K. Ding and Y. Uozumi, Handbook of Asymmetric Heterogeneous Catalysis, 2008.

M. Studer, H. Blaser, and C. Exner, Enantioselective hydrogenation using heterogeneous modified catalysts: an update, Adv. Synth. Catal, vol.345, pp.45-65, 2003.

D. Y. Murzin, P. Mäki-arvela, E. Toukoniitty, and T. Salmi, Asymmetric heterogeneous catalysis: science and engineering, Catal. Rev, vol.47, pp.175-256, 2005.

T. Mallat, E. Orglmeister, and A. Baiker, Asymmetric catalysis at chiral metal surfaces, Chem. Rev, vol.107, pp.4863-4890, 2007.

K. Ernst, Molecular chirality at surfaces, Phys. Status Solidi B, vol.249, pp.2057-2088, 2012.

R. , Creating chiral architectures at metal surfaces, J. Phys. Condens. Matter, vol.14, pp.4119-4132, 2002.

S. M. Barlow and R. , Complex organic molecules at metal surfaces: bonding, organisation and chirality, Surf. Sci. Rep, vol.50, issue.03, pp.15-18, 2003.

C. J. Baddeley, N. V. Richardson, and M. Bowker, Scanning Tunneling Microscopy in Surface Science, Nanoscience and Catalysis, vol.1, pp.1-27, 2010.

A. J. Gellman, W. T. Tysoe, and F. Zaera, Surface chemistry for enantioselective catalysis, Catal. Lett, vol.145, pp.220-232, 2015.

A. Baiker, Progress in asymmetric heterogeneous catalysis: design of novel chirally modified platinum metal catalysts, J. Mol. Catal. A Chem, vol.115, pp.473-493, 1997.

M. Lorenzo, S. Haq, T. Bertrams, P. Murray, R. Raval et al., Creating chiral surfaces for enantioselective heterogeneous catalysis: RR-tartaric acid on Cu(110), J. Phys. Chem. B, vol.103, pp.10661-10669, 1999.

M. Lorenzo, C. J. Baddeley, C. Muryn, and R. , Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules, Nature, vol.404, pp.376-379, 2000.

M. Lorenzo, V. Humblot, P. Murray, C. J. Baddeley, S. Haq et al., Chemical transformations, molecular transport, and kinetic barriers in creating the chiral phase of (RR)-tartaric acid on Cu(110), J. Catal, vol.205, pp.123-134, 2002.

T. E. Jones, C. J. Baddeley, and A. Rairs, STM and TPD study of the Ni {111}/RR-tartaric acid system: modelling the chiral modification of Ni nanoparticles, Surf. Sci, vol.513, pp.453-467, 2002.

T. E. Jones and C. J. Baddeley, An investigation of the adsorption of (RR)-tartaric acid on oxidised Ni {111} surfaces, J. Mol. Catal. A Chem, vol.216, pp.223-231, 2004.

V. Humblot, S. Haq, C. Muryn, W. A. Hofer, and R. , From local adsorption stresses to chiral surfaces: (RR)-tartaric acid on Ni(110), J. Am. Chem. Soc, vol.124, pp.503-510, 2002.

W. A. Hofer, V. Humblot, and R. , Conveying chirality onto the electronic structure of achiral metals: (RR)-tartaric acid on nickel, Surf. Sci, vol.554, pp.141-149, 2004.

V. Humblot, S. Haq, C. Muryn, and R. , RR)-tartaric acid on Ni(110): the dynamic nature of chiral adsorption motifs, J. Catal, vol.228, pp.130-140, 2004.

U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep, vol.48, pp.53-229, 2003.

C. L. Pang, R. Lindsay, and G. Thornton, Structure of clean and adsorbate-covered singlecrystal rutile TiO 2 surfaces, Chem. Rev, vol.113, pp.3887-3948, 2013.

