results from
the reduction of (a, 0, . . . , 0) modulo R represents a under
H. Moreover, since the vectors M ? Xi have norm at most
β||M ||∞, so does U . A standard HyPoRes representation is
achieved by reducing the coefficients of U modulo each value
in B1, B2 and bsk.

A second, more efficient approach, relies on the precompu-
tation of the values T [i] = [2idlog2 Pe/nB2

1]P under H using
the aforementioned conversion. With this second approach, the
multiplication by B1 is integrated in the conversion process
and does not need to be performed in a separate step. The value
a to be converted is decomposed into n words of dlog2 P e/n
bits each:

a =

n−1∑
i=0

a[i]2idlog2 Pe/n

Each a[i] can be directly represented in H by reducing it
modulo each value in B1, B2 and bsk, and associating it with

the first entry of the vector A[i] ∈ H, which has 0 in all the
other entries. Then, [aB1]P is computed as

A =

n−1∑
i=0

HyPoRes-mul(A[i], T [i])

IV. RELATED ART

The optimisation of modular reductions has often focused
on primes of particular forms [10], [4]. A first approach [10]
induces a quadratic-time multiplication algorithm. A value a is
represented as a polynomial A in a ring Z[X]/〈Xb−β〉 such
that A(γ) = a mod P . The coefficients of the polynomials are
represented as a single computer word; and P and γ are chosen
such that γn − β = 0 mod P and 2k can be represented as
a polynomial M with small coefficients. After computing the
product D = A?C, the magnitude of the coefficients of D is
recursively reduced by rewriting D as D = DL +DH2k with
||DL|| < 2k, and updating D with the value of DL +DH ?M
using only shifts and additions. A second approach [4] induces
a subquadratic-time multiplication algorithm. It similarly rep-
resents a as a polynomial A in a ring Z[X]/〈Xb − β〉 such
that A(γ) = a mod P . However, coefficients are represented
in RNS with two bases of dynamic range B1 and B2; with
γ = B1 and P = Bn

1 − β. After computing the product
D = d(0) + d(1)X + . . . + d(n−1)Xn−1 = A ? C, the norm
of the coefficients of D is reduced through two rounds of
carry propagation. Carries are computed approximately with
basis extensions. In particular, for i ∈ {0, . . . , n − 1}, the
carry ei,2 is computed as ei,2 =

di,2−FastBConv(d,B1)
B1

mod B2,
and then ei,1 is computed through an exact extension from
B2 to B1. Afterwards, d(i+1) is updated with d(i+1) + e(i) if
i < n−1, or d(0) is updated with d(0) +βe(n−1) if i = n−1.
A second round of carry propagation is necessary to achieve
small enough coefficients. In this case, the carries are small
enough that it suffices to compute ei,2 =

di,2−FastBConv(d,B1)
B1

in a single modulus of B2, and then copy the residue to the
remaining moduli in B1 and B2.

The two above described modular reduction methods do
not extend to primes currently used by ECC standards. First,
most standards follow the approach in [11] by choosing a
P that is optimised for binary representation systems, i.e.
P = f(2) for a very sparse polynomial f . Second, isogeny-
based ECC [12] is based on primes built as P = leAA leBB f ± 1,
for two small different primes lA and lB , two large exponents
eA and eB and a small cofactor f . Both these cases are
incompatible with [10], [4]. In contrast, [7], [3] are suitable
for any underlying prime. [7] builds polynomial systems as in
[10] but for γn = β and any P . After a product D = A ? C,
the coefficients of D are reduced by recursively rewriting D as
D = DL +DH2k with ||DL|| < 2k, and updating D with the
value of DL + D′H , where D′H = DH mod 〈Xn − mod, P 〉
with ||D′H || < βP 1/n precomputed for all possible DH2k.
The iterative nature of this approach, along with the need
to look up precomputed tables make it more appropriate
for hardware implementations. Finally, [3] can be seen as a

specific case of HyPoRes with n = 1, i.e. when polynomial
reductions play no role in the algorithm.

While [7], [3] can handle any P , both lead to quadratic-time
modular multiplication algorithms. In contrast, it will be seen
in Section V that HyPoRes achieves a subquadratic-time com-
plexity for any prime P . Comparisons in Sections V and VI
will focus on [4], [3] since [4] also achieves subquadratic-time
complexity but for specially crafted primes, and [3] works
for any moduli, even when their factorisation is not known,
enabling us to evaluate the impact of the assumptions one is
allowed to make on the performance of the resulting systems.

