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Abstract
Preclinical and clinical studies have suggested that cancer treatment with antitumor antibodies induces a specific adaptive 
T cell response. A central role in this process has been attributed to  CD4+ T cells, but the relevant T cell epitopes, mostly 
derived from non-mutated self-antigens, are largely unknown. In this study, we have characterized human CD20-derived 
epitopes restricted by HLA-DR1, HLA-DR3, HLA-DR4, and HLA-DR7, and investigated whether T cell responses directed 
against CD20-derived peptides can be elicited in human HLA-DR-transgenic mice and human samples. Based on in vitro 
binding assays to recombinant human MHC II molecules and on in vivo immunization assays in H-2 KO/HLA-A2+-DR1+ 
transgenic mice, we have identified 21 MHC II-restricted long peptides derived from intracellular, membrane, or extracel-
lular domains of the human non-mutated CD20 protein that trigger in vitro IFN-γ production by PBMCs and splenocytes 
from healthy individuals and by PBMCs from follicular lymphoma patients. These CD20-derived MHC II-restricted peptides 
could serve as a therapeutic tool for improving and/or monitoring anti-CD20 T cell activity in patients treated with rituximab 
or other anti-CD20 antibodies.
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Abbreviations
AAPC  Artificial antigen-presenting cells
CTL  Cellular Technology Limited
DLBCL  Diffuse large B cell lymphoma
EFS  Etablissement Français du Sang
FVIII  Factor VIII
FL  Follicular lymphoma
HD  Healthy donor
KO  Knock-out
MCL  Mantle cell lymphoma

R-CHOP  Rituximab, cyclophosphamide, doxorubicin, 
vincristine, prednisolone

SFU  Spot forming units

Introduction

A number of anti-CD20 therapeutic antibodies are now suc-
cessfully used to treat B cell lymphomas and CLL [1, 2]. 
The CD20 membrane-spanning 4A molecule is an ungly-
cosylated phosphoprotein (33–37 kDa, 297 amino acids) 
encoded by the MS4A1 gene and expressed by B cells from 
the early pre-B cell to the late B cell stages. Pro-B cells 
do not express CD20. CD20 disappears when B cells dif-
ferentiate into plasma cells [3–5]. CD20 is involved in the 
regulation of intracellular calcium levels and in B cell sign-
aling, proliferation, and differentiation [6–9]. It contains two 
extracellular loops—one small and one large—containing 
the epitopes bound by anti-CD20 antibodies [10, 11].

We and others have shown in a mouse model that  CD4+ 
T cells play a critical role in the long-term antitumor 
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protection elicited by anti-CD20 treatment [12–14]. T cell 
depletion and T cell transfer experiments demonstrated that 
anti-CD20 treatment leads to the development of a potent 
and specific memory  CD4+ T cell response against  CD20+ 
tumor cells [12, 14]. Another study showed that anti-CD20 
mAb engages FcγRIIA expressed on dendritic cells leading 
to the priming of self-reactive tumor-specific  CD4+ T cells 
[14]. However, the specific T cell epitopes involved in this 
process are unknown.

Analyses of the HLA ligandome in healthy donors or 
patients with B cell malignancies have allowed the identi-
fication of self-peptides derived from B cell molecules, in 
particular CD19 and CD20, that could be recognized by 
T cells [15, 16]. Immunogenic MHC I-restricted CD20-
derived peptides have also been identified in studies using 
an in silico approach and in vitro assays based on stimula-
tion of CTLs with candidate peptides [17–21]. Notably, 
one particular highly immunogenic peptide located in the 
CD20 transmembrane domain and recognized by  CD8+ 
T cells,  CD20188–196 (SLFLGILSV), induces the expan-
sion of CTLs in healthy donors and patients. These cells 
efficiently kill primary tumor cells or cells from cell lines 
derived from B cell malignancies [17–21]. A strategy 
developed to detect and expand allo-MHC-restricted T 
cells reactive to self-tumor antigens has also resulted in 
the characterization of 20 non-mutated HLA-A*02:01-
restricted epitopes from CD20 [22]. However, these stud-
ies have been largely focused on MHC I-restricted CD20 
epitopes. Only one study has reported that a CD20 alterna-
tive splicing isoform expressed in patients with B cell lym-
phoma can generate immunogenic  CD4+ T cell epitopes 
[23]. Thus, the identification of MHC II-restricted peptides 
derived from native non-mutated CD20 molecule is still 
needed to better understand the role of  CD4+ T cells in the 
long-term response to anti-CD20 treatment.

