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Abstract: Pulmonary fibrosis (PF) is a very rare condition in children, which may be observed in
specific forms of interstitial lung disease. None of the clinical, radiological, or histological descriptions
used for PF diagnosis in adult patients, especially in situations of idiopathic PF, can apply to pediatric
situations. This observation supports the view that PF expression may differ with age and, most
likely, may cover distinct entities. The present review aims at summarizing the current understanding
of PF pathophysiology in children and identifying suitable diagnostic criteria.

Keywords: pulmonary fibrosis; interstitial lung disease; children; usual interstitial pneumonia;
nonspecific interstitial pneumonia

1. Introduction

In children, pulmonary fibrosis (PF) is a very rare condition, which has been sparsely described in
specific forms of children’s interstitial lung disease (chILD). chILD has a reported incidence of 1–4
per millions of children and covers heterogeneous disorders in the immunocompetent host, such as
surfactant disorders, pulmonary alveolar proteinosis (PAP), alveolar hemorrhage, neuroendocrine
cell hyperplasia of infancy (NEHI), sarcoidosis, lung involvement of connective tissue diseases,
hypersensitivity pneumonitis, and more than 25% of undefined chILD. Various classifications have
been proposed so far based on clinical or histological features [1–6]. However, none of them have
identified PF as a distinct chILD entity, and unlike adult PF, no PF diagnosis criteria have been proposed
in children.

In adults, the most frequent adult PF, but also the most severe, is idiopathic PF (IPF), diagnosed
on a usual interstitial pneumonia (UIP) pattern. UIP is characterized on high resolution computed
tomography (HRCT) scan by honeycombing together with traction bronchiectasis and a subpleural and
lower lobe repartition of the lesions [7–9]. On lung tissues, UIP is characterized by dense fibrosis with
architectural distortion, predominant subpleural and/or paraseptal distribution of fibrosis, hyperplasic
type 2 alveolar epithelial cells (AEC2), and fibroblastic foci with extracellular matrix (ECM) deposition
in the absence of features suggesting an alternative diagnosis. Nonspecific interstitial pneumonia
(NSIP) can also be associated with PF. NSIP is described on lung HRCT scans as a combination of
ground-glass opacities (GGOs) and reticulations with no obvious gradient. In NSIP, basal GGOs tend
to predominate over reticular opacities, with traction bronchiectasis only in advanced fibrotic-type
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disease [8]. On lung biopsy, NSIP is characterized by the absence of parenchymal distortion, a diffuse
thickening of alveolar walls, inflammatory cell recruitment, mild fibroblastic activation, mild collagen
deposits, and a relative respect of the capillary bed [9–11].

According to pediatric publications on chILD pathophysiology, lung fibrosis is a “destruction of
pulmonary architecture caused by an abnormal wound repair response that ultimately leads to scar
formation, organ malfunction, disruption of gas exchange, and respiratory failure” [12]. This definition
mixes clinical, functional, and pathological issues of lung fibrosis and highlights pediatricians’ confusion
over lung fibrosis’s definition. This review aims to explore the current knowledge on PF epidemiology,
patterns, evolutive aspects through age, and natural history.

2. PF Reports in Pediatric Population

The prevalence or incidence of childhood PF seems impossible to evaluate. More than a decade
ago, in the major publication on chILD histopathological classification, Deutsch et al. observed only one
patient with PF out of a population of 99 pediatric patients with chILD [1]. In this 22-month-old patient
with a surfactant disorder due to SFTPC mutation, the author described an NSIP pattern, together with
Periodic acid–Schiff (PAS)-positive staining, consistent with alveolar proteinosis. The association of PF
in children with surfactant disorders was also highlighted by Dishop in 2011, who suggested that PF,
characterized by the presence of honeycombing, could be an end-stage complication of specific ILD
conditions in older children and adolescents [13]. The lung biopsy of a teenage patient with idiopathic
juvenile arthritis presenting a fibrosing NSIP pattern on the biopsy was provided as an example of
PF. The author also suggested that surfactant disorders and hypersensitivity pneumonitis could be
predisposing conditions for PF evolution. Later on, the rarity of PF in children was confirmed by a large
study by Rice et al., who reviewed the lung biopsies of 211 patients with various forms of chILD [4].
A PF pattern was found in only 2% of the 93 patients aged under 2 years and in 7% of the 118 patients
aged 2–18 years. NSIP was the most prevalent histologic pattern, but the authors highlighted that
most pediatric patients harbor coexisting histologic patterns of ILD within the same sample, such as
alveolar proteinosis, desquamative interstitial pneumonia (DIP), or follicular bronchiolitis.