V. COMPUTATIONAL COMPLEXITY

The efficiency of Algorithm 1 can be evaluated in terms
of the amount of Single-precision Modular Multiplications
(SMMs). We assume that in (4) multiplications by β can
either be computed through shifts and additions, since β is
a small integer, or, when multiplying by M ′ and M , β can be
integrated on the precomputed M ′ and M . Hence, (4) requires
n2 multiplications for each moduli it is being operated on.
Part of the constants needed for the basis extensions, related
for instance with the multiplication of the residues of q by
b1,j/B1 in preparation of the extension of q to B2 can also
be integrated in the precomputation of M ′ and dealt with
at no cost. A further nh2 multiplications may be saved by
storing the values ξi,2,j = ai,2,jb2,j/B2 mod b2,j instead of
ai,2,j mod b2,j in basis B2 for any a represented under H.
One can conclude that the cost of Algorithm 1 in terms of
SMMs is:

2n2(h1 + h2 + 1) + 2nh1h2 + 2n(h2 + h1 + 1)

To achieve a fairer comparison, the approach of [4] has
been adapted to make use of the basis extensions described in
Section II-B. In this case, the amount of SMMs required to
compute a multiplication modulo P , including the two rounds
of carry propagation described in Section IV, is:

n2(h1 +h2 +1)+2nh1h2 +n(4h1 +3h2)+3n−2h1−h2−1

Under similar assumptions, a classical RNS modular multi-
plication, as described in [3], with RNS bases B1 and B2 with
H1 ∼ h1n and H2 ∼ h2n moduli would require

2H1H2 + 4H1 + 3H2 + 3

SMMs.
Asymptotically, if one chooses n ∼ h1 ∼ h2 ∼ log

1/2
2 P ,

both the proposed scheme and [4] have complexities of
O(log

3/2
2 P) SMMs. In contrast, with a pure RNS approach,

one has that H1 ∼ H2 ∼ log2 P , leading to a complexity of
O(log2

2 P).

VI. EXPERIMENTAL RESULTS

The proposed method for modular multiplication was de-
scribed in C++. Also, [4], [3] were implemented for com-
parison. The pure RNS-based multiplication can be seen
as a simplification of the proposed method when n = 1,
and thus M = P and γ and β play no role. We have

Prime Parameters

P383 = 2383 − 187[13]

γ = 157516587865170260770044116534390462053813572368725849125618118
78014957218639809853408982590108608513434801029743689
n = 2
β = 3
m = −991151885317490685877537319994551485852631552512982631751 + 3
668986611048655554039381508783546278051675539955460700691X
B1 = [4294967291, 4294967279, 4294967231, 4294967197, 4294967161,
4294967111, 4294967087]
B2 = [4294967295, 4294967293, 4294967287, 4294967281, 4294967273,
4294967269]
bsk = 232

P448 = 2448 − 2224 − 1[14]

γ = 617037013236874150081232979704524838882978450634686916049074439
753925120009974044466434996308660572821900599056417811283480361754
355140
n = 3
β = 2
m = −357400072521332008886097893349417451849548435 + 4584110981517
74579540799965020532854365487420X − 469045874351789005827208204177
461134721497131X2

B1 = [4294967197, 4294967161, 4294967029, 4294966981, 4294966927,
4294966813]
B2 = [4294967295, 4294967293, 4294967291, 4294967287]
bsk = 232

P521 = 2521 − 1[13]

γ = 23945242826029513411849172299223580994042798784118784
n = 3
β = 2
m = −1 + 11972621413014756705924586149611790497021399392059392X2

B1 = [4294967197, 4294967161, 4294967029, 4294966981, 4294966927,
4294966813]
B2 = [4294967295, 4294967293, 4294967291, 4294967287, 4294967281]
bsk = 232

TABLE I: The HyPoRes parameters used to evaluate the performance of the proposed method for the primes P383, P448 and
P521

considered the primes P383, P448 and P521, and the HyPoRes
parameters described in Table I. Notice that the primes P383,
P448 and P521 have been used to define the elliptic curves
M-383, Ed448-Goldilocks and E-521 [13], [14], respectively.
Moreover, HPR-crafted primes P384, P ′448 and P512 of 384,
448 and 512 bits, respectively, have been considered for the
implementation of [4]. The bases B1 and B2 in Table I, as
well as those chosen for [4], [3], are composed of integers
of the form bi,j = 232 − ci,j for small ci,j , enabling for fast
reductions [15]. In particular, a number a resulting from a
product is rewritten as a = a0 + 232a1, and the equality
232 = c mod bi,j is applied iteratively as a = a0 + ca1 to
reduce the magnitude of a.