In this study, we assessed whether human CD20-
derived MHC II-restricted immunogenic peptides can be 
identified using a combination of in vitro binding assays 
to recombinant human MHC II molecules and subsequent 
in vivo immunization experiments in human HLA-DR-
transgenic mice. We could identify a number of CD20-
derived MHC II-restricted long peptides (n = 21) local-
ized in the extracellular, transmembrane and intracellular 
domains of CD20. These peptides induce in vitro IFN-γ 
responses in PBMCs from healthy donors (HD) and fol-
licular lymphoma (FL) patients.

Materials and methods

Human samples

PBMCs from HD were obtained from Cellular Technology 
Limited (CTL)—Europe (n = 25) or from the French blood 
agency (Etablissement Français du Sang, EFS) (n = 11). HD 
from CTL—Europe were selected as expressing at least one 
of the following HLA-DR alleles: HLA-DRB1*01:01, HLA-
DRB1*03:01, HLA-DRB1*04:01, and HLA-DRB1*07:01. 
Anonymous HD from EFS were not HLA-typed. PBMCs 
were also obtained from patients diagnosed with high 
tumor-burden follicular lymphoma (FL; n = 9) and treated 
with a regimen consisting of rituximab combined with 
chemotherapy (cyclophosphamide, doxorubicin, vincris-
tine, prednisolone) (R-CHOP) (Hemato-oncology Depart-
ment, Saint Louis hospital, Paris, France). Blood samples 
from patients were collected 6 weeks after initiation of 
treatment. HLA typing of patients was performed using the 
Polymerase Chain Reaction-Sequence Specific Oligoprobe 
(PCR-SSO) molecular method using the LABType SSO 
kits from One Lambda Inc. (Canoga). Spleens (n = 7) were 
obtained from organ transplant donors at the Hôpital Pitié-
Salpêtrière (Paris, France).

Mice

For immunization, 8- to 12-week-old HLA-A2.1-/
HLA-DR1-transgenic H-2 class I-/class II-knockout (KO) 
female mice were used [24].

Definition of MHC II‑restricted human CD20‑derived 
candidate peptides

Bioinformatics tools for epitope prediction (SYFPEITHI; 
IEDB; BIMAS) applied to the human CD20 sequence 
deposited in the NCBI database (NP_068769.2) were 
used to identify MHC II-restricted CD20-derived candi-
date peptides. The candidate peptides were then screened 
at ProImmune for high MHC-peptide binding scores with 
the high-throughput ProImmune  REVEAL® MHC-peptide 
binding assay (https ://www.proim mune.com/ecomm erce/
page.php?page = revea l_class 2). This binding assay quanti-
fies the ability of test peptides to bind to the human MHC 
II molecules HLA-DR1 (allele HLA-DRB1*01:01), HLA-
DR3 (allele HLA-DRB1*03:01), HLA-DR4 (allele HLA-
DRB1*04:01), and HLA-DR7 (allele HLA-DRB1*07:01), 
and also measures the ability of the bound peptide to sta-
bilize the resulting MHC II-peptide complex. The assay is 
based on determining the presence or absence of the native 
conformation of the MHC II-peptide complex, as recognized 

https://www.proimmune.com/ecommerce/page.php%3fpage%e2%80%89%3d%e2%80%89reveal_class2
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by a specific antibody. Each peptide is given a score relative 
to a positive control peptide, which is known to bind MHC 
II molecules with high affinity.