Based on these very few pediatric studies, it seems that adult radiologic and histologic lung
fibrosis patterns partially fail to precisely describe pediatric PF lesions and that UIP, the most common
aspect of IPF, is exceptionally or never observed in childhood. Thus, a critical question is whether the
natural history of childhood PF can evolve towards IPF.

As a reference center for rare lung diseases, we locally reviewed the cases of chILD who benefited
from a lung sample through biopsy or autopsy. Among 119 patients, 44 underwent a lung biopsy
or autopsy and only 10 were suspected of PF (Table 1). After review, only five (3%) patients were
considered to meet PF criteria (i.e., fibroblast recruitment with ECM deposition). Their clinical data,
HRCT scans, and lung tissue histologic analyses are provided in Table 2 and Figure 1.

Table 1. Suspected cases of pulmonary fibrosis (PF) in the children’s interstitial lung disease (chILD)
cohort of Armand Trousseau Hospital.

chILD Condition Number of Patients Number of Patients with
Available Lung Samples

Number of Cases with
Suspected PF

Surfactant disorders 17 5 2

Autoinflammatory and
systemic disorders 6 6 1

Developmental disorders 8 8 0

Others 88 25 7

Total 119 44 10
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Table 2. Clinical data and outcomes of five patients of the Trousseau Hospital chILD cohort with lung fibrosis.

Patient Number Clinical Presentation Treatment Outcome

1 [14,15] 6-year-old girl, ABCA3-related disease HCQ, azithromycin Diffuse fibrosing ILD at age 26

2 [16] 8-year-old boy, TMEM173-related disease Corticosteroid pulses, oral corticosteroids,
ruxolitinib at age 13.

Lung transplantation at age 14, died at age 16
after second lung transplantation

3 3-year-old boy, undefined chILD Corticosteroids Died at age 3 from respiratory failure

4 2-year-old girl, undefined chILD Corticosteroid pulses, oral corticosteroids,
azithromycin, immunosuppressive drugs Died at age 2 from respiratory failure

5 2-year-old girl, undefined chILD Corticosteroid pulses, oral corticosteroids,
azithromycin Asymptomatic at age 8

Abbreviations: chILD, children interstitial lung disease; HCQ, hydroxychloroquine.
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distortion, diffuse thickening of the alveolar walls, hyperplasic alveolar epithelial cells (AECs), 

inflammatory cell recruitment, mild fibroblasts activation, and mild collagen deposition. Panels C and 

D: Patient 2. (C) Transverse HRCT scan obtained at the level of the upper lobes: diffuse repartition of 

mild GGOs (white stars), reticulations (with interlobular septal thickening (white arrows) and 

intralobular lines (black arrows)), and numerous cystic lesions (white arrowheads) with focal left 

subpleural honeycombing (black arrowhead). Reticulations and cystic lesions are wider on the right. 

(D) Lung biopsy: parenchymal distortion, inflammatory cell recruitment, lymphoid nodules, and 

mild collagen and severe elastic fiber deposition. Panels E and F: Patient 3. (E) Transverse HRCT scan 

obtained under the level of the carina: diffuse repartition of GGOs (white stars), moderate 

reticulations (with intralobular lines (black arrows)), and few subpleural cystic lesions (black 

arrowhead). (F) Lung autopsy: no parenchymal distortion, diffuse thickening of the alveolar walls, 

hyperplasic AECs, mild inflammatory cell recruitment, and elastic fiber deposition. Panels G and H: 