H. Onishi, T. Aruga, and Y. Iwasawa, Switchover of reaction paths in the catalytic decomposition of formic acid on TiO 2 (110) surface, J. Catal, vol.146, pp.557-567, 1994.

M. A. Henderson, Complexity in the decomposition of formic acid on the TiO 2 (110) surface, J. Phys. Chem. B, vol.101, pp.221-229, 1997.

S. A. Chambers, M. A. Henderson, Y. J. Kim, and S. Thevuthasan, Chemisorption geometry, vibrational spectra, and thermal desorption of formic acid on TiO 2 (110), Surf. Rev. Lett, vol.5, pp.381-385, 1998.

B. E. Hayden, A. King, and M. A. Newton, Fourier transform reflection-absorption IR spectroscopy study of formate adsorption on TiO 2 (110), J. Phys. Chem. B, vol.103, pp.203-208, 1999.

M. Bowker, P. Stone, R. Bennett, and N. Perkins, Formic acid adsorption and decomposition on TiO 2 (110) and on Pd/TiO 2 (110) model catalysts, Surf. Sci, vol.511, pp.1540-1546, 2002.

D. I. Sayago, M. Polcik, R. Lindsay, R. L. Toomes, J. T. Hoeft et al., Structure determination of formic acid reaction products on TiO 2 (110), J. Phys. Chem. B, vol.108, pp.14316-14323, 2004.

R. Lindsay, S. Tomi?, A. Wander, M. García-médez, and G. Thornton, Low energy electron diffraction study of TiO 2 (110, 2×1)-[HCOO] ?, J. Phys. Chem. C, vol.112, pp.14154-14157, 2008.

D. C. Grinter, T. Woolcot, C. Pang, and G. Thornton, Ordered carboxylates on TiO 2 (110) formed at aqueous interfaces, J. Phys. Chem. Lett, vol.5, pp.4265-4269, 2014.

A. Mattsson, S. Hu, K. Hermansson, and L. Österlund, Adsorption of formic acid on rutile TiO 2 (110) revisited: an infrared reflection-absorption spectroscopy and density functional theory study, J. Chem. Phys, vol.140, p.34705, 2014.

I. D. Cocks, Q. Guo, R. Patel, E. M. Williams, E. Roman et al., The structure of TiO 2 (110, 1 × 1, 1 × 2) surfaces with acetic acid adsorption -a PES study, Surf. Sci, pp.1381-1388, 1997.

Q. Guo and E. M. Williams, The effect of adsorbate-adsorbate interaction on the structure of chemisorbed overlayers on TiO 2 (110), Surf. Sci, pp.105-108, 1999.

H. Ashima, W. Chun, and K. Asakura, Room-temperature-adsorption behavior of acetic anhydride on a TiO 2 (110) surface, Surf. Sci, vol.601, pp.1822-1830, 2007.

L. Patthey, H. Rensmo, P. Persson, K. Westermark, L. Vayssieres et al., Adsorption of bi-isonicotinic acid on rutile TiO 2 (110), J. Chem. Phys, vol.110, pp.5913-5918, 1999.

P. Persson, S. Lunell, P. A. Brühwiler, J. Schnadt, S. Södergren et al., N 1s x-ray absorption study of the bonding interaction of bi-isonicotinic acid adsorbed on rutile TiO 2 (110), J. Chem. Phys, vol.112, pp.3945-3948, 2000.

J. Schnadt, J. Schiessling, J. N. Shea, S. M. Gray, L. Patthey et al., Structural study of adsorption of isonicotinic acid and related molecules on rutile TiO 2 (1 1 0) I: XAS and STM, Surf. Sci, vol.540, pp.827-833, 2003.

A. Tekiel, J. S. Prauzner-bechcicki, S. Godlewski, J. Budzioch, and M. Szymonski, Selfassembly of terephthalic acid on rutile TiO 2 (110): toward chemically functionalized metal oxide surfaces, J. Phys. Chem. C, vol.112, pp.12606-12609, 2008.