Immunization of mice

Ten 8- to 12-week-old HLA-A2.1-/HLA-DR1-transgenic 
female mice (HLA-DRB1*01:01) were intravenously 
injected with 2 × 105 EL4 mouse thymoma cells express-
ing human CD20 (EL4-huCD20) [25]. Splenic  CD4+ T 
cells from these immunized mice were isolated 21 days 
after injection using the  CD4+ T cell negative selection kit 
(Miltenyi Biotec) and pooled. The purified pooled  CD4+ T 
cells  (105 cells/well) were then incubated in ELISPOT plates 
for 36 h with  104 HLA-DRB1*01:01-expressing artificial 
antigen-presenting cells (AAPCs) derived from NIH-3T3 
cells [26] which were loaded with the CD20-derived peptide 
mixture.

ELISPOT assays

Human PBMCs (n = 26 for HD and n = 9 for FL patients) 
or spleen cells (n = 7) (2 × 106 cells/ml) were cultured for 
7 days in RPMI1640 medium supplemented with 10% heat-
inactivated human serum, 1% l-glutamine, 1% penicillin, 
and streptomycin (Life Technologies) in the presence of 
CD20-derived peptide mixture (10 µg of each peptide). A 
pool of two human MHC II-restricted Factor VIII (FVIII)-
derived peptides (peptide 1972, KMALYNLYPGVFETV, 
and peptide 2145, IARYIRLHPTHYSIR) was used as a 
control of self-antigen-derived peptides that bind to human 
HLA-DR molecules [27–29]. In some experiments, 10 μg/
ml of blocking anti-HLA-DR, DP, DQ monoclonal antibody 
(clone Tu39; BD Biosciences) were added to the culture. On 
day 1, 50 ng/ml IL-7 (Peprotech) and on day 3, 50 UI/ml 
IL-2 (Peprotech) were added to the culture. On day 7,  105 
PBMCs or splenocytes/well were incubated in IFN-γ ELIS-
POT plates (CTL—Europe) for 36 h in serum-free medium 
with FVIII- or CD20-derived peptides, in the presence or 
absence of anti-HLA-DR, -DP, -DQ blocking antibody. 
Each sample was tested in triplicate and the mean value of 
each triplicate was reported. The positive threshold was set 
at ≥ 10 SFU per  105 cells after subtracting the background 
noise, as described previously [30]. In other experiments, 
5 × 105 PBMCs/well from HD (n = 10) were tested ex vivo 
in the absence of cytokines with either the peptide pool 
(containing 10 µg of each peptide) or with each of the 21 
peptides (10 µg) (1 well/peptide or peptide pool). Human 
and mouse IFN-γ ELISPOT assays were performed with 
the Single Color ELISPOT kit according to the manufac-
turer’s recommendations (CTL—Europe). Following com-
pletion of the ELISPOT protocol, the plates were air dried 
in a laminar flow hood prior to analysis. The resulting spots 

were counted using a computer-assisted ELISPOT image 
analyzer (S6 Ultra-V Analyzer, CTL-Europe) customized for 
analyzing ELISPOT assays to meet the objective criteria for 
size, chromatic density, shape, and color. Spot forming units 
(SFU) were automatically calculated by the Immunospot SC 
Suite Software (CTL—Europe) using the SmartCount™ and 
Autogate™ functions.

Statistical analyses

Statistical evaluation of mouse and human ELISPOT 
data was performed using non-parametric paired (Wilcoxon) 
or unpaired (Mann–Whitney) tests, and multiple t tests with 
Bonferroni correction (indicated in each figure legend). 
Prism software (version 5, Graphpad, San Diego, CA, USA) 
was used for statistical analyses. For all statistical tests per-
formed, p values were considered significant if ≤ 0.05.