Fig. 2 presents the required amount of elementary mul-
tiplications for the proposed approach with the parameters
described in Table I; for a pure-RNS approach with equivalent
parameters (h1 = 13 for P383; h1 = 15 for P448; and h1 = 17
for P521); and for HPR with the primes P384 (n = 2 and
h1 = 6), P ′448 (n = 2 and h1 = 7) and P512 (n = 4 and
h1 = 4). Moreover, the above-described code was compiled
with gcc 4.8.5 with the -Ofast and -march=native
flags and executed on a i7-3770K processor with 8GB of
main memory operated by CentOS 7.3. No parallelism was
exploited. The average modular multiplication time for the
HyPoRes, pure-RNS and HPR representations can be seen in
Fig. 3.

Figures 2 and 3 suggest that, although a similar performance
is attained for both HyPoRes and a pure-RNS approach for
the prime P383, the HyPoRes system has a better scalability
as the bit-length of the primes increases. This behaviour was
predicted in Section V. Moreover, while second-order factors,
such as the number of additions, limit the obtained speed-up of
HyPoRes when compared with a pure-RNS approach for the
smaller primes, when comparing the theoretical predictions of
Fig. 2 with the experimental results of Fig. 3, a maximum
speed-up of approximately 1.4 is obtained in both cases
for P521.

While Figures 2 and 3 show that the performance of
HyPoRes is slightly worse than HPR, it relies on weaker as-
sumptions (since it does not require the use of specially crafted
primes), making it more flexible and applicable in practice.
Fig. 4 emphasises the relation between the assumptions pure-
RNS, HyPoRes and HPR rely on and the performance of the
resulting system. Since HPR relies on primes of a particular
kind, this makes it hardly practical, because the primes for
cryptographic applications have already been standardised
with a different shape. In contrast, HyPoRes can be used
whenever one knows the factoring of the underlying modulus.
While the applicability to ECC has been herein demonstrated,
HyPoRes can also be applied to ElGamal [16] and Rivest-
Shamir-Adleman (RSA) [17] decryption and signing. In ad-
dition, while HyPoRes is less widely applicable than a pure-

P383(P384) P448(P ′448) P521(P512)
0

200

400

600

N
br

.o
f

E
le

m
en

ta
ry

M
ul

t.

Pure-RNS HyPoRes HPR

Fig. 2: Number of elementary multiplications required by a
pure-RNS and the proposed approaches, as well as with HPR
with specially crafted primes. The settings in parenthesis were
used for the HPR modular multiplication

P383(P384) P448(P ′448) P521(P512)
0

1

2

3

4

5

E
xe

c.
Ti

m
e

[µ
s]

Pure-RNS HyPoRes HPR

Fig. 3: Average execution time of a pure-RNS and the proposed
approaches, as well as of with HPR with specially crafted
primes. The settings in parenthesis were used for the HPR
modular multiplication

Better Performance

Pure-
RNS [3]

HyPoRes HPR [4]

Weaker Assumptions

Fig. 4: Qualitative comparison of HyPoRes with related art [3],
[4]

RNS approach, it makes the application of small RNS bases of
near power-of-two moduli [18], typically employed in signal
processing, viable for cryptographic applications.

VII. BEYOND PERFORMANCE: PROTECTION AGAINST
SCAS

SCAs exploit weaknesses in the implementation of cryp-
tosystems to derive sensitive information from power traces,

timing analysis and other physical sources of information. In
the context of ECC, Simple Power Analyses (SPAs), wherein
one tries to distinguish between EC point-doubling and adding
by directly analysing power traces, can be mitigated through
the use of formulae in which the two operations are realised
with the same basic operations [19]. In contrast, Differential
Power Analyses (DPAs) [20] predict power consumption based
on an hypothesis for a subset of the bits of the sensitive infor-
mation and correlate it with actual power measurements to find
the most likely hypothesis, requiring a large number of power
traces to retrieve the private data. Certain techniques [21] use
internal correlations to reduce the necessary number of traces
for a successful attack. A single trace may sometimes suffice.