P. Rahe, M. Nimmrich, A. Nefedov, M. Naboka, C. Wöll et al., Transition of molecule orientation during adsorption of Terephthalic acid on rutile TiO 2 (110), J. Phys. Chem. C, vol.113, pp.17471-17478, 2009.

W. Zhang, L. Cao, L. Wan, L. Liu, and F. Xu, A photoelectron spectroscopy study on the interfacial chemistry and electronic structure of terephthalic acid adsorption on TiO 2 (110-1×1) surface, J. Phys. Chem. C, vol.117, pp.21351-21358, 2013.

K. L. Syres, A. G. Thomas, D. M. Graham, B. F. Spencer, W. R. Flavell et al., Adsorption and stability of malonic acid on rutile TiO 2 (110), studied by near edge X-ray absorption fine structure and photoelectron spectroscopy, Surf. Sci, vol.626, pp.14-20, 2014.

M. Buchholz, M. Xu, H. Noei, P. Weidler, A. Nefedov et al., Interaction of carboxylic acids with rutile TiO 2 (110): IR-investigations of terephthalic and benzoic acid adsorbed on a single crystal substrate, Surf. Sci, vol.643, pp.117-123, 2016.

E. Ataman, C. Isvoranu, J. Knudsen, K. Schulte, J. N. Andersen et al., Adsorption of L-cysteine on rutile TiO 2 (110), Surf. Sci, vol.605, pp.179-186, 2011.

S. Tanuma, C. J. Powell, and D. R. Penn, Calculations of Electron inelastic mean free paths (IMFPs)VI. Analysis of the Gries inelastic scattering model and predictive IMFP equation, Surf. Interface Anal, vol.25, pp.1096-9918, 1997.

C. Yang and C. Wöll, IR spectroscopy applied to metal oxide surfaces: adsorbate vibrations and beyond, Adv. Phys, vol.2, pp.373-408, 2017.

Y. Wang and C. Wöll, IR spectroscopic investigations of chemical and photochemical reactions on metal oxides: bridging the materials gap, Chem. Soc. Rev, vol.46, pp.1875-1932, 2017.

A. Rieger, C. Sax, T. Bauert, C. Wäckerlin, and K. Ernst, Chiral molecules adsorbed on a solid surface: tartaric acid diastereomers and their surface explosion on Cu(111), Chirality, vol.30, pp.369-377, 2018.

S. Baldanza, J. Ardini, A. Giglia, and G. Held, Stereochemistry and thermal stability of tartaric acid on the intrinsically chiral Cu {531} surface, vol.643, pp.108-116, 2016.

C. Roth, D. Passerone, L. Merz, M. Parschau, and K. Ernst, Two-dimensional selfassembly of chiral malic acid on cu(110), J. Phys. Chem. C, vol.115, pp.1240-1247, 2011.

M. Parschau, B. Behzadi, S. Romer, and K. Ernst, Stereoisomeric influence on 2D lattice structure: achiral meso-tartaric acid versus chiral tartaric acid, Surf. Interface Anal, vol.38, pp.1607-1610, 2006.

V. E. Hendrich and P. A. Cox, The Surface Science of Metal Oxides, 1994.

R. Lazzari, J. Li, and J. Jupille, Spectral restoration in high resolution electron energy loss spectroscopy based on iterative semi-blind Lucy-Richardson algorithm applied to rutile surfaces, Rev. Sci. Instrum, vol.86, p.13906, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01442820

P. A. Cox, W. R. Flavell, A. A. Williams, and R. G. Egdell, Application of Fourier transform techniques to deconvolution of HREEL spectra, Surf. Sci, pp.784-790, 1985.

L. Jin and Y. Wang, Surface chemistry of methanol on different ZnO surfaces studied by vibrational spectroscopy, Phys. Chem. Chem. Phys, vol.19, pp.12992-13001, 2017.

E. Meriggio, Applied Surface Science, vol.493, pp.1134-1141, 2019.