Results

CD20‑derived peptides that bind strongly to human 
MHC II are immunogenic in HLA‑DR transgenic mice

Using the ProImmune  REVEAL® MHC-peptide binding 
assay, we assessed the binding of 95 overlapping 15-mer 
human CD20-derived peptides with an offset of 3 amino 
acids to recombinant human MHC II molecules frequently 
found in European populations (HLA-DRB1*01:01; HLA-
DRB1*03:01; HLA-DRB1*04:01; HLA-DRB1*07:01). Six 
of these peptides failed in synthesis, and therefore could not 
be tested. The binding assays revealed frames of densely 
packed high-scoring peptides (Fig. 1a), and thus clusters of 
potentially immunogenic epitopes within the intracellular, 
transmembrane, and extracellular domains of the human 
CD20 molecule (Fig. 1b).

We then assessed whether peptides corresponding to 
these clusters defined in vitro might be presented by MHC 
molecules and promote T cell responses in vivo. H-2 KO/
HLA-A2+-DR1+ transgenic mice were i.v. injected with 
2 × 105 tumor cells expressing the entire human CD20 
molecule (EL4-huCD20). 21 days later, splenic  CD4+ T 
cells were isolated and co-cultured in ELISPOT plates 
for 36 h with NIH/3T3 cell-derived AAPCs. These cells 
that express human HLA-DRB1*01:01 molecules loaded 
with 9 different mixtures of 18 to 20-mer MHCII-restricted 
peptides selected for their different high-scoring frames 
(huMHC II_Mix 1 to 9) (Fig. 1; Supplementary Table 1). 
ELISPOT assays showed that five mixtures of MHC II-
restricted huCD20-derived peptides (huMHC II_Mix 1, 
huMHC II_Mix 2, huMHC II_Mix 4, huMHC II_Mix 5, 
and huMHC II_Mix 8) were able to stimulate IFN-γ pro-
duction by CD4+ T cells isolated from mice injected with 
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EL4-huCD20 tumor cells (Fig. 2). The responses induced 
by peptides of huMHC II_Mix 1 and of huMHC II_Mix 2 
(localized in one of the intracellular domains of the CD20 
molecule) were significantly higher as compared to the 
other mixtures (Fig. 2).

MHC II‑restricted CD20‑derived peptides induce 
in vitro IFN‑γ production by T cells from healthy 
individuals and follicular lymphoma patients

We then investigated whether HLA-DR-restricted CD20-
derived peptides could stimulate the production of IFN-γ 

by PBMCs from healthy donors. Since a role for T cells 
bearing low-avidity TCRs for self-antigens in the immune 
surveillance of spontaneous spleen B cell lymphoma has 
been reported [31], we also assessed the IFN-γ production 
in response to these peptides using human spleen cells.

Three pools comprising all the peptides that acti-
vated CD4+ T cells in H-2 KO/HLA-A2+-DR1+ transgenic 
mice were designed for human ELISPOT assays (Fig. 3). The 
first one (termed pool 22–43) contained all the peptides of 
huMHC II_Mix. 1, huMHC II_Mix. 2, and huMHC II_Mix. 
3. The pool 58–121 included huMHCII_Mix. 4 and huMH-
CII_Mix. 5 peptides, and the last one, termed 133–151, was 
obtained by pooling huMHC II_Mix. 6, huMHC II_Mix. 
7, and huMHCII_Mix. 8 peptides (Fig. 3; Supplementary 

Fig. 1  Screening of immunogenic HLA-DR-restricted CD20-derived 
peptides. a Cumulative scores of the binding of human CD20-derived 
peptides to recombinant HLA-DRB1*01:01 (blue), *03:01 (red), 
*04:01 (green), and *07:01 (purple) molecules as calculated with 
the ProImmune  REVEAL® MHC-peptide binding assay. High scor-
ing peptides within intracellular, transmembrane, and extracellular 
domains of the human CD20 molecule were pooled into 9 different 