Figure 1. Pulmonary fibrosis examples in children. Panels A and B: Patient 1. (A) Chest X-ray: diffuse
repartition of ground-glass opacities (GGOs). (B) Lung biopsy at age 6: no or mild parenchymal
distortion, diffuse thickening of the alveolar walls, hyperplasic alveolar epithelial cells (AECs),
inflammatory cell recruitment, mild fibroblasts activation, and mild collagen deposition. Panels C and
D: Patient 2. (C) Transverse HRCT scan obtained at the level of the upper lobes: diffuse repartition
of mild GGOs (white stars), reticulations (with interlobular septal thickening (white arrows) and
intralobular lines (black arrows)), and numerous cystic lesions (white arrowheads) with focal left
subpleural honeycombing (black arrowhead). Reticulations and cystic lesions are wider on the right.
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(D) Lung biopsy: parenchymal distortion, inflammatory cell recruitment, lymphoid nodules, and
mild collagen and severe elastic fiber deposition. Panels E and F: Patient 3. (E) Transverse HRCT
scan obtained under the level of the carina: diffuse repartition of GGOs (white stars), moderate
reticulations (with intralobular lines (black arrows)), and few subpleural cystic lesions (black arrowhead).
(F) Lung autopsy: no parenchymal distortion, diffuse thickening of the alveolar walls, hyperplasic
AECs, mild inflammatory cell recruitment, and elastic fiber deposition. Panels G and H: Patient 4.
(G) Transverse HRCT scan obtained at the level of the upper lobes: diffuse repartition of severe GGOs
(white stars), consolidations (black star), and few cystic lesions (white arrowhead). (H) Postmortem
biopsy: no parenchymal distortion, diffuse thickening of the alveolar walls, hyperplasic AECs, mild
inflammatory cell recruitment, elastic fiber deposition, and moderate alveolar proteinosis: intra-alveolar
deposit with giant cells and liproproteic material. Panels I and J: Patient 5. (I) HRCT scan obtained at the
level of the lung bases: diffuse and homogeneous repartition of GGOs (white stars) with reticulations
(with intralobular lines (black arrows)). (J) Lung biopsy: no parenchymal distortion, diffuse thickening
of the alveolar walls, hyperplasic AECs, and moderate inflammatory cell recruitment.

3. Lessons from Surfactant Disorders

In the past years, for adult cases of surfactant disorders, mainly surfactant protein (SP)-C,
ATP-binding cassette subfamily A member 3 (ABCA3), and NK2 homeobox 1 (NKX2-1), related
diseases have been reported in sporadic or family forms of ILD. These conditions, known to be more
prevalent in children than adults, are very interesting study models of lung fibrosis progression through
age. The literature provides various examples of CT scan and lung tissue analyses from pediatric
patients with such disorders, but very few long-term follow-ups of these patients have been reported.
SP-A-related disorders have been mainly described in adults, with one pediatric case, however, in a
large kindred [17,18].

In infants and childhood patients with surfactant disorders, lung imaging is heterogeneous, but
diffuse GGOs and reticulations are a constant feature in severe cases. Cystic lesions, mostly with
subpleural repartition, seem to appear secondarily, most likely as the consequence of a parenchymal
loss of elasticity and compliance [19–21]. The histologic pattern of surfactant disorders is usually
characteristic, with a forefront thickening of the alveolar walls; hyperplasic AEC2 bulging into the
alveolar space; intramacrophagic alveolar proteinosis filling the alveolar space, sometimes associated
with cholesterol clefts; and inflammatory cell recruitment. Collagen and ECM deposition are absent
or moderate, as well as fibroblastic recruitment. There is usually no parenchymal destruction.
Altogether, this histologic pattern is, in most cases, mimicking NSIP with additional features of alveolar
proteinosis [22]. In the collaborative European network for chILD, among 24 patients with homozygous
or compound heterozygous ABCA3 mutations retrieved from the Kids Lung Register experience, NSIP,
DIP, and chronic pneumonitis in infancy were the most common histologic patterns, and only one case
of interstitial fibrosis pattern was reported in a patient whose lung disease was fatal in infancy [23].

In adult patients, SP-C, ABCA3, and SP-A disorders have been reported [24]. In SP-C and ABCA3
cases, lung imaging found subpleural predominance of reticulations and cystic lesions and few or no
GGOs. This atypical aspect was further described as “combined pulmonary fibrosis and emphysema”
(CPFE) by Cottin et al., who reported a 32-year-old patient with the most frequent p.Ile73Thr SFTPC
mutation [25]. CPFE was further reported in adult patients with SP-C disorders, including a large
kindred with patients aged 14–68 years at diagnosis, all presenting with UIP pattern [26]. Epaud et al.
also reported a 41-year-old patient with CPFE related to biallelic ABCA3 mutations with a life-long
history of lung disease [27]. In these adult reports of surfactant disorders, the lung tissue analysis was
characterized by parenchymal destruction, hyperplasic AEC2, but also fibroblast foci and elastic fiber
deposition. Thus, both imaging and histologic pattern evocated UIP despite exceptional honeycombing.
Interestingly, in large next generation sequencing (NGS) or whole exome sequencing (WES) studies
including IPF patients with a histologic UIP attested by the ATS/ERS criteria (2011), a few SFTPC
and biallelic ABCA3 mutations were identified [11,28]. SP-A-related disorders were more recently
associated with ILD [17,18,28,29]. They were alternatively associated on HRCT scans and histology of
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the lung with UIP, NSIP, and even DIP patterns [30]. Altogether, even if IPF terminology is evocated in
adult forms of surfactant-related diseases, it seems that the histologic patterns cannot be defined only
as UIP.