The resistance against this type of attacks may be im-
proved through message blinding, wherein the representation
of the values being operated on is randomised, to prevent the
prediction of the consumed power. First, resistance against
DPAs [20] may be achieved by randomising the representation
of values at the beginning of EC point multiplication. Second,
if one wants to protect an implementation against [21], values
should be randomised during point multiplication.

A. Generalisation of the Reduction Polynomial

Definition III.1 is herein relaxed to allow for multiple
representations of the same value, and enable randomisation
through an arbitrary choice of one of them. Instead of selecting
γ as a root of Xn− β modulo P , γ is defined to be a root of
E(X) = e(0)+. . .+e(n−1)Xn−1+Xn modulo P , where E is
an irreducible polynomial over Z[X] with small coefficients. In
this case, Lemma III.1 is still applicable since it is independent
of the underlying E, ensuring the existence of a small nonzero
representation of zero M . Furthermore, multiplication of A by
X is achieved with the following vector-matrix multiplication:

A ? X =
[
a(0) a(1) . . . a(n−1)

]
×

0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
−e(0) −e(1) −e(2) . . . −e(n−2) −e(n−1)


︸ ︷︷ ︸

D

(6)

Thus, (4) may be generalised to

A ? C = AC mod E =

[
a(0) a(1) . . . a(n−1)

]

C ? X0

C ? X1

...
C ? Xn−1

 (7)

where the multiplication by Xi is achieved by multiplying C
by the i-th power of D in (6). Since E has small coefficients,
the multiplication by Di can be implemented with only shifts
and additions. Therefore, the complexity of Algorithm 1 is
maintained for the new definition of ?.

The parameters of an EC may be precomputed under mul-
tiple HyPoRes associated with different reducing polynomials
E. The prevention of DPA may be achieved by selecting a
random E thereof at the beginning of point multiplication. In
this case, a conversion from the binary representation system
to a generic HyPoRes is required. When preventing attacks
like [21], conversions between HyPoRes of different E are
required throughout the EC point multiplication. We now
consider these two types of conversions. The first deals with
the conversion of a binary value to an HyPoRes with generic
E. In this case the strategy proposed in Section III-B is still
applicable by replacing R with

R =


M ?X0

M ?X1

...
M ?Xn−1


The second type deals with conversions from an HyPoRes
associated with a polynomial E, HE , to another associated
with E′, HE′ . By noticing that the representation of [aB1]P
under HE satisfies

A =

n−1∑
i=0

A[i]γi mod P,

the conversion to HE′ is achieved as

A′ = A[0] +

n−1∑
i=1

HyPoRes-mulE′(A[i], TE→E′ [i])

where TE→E′ [i] is a representation of γiB1 mod P under
HE′ .

VIII. CONCLUSION

While the HPR has made subquadratic-time multiplication
algorithms viable for ECC, the need to use primes of a
special form makes it hardly practical. Through a weaken-
ing of the underlying assumptions, the HyPoRes has been
herein proposed. It not only achieves a similar subquadratic
time complexity, but it also supports any prime, making it
compatible with standardised elliptic curves. This results in a
slow-down of at most 1.4 when HyPoRes is compared with
HPR for HPR-crafted primes, but produces an acceleration of
up to 1.4 when compared with generic RNS based approaches
for primes of ECC standards. The implications of HyPoRes
are wide-spreading. While it is less applicable than pure-
RNS approaches, it makes the application of small RNS bases
of near power-of-two moduli, typically employed in signal
processing, viable for cryptographic applications. Also, since
it reduces the complexity of basis extensions when compared
with a pure-RNS approach, HyPoRes is more amenable to
parallelism at a smaller scale. Finally, through a generalisation
of the reducing polynomial, redundant representations are
introduced, providing for resistance against SCAs.