mixtures of 18 to 20-mer MHC II-restricted peptides (huMHC II_
Mix 1 to 9) (see also Supplementary Table 1). b Localization of the 
different MHC II-restricted CD20-derived peptide mixtures (huMHC 
II_Mix 1 to 3 in red; huMHC II_Mix 4 in green; huMHC II_Mix 5 in 
dark blue; huMHC II_Mix 6 to 8 in light blue; huMHC II_Mix 9 in 
pink)
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Table 1). All three pools of MHC II-restricted CD20-derived 
peptides induced T cell responses by PBMCs or spleen cells 
from a number of healthy individuals (Fig. 4a, b; Supple-
mentary Table 2). The median SFU value per  105 cells was 
significantly higher for pool 133–151 (peptides located 
within the large extracellular loop of CD20) as compared 
to pool 22–43 (peptides located within the intracellular 
domain) (Fig. 4a, b). This was observed both with PBMCs 
and splenocytes. Various response profiles were observed 
among the HD PBMC samples. 23% exhibited IFN-γ pro-
duction in response to each of the three pools of peptides. 
Responses to one or two out of the three pools were detected 
in 19% and 15% of HD PBMC samples, respectively. IFN-γ 
production in response to one or two of the three pools was 
detected in 28% or 57% of splenocytes, respectively (Supple-
mentary Fig. 1). Of note, FVIII peptides used as a control for 
self-antigen-derived peptides (see “Materials and methods”) 
did not induce IFN-γ production in PBMCs from healthy 
donors (data not shown). 

Finally, we assessed whether CD20-specific T cell 
responses could be detected in PBMCs from patients diag-
nosed with high tumor-burden FL and treated with R-CHOP 
(Fig. 4c). Again, the IFN-γ ELISPOT assays revealed T cell 

responses against all the peptide pools (Supplementary 
Table 2). No significant differences in median SFU per  105 
cells were detected between the different pools of peptides 
(Fig. 4c), and about the same percentages of responses to 
one or three pools were observed (Supplementary Fig. 1). 
The intensity of IFN-γ response detected in ELISPOT assays 
with the three pools of peptides was similar between the 
different types of samples (PBMCs and splenocytes from 
healthy individuals, and PBMCs from FL patients) (Sup-
plementary Fig. 2).

To further analyze the involvement of  CD4+ T cells in 
IFN-γ responses detected in ELISPOT assays, a monoclo-
nal anti-HLA-DR, -DP, -DQ blocking antibody was added 
to culture of PBMCs from several healthy donors and from 
FL patients in the presence of the different pools of CD20-
derived peptides (Fig. 4d–f). The IFN-γ production could be 
blocked by the anti-HLA-DR, -DP, -DQ antibody for some, 
but not all the samples tested (Fig. 4d–f and Supplementary 
Fig. 3). Thus, these results indicate that  CD4+ T cells are 
implicated in IFN-γ response and also suggest that the pres-
ence of CD20-derived long peptides could stimulate  CD8+ 
T cells.

All the ELISPOT assays were performed after expanding 
cells in vitro for 7 days in presence of IL-2, IL-7, and peptide 
pools. Both naive T cell priming and memory-specific T cell 
expansion can occur in this setting. To analyze the memory 
T cell pool specifically, we performed ex vivo ELISPOT 
assays with the pools of peptides or with individual pep-
tide incubated with 5 × 105 PBMCs for 48 h in absence of 
cytokines. A low background was observed in 6/10 of the 
HD samples tested when cells were cultured without peptide. 
HD31 exhibited a marked response to pool 22–43 whereas 
responses to the other peptide pools were barely detected in 
these 6 donors (Fig. 5). Interestingly, when single peptides 
were tested, responses above the baseline could be observed 
in HD27 (58M-75G; 142K-161Y), HD31 (25S-44F; 28K-47R; 
34M-53G; 40P-59N; 43S-60G; 91G-108S; 112L-131M; 115G-134S; 
118I-137D; 121S-138I; 133L-152L; 145H-164I; 151S-170A), and 
HD33 (40P-59N; 148K-167C). Thus, memory T cells against 
CD20-derived peptides can be detected in some healthy 
donors using a short-term in vitro incubation.

Taken together, these results show that T cell responses 
against MHC II-restricted CD20-derived peptides 
are detected in samples from healthy donors and FL patients. 
While these T cells recognize epitopes located in different 
domains of the CD20 protein (extracellular, transmembrane, 
and intracellular domains), the intensity and frequency of T 
cell responses against epitopes in the large extracellular loop 
appear to be higher, at least in healthy individuals.

Fig. 2  Induction of  CD4+ T cell responses directed against human 
CD20-derived peptides in HLA-A2.1/HLA-DR1-transgenic H-2 
class I-/class II-KO mice immunized with EL4-huCD20 tumor cells. 
The frequency of IFN-γ producing  CD4+ T cells directed against 
CD20-derived peptides (huMHC II_Mix 1 to huMHC II_Mix 9) 
from HLA-A2.1/HLA-DR1-transgenic mice inoculated with EL4-
huCD20 tumor cells (+ EL4-huCD20) or from their naive counter-
parts (non-injected) was evaluated by ELISPOT assays. Results were 
expressed as SFU per  105  CD4+ T cells. Bars represent the mean val-
ues from two (huMHC II_Mix 3, huMHC II_Mix 5, huMHC II_Mix 
6, huMHC II_Mix 7, huMHC II_Mix 8) or three (huMHC II_Mix 1, 
huMHC II_Mix 2, huMHC II_Mix 4, huMHC II_Mix 9) independent 
experiments. The positive threshold (horizontal dotted line) was set 
at ≥ 10 SFU per  105 cells as previously described [30]. *Indicates that 
IFN-γ responses obtained with  CD4+ T cells stimulated with huMHC 
II_Mix 1 or huMHC II_Mix 2 were significantly higher than those 
obtained in all other conditions (Multiple t tests followed by Bonfer-
roni correction)
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Discussion

Our previous studies performed in mice bearing EL4-
huCD20 tumor cells have demonstrated that a protective 
 CD4+ T cell response directed against human CD20 mol-
ecule is induced after mAb treatment [12, 13]. However, 
the relevant MHC II-restricted T cell epitopes are unknown. 
Thus, we investigated herein the presence of T cell epitopes 
in human CD20 and whether T cells directed against CD20-
derived peptides can be detected in human PBMCs and 
splenocytes.

Based on in  vitro binding assays to recombinant 
human MHC II molecules (frequent alleles in European 

populations, i.e., HLA-DR1; HLA-DR3; HLA-DR4; HLA-
DR7) and on in vivo immunization of H-2 KO/HLA-A2+-
DR1+ transgenic mice, we have identified three pools of 
human MHC II-restricted T cell peptides located in dif-
ferent domains of the CD20 protein that induce in vitro 
IFN-γ responses in samples from healthy donors and FL 
patients (Fig. 4). Of note, some differences were observed 
between H-2 KO/HLA-A2+-DR1+ transgenic mice immu-
nization and in vitro tests of human PBMCs. In experi-
ments using H-2 KO/HLA-A2+-DR1+ transgenic mice, the 
responses induced by peptides localized in the N-terminal 
intracellular domain of CD20 molecule (huMHC II_Mix 1 
and huMHC II_Mix 2, position 22–56) were significantly 

Fig. 3  Localization of HLA-DR-restricted CD20-derived peptide pools used to analyze anti-CD20 T cell responses in human PBMCs and sple-
nocytes. Pool 22–43 spans 22A-60G in blue, Pool 58–121, 58M-138I in green; Pool 133–151, 133L-170A in purple
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higher as compared to the other peptides (Fig. 2). By con-
trast, when both human PBMCs and splenocytes were 
tested in vitro, the median SFU value per  105 cells was 
significantly higher for pool 133–151 (peptides located 
within the large extracellular loop of CD20) as compared 
to the other pools (Fig. 4). These differences could be due 
to the fact that responses achieved in H-2 KO/HLA-A2+-
DR1+ transgenic mice result from the presentation of 
CD20-derived peptides solely by an HLA-DR1 molecule. 
By contrast,  the PBMCs used in ELISPOT assays are 
derived from individuals with HLA-DR1 and/or HLA-
DR3, HLA-DR4, HLA-DR7 haplotypes. The use of H-2 
KO/HLA-A2+-DR1+ transgenic mice inoculated with 
EL4-huCD20 tumor cells enables the detection of mouse T 
cell responses directed against human CD20, a xenogeneic 
antigen in this setting, in contrast to the assays with human 
samples in which autologous CD20-derived peptides are 
used. Nevertheless, this preclinical model represents a 
valuable tool to establish that peptides selected in silico 
can be presented in vivo by human HLA-DR1.