ACKNOWLEDGEMENT

This work was partially supported by national Por-
tuguese funds through Fundação para a Ciência e a
Tecnologia (FCT) by the Ph.D. grant with reference
SFRH/BD/103791/2014; by the ANR grant ARRAND 15-
CE39-0002-01; through the Pessoa/Hubert Curien programme
with reference 4335 (FCT)/40832XC (CAMPUSFRANCE);
and by EU’s Horizon 2020 research and innovation programme
under grant agreement No. 779391 (FutureTPM).

REFERENCES

[1] L. Sousa, S. Antao, and P. Martins. Combining residue arithmetic to
design efficient cryptographic circuits and systems. IEEE Circuits and
Systems Magazine, 16(4):6–32, Fourthquarter 2016.

[2] Jean-Claude Bajard and Laurent Imbert. A full RNS implementation of
rsa. IEEE Trans. Comput., 53(6):769–774, June 2004.

[3] Samuel Antao, Jean Claude Bajard, and Leonel Sousa. RNS-based
elliptic curve point multiplication for massive parallel architectures. The
Computer Journal, 55:629–647, 05 2012.

[4] K. Bigou and A. Tisserand. Hybrid position-residues number system. In
IEEE 23nd Symposium on Computer Arithmetic (ARITH), pages 126–
133, July 2016.

[5] Anna M. Johnston. A generalized qth root algorithm. In Proceedings
of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’99, pages 929–930, Philadelphia, PA, USA, 1999. Society for
Industrial and Applied Mathematics.

[6] Jean-Claude Bajard, Julien Eynard, Anwar Hasan, and Vincent Zucca.
A full RNS variant of FV like somewhat homomorphic encryption
schemes. Cryptology ePrint Archive, Report 2016/510, 2016. https:
//eprint.iacr.org/2016/510.

[7] J.-C. Bajard, L. Imbert, and T. Plantard. Arithmetic operations in the
polynomial modular number system. In 17th IEEE Symposium on
Computer Arithmetic (ARITH’05), pages 206–213, June 2005.

[8] Jiřı́ Matoušek. Lattices and Minkowski’s Theorem, pages 17–28.
Springer New York, New York, NY, 2002.

[9] Joe Buhler. Resultants, discriminants, bezout, nullstellensatz, etc. http:
//people.reed.edu/∼jpb/alg/notes/101.pdf, 2001. Reed College.

[10] Jean-Claude Bajard, Laurent Imbert, and Thomas Plantard. Modular
number systems: Beyond the mersenne family. In Selected Areas in
Cryptography, LNCS 3357, pages 159–169. Springer-Verlag, 2004.

[11] Jerome A. Solinas. Generalized mersenne numbers. http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.46.2133, 10 1999.

[12] Luca De Feo. Mathematics of isogeny based cryptography. CoRR,
abs/1711.04062, 2017.

[13] Diego F. Aranha, Paulo S. L. M. Barreto, Geovandro C. C. F. Pereira,
and Jefferson E. Ricardini. A note on high-security general-purpose
elliptic curves. Cryptology ePrint Archive, Report 2013/647, 2013. https:
//eprint.iacr.org/2013/647.

[14] Mike Hamburg. Ed448-goldilocks, a new elliptic curve. Cryptology
ePrint Archive, Report 2015/625, 2015. https://eprint.iacr.org/2015/625.

[15] Richard Crandall and Carl Pomerance. Prime Numbers: a Compu-
tational Perspective. Springer-Verlag, Berlin, Germany / Heidelberg,
Germany / London, UK / etc., 2001.

[16] Taher ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. In Advances in Cryptology, pages 10–18.
Springer Berlin Heidelberg, 1985.

[17] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–
126, February 1978.

[18] A. S. Molahosseini, A. A. E. Zarandi, P. Martins, and L. Sousa. A
multifunctional unit for designing efficient RNS-based datapaths. IEEE
Access, 5:25972–25986, 2017.

[19] Marc Joye and Jean-Jacques Quisquater. Hessian elliptic curves and
side-channel attacks. volume 2162, pages 402–410, 01 2001.

[20] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analy-
sis. In Michael Wiener, editor, Advances in Cryptology — CRYPTO’ 99,
pages 388–397, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[21] C. D. Walter. Sliding windows succumbs to big mac attack. In
Cryptographic Hardware and Embedded Systems — CHES 2001, pages
286–299. Springer Berlin Heidelberg, 2001.