Our results also indicate that peptides derived from the 
huCD20 sequence 133L-170A (located in the large extracel-
lular loop) are the most immunogenic. This observation 
is reminiscent of a previous study showing the induction 
of an antibody response in BALB/c mice vaccinated with a 
peptide from the human CD20 extracellular loop sequence 
(CKISHFLKMESLNFIRAHTPYINIYNCEPANPSEKNS 
PSTQYCY) [32]. However, although the intensity and fre-
quency of T cell responses against epitopes localized in 
the large extracellular loop appear to be higher, at least in 
healthy donors, IFN-γ responses to peptides derived from 
the intracellular and transmembrane domains (Pools 22–43 
and 58–121) were also detected in some individuals. Thus, 
in addition to MHC I-restricted peptides derived from the 
extracellular CD20 loop previously described [16–22], we 
were able herein to define 15 to 20-mer MHC II-restricted 
T cell epitopes derived from either intracellular, membrane, 
or extracellular domains of the human non-mutated CD20 
protein. Of note, the data obtained in the presence of anti-
HLA-DR, -DP, -DQ blocking antibody suggest that these 

Fig. 4  IFN-γ responses induced by HLA-DR-restricted human CD20-
derived peptides  in healthy individuals and follicular lymphoma 
patients. PBMCs from a healthy donors (PBMC HD, n = 26) or c 
follicular lymphoma patients (PBMC FL, n = 9), and b splenocytes 
of healthy individuals (splenocytes HD, n = 7) were incubated with 
pools of MHC II-restricted CD20-derived peptides (Pools 22–43, in 
blue; Pool 58–121, in green; Pool 133–151, in purple). IFN-γ pro-
duction was then measured by ELISPOT assays as described in the 
“Materials and methods” section. Results were expressed as SFU per 

 105 cells. Median values are indicated for each pool of peptides. The 
positive threshold (horizontal dotted line) was set at ≥ 10 SFU per  105 
cells as previously described [30]. Non-parametric paired Wilcoxon 
tests were used for statistical analysis. *p < 0.05; ns not significant. 
d–f IFN-γ production by PBMCs from healthy donors (HD4, HD5, 
HD8, HD10, HD11) or from FL patients (FL6 and FL9) measured 
by ELISPOT assays in response to d Pool 22–43, e Pool 58–121 or 
f Pool 133–151, in absence (−  anti-HLA-DR) or presence (+ anti-
HLA-DR) of blocking anti-HLA-DR, -DP, -DQ monoclonal antibody
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long peptides also have the ability to stimulate  CD8+ T cells 
in vitro for some individuals as already reported in other 
studies [reviewed in 33].

We cannot exclude that the immunogenic peptides for 
which a  CD4+ T cell response is detected in individuals 
included in our study are different to the endogenously 
expressed CD20 polypeptide. Low-frequency mutations 

including SNPs or polymorphisms of the CD20-encoding 
MS4A1 gene have been observed in NHL patients [34–37]. 
It has been suggested that some CD20 tumor-associated 
mutations could be treatment induced [37]. Five CD20 alter-
native splice variants have also been identified in human 
Epstein–Barr Virus (EBV)-transformed B cell lines and 
in primary samples of FL, CLL, mantle cell lymphoma 

Fig. 5  IFN-γ responses to individual peptides by PBMCs from 
healthy donors HD27 (a), HD28 (b), HD30 (c), HD31 (d), HD32 (e), 
HD33 (f). Horizontal dotted line and gray bar represent the number 
of SFU/5 × 105 PBMCs obtained when cells are cultured alone (back-
ground). Bars represent results from individual peptides from pool 

22–43 (blue), pool 58–121 (green), and pool 133–151 (purple) (one 
well/peptide). Hatched bars represent results with the three pools: 
pool 22–43, blue; pool 58–121, green; pool 133–151, purple (1 well/
pool)
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(MCL) or diffuse large B cell lymphoma (DLBCL) patients 
[38–40]. Interestingly, specific T cell responses against a 
20-mer peptide derived from one of these CD20 splice vari-
ants (D393-CD20) were detected in both lymphoma patients 
and healthy individuals [39]. However, it is important to 
stress that no splice variants were observed in normal B 
cells from healthy donors in these studies and that the differ-
ent splice variants and the wild-type CD20 isoform are co-
expressed in NHL B cell patients [39, 40]. It is thus unlikely 
that an allogeneic T cell response is being observed rather 
than an autoreactive T cell response in our experimental 
setting.

Non-mutated self-proteins overexpressed on tumor 
cells are a source of universal target antigens for inducing 
tumor-specific T lymphocytes without the need to identify 
the mutanome of tumor cells. Recent results have demon-
strated that thymic deletion prunes but does not eliminate 
self-specific  CD4+ and  CD8+ T cells, and that some self-
peptide/MHC-restricted T cells can be detected at frequen-
cies similar to those of T cells specific for non-self-antigens 
[41–44]. While the use of such epitopes could be limited 
by self-tolerant T cell repertoire, therapeutic strategies have 
been developed to overcome the tolerance of T cells to self-
peptides. For example, adjuvants, lentivectors, or inhibitory 
immune checkpoint blocking molecules can improve the effi-
cacy of self-peptide-based vaccinations [45, 46]. Moreover, 
anti-CA125, anti-HER2/neu, anti-MUC1, anti-EGFR mAb 
treatment can circumvent the tolerance to self-antigens 
expressed on tumor cells as shown by the increase of the fre-
quency of  CD4+ and/or  CD8+ T cells recognizing peptides 
derived from the target molecule in cancer patients [47–51].

In our experimental setting, priming of naive T cells 
in addition to the activation of memory T cells can 
likely occur during the 7-day expansion. Different stud-
ies have shown that T cells specific to a given antigen 
can be detected in the naive but not in the memory T cell 
compartment in non-immune donors [52, 53]. This is 
consistent with the high diversity of the naive repertoire 
as compared to the much lower diversity of the memory 
repertoire, which represents a collection of clones selected 
during immune responses. In these studies, an amplifica-
tion step has been used to detect these specific T cells due 
to their very low frequencies in the naive repertoire. These 
observations underline the importance of exploring both 
the naive and memory repertoires to identify anti-CD20-
specific  CD4+ T cells that can be manipulated in the con-
text of vaccination strategies. Our data suggest that both 
naive and memory anti-CD20 T cells can be present in 
healthy donors.

In conclusion, our results indicate that carefully selected 
CD20-derived MHC II-restricted peptides make it possible 
to induce CD20-specific  CD4+ T cell responses in human-
ized HLA-DR-transgenic mice and in human PBMCs. These 

peptides could serve as a therapeutic tool in B cell malig-
nancies to improve the antitumor activity of  CD4+ T cells 
in the context of vaccination strategies by helping  CD8+ T 
cell response and eventually through direct cytotoxic effector 
functions [54]. Furthermore, our results indicate that anti-
CD20 T cells present in FL patients exhibit various epitope 
specificities (Fig. 2; Supplementary Table 2). This finding 
suggests that any vaccination approach based on the use of 
CD20-derived peptide pools should include pre-screening of 
patients who respond to these pools. CD20-derived peptides 
could also be used ex vivo to develop an adoptive T cell 
immunotherapy strategy. Finally, they could help in monitor-
ing the anti-tumor T cell responses in patients treated with 
rituximab or other anti-CD20 antibodies.
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