Little is known about surfactant disorder progression from childhood to adulthood. A few
reports of family cases including children and adult presentations have been reported and even fewer
descriptions of a single patient’s evolution over time. Abou Taam et al. described up to 13 years of
HRCT scan follow-up in a large family with the most common SFTPC mutation [31]. The authors
clearly showed that GGO intensity and extension were decreasing over time, whereas septal thickening,
subpleural and intraparenchymal cysts, and even honeycombing were appearing and increasing
with age. A comparative pediatric and adult histologic description in a single family with SFTPC
mutation was first provided by Thomas et al. [32]. The authors showed that the infant and the
adult patients harbored different patterns: cellular thickening and intra-alveolar granular material
consistent with cellular NSIP in the infant tissue, compared with a UIP pattern with fibroblast foci,
architectural distortion, and metaplastic epithelium in the adult biopsy. This heterogeneity was also
suggested by other family studies of kindred with SFTPC mutations [33,34]. One family with patients
presenting homozygous ABCA3 mutations aged 16–52 years at diagnosis was also described [35].
In this family, with a late onset of the disease, all the patients showed evidence of mild fibrosis on
HRCT scans with architectural distortion, intra- and interlobular thickening, apical honeycombing, and
no GGOs. However, the lung tissue analysis of the youngest patient showed a relative architectural
conservation and a typical childhood pattern of surfactant disorders with inflammatory cell recruitment
and multinucleated cells with cholesterol clefts and mild alveolar proteinosis coexisting with fibroblast
foci or smooth muscle proliferation and bronchiolar metaplasia, in favor of a mixed NSIP/DIP/UIP
pattern. Finally, the 20-year evolution of a patient with ABCA3 mutations was described, with available
lung histology at age 6 and 26 years [14]. The childhood lung biopsy showed AEC2 hyperplasia,
diffuse septal thickening, and few intra-alveolar macrophages with no fibrosis and a similar appearance
worsened by fibrosis features in adulthood. Rare family cases of brain–lung–thyroid syndrome related
to NKX2-1 mutation have been described so far. We recently described a family with a lung involvement
of the disease, the child presenting with a dense GGO pattern on HRCT scan and the mother with a
fibrosing evolution at age 28 years [36]. Among a large cohort study of patients with NKX2-1 mutations,
the lung HRCT scan pattern evolution was shown in a single patient over 9 years, revealing a decrease
of GGOs with no cysts or reticulations [37]. Finally, in a large family with SFTPA1 mutations associated
with PF and adenocarcinoma of the lung, the histology analysis of adult patients was described as UIP
pattern, whereas the lung analysis of one infant who died at 9 months of age from lung disease showed
a mixed NSIP and DIP pattern [18]. Regarding these isolated reports, it seems quite impossible to
define evidence on the pattern’s evolution. However, some specificities of PF natural history could be
highlighted: in childhood, GGO seems predominant, together with mixed histologic patterns, and in
adulthood, septal thickening, traction cysts, and honeycombing can appear, mostly related to UIP or
probable UIP patterns.

4. Other Situations of PF Evolution through Age

Recently, autoinflammatory disorders such as TMEM173 mutations (STING activation) and COPA
syndrome appeared as newcomers in the chILD’s field and provided other examples of ILD evolution
through age. More children than adults have been described. In children, the typical presentation is an
ILD with a diffuse repartition of the lesions, GGOs, reticulations, but also an early appearance of cystic
lesions and traction bronchiectasis [38,39]. A family case of STING disease was provided by Picard et al.,
who reported CT scans and lung biopsies from the affected child and mother [16]. The pediatric HRCT
scan showed more GGOs, more reticulations, and less traction bronchiectasis than the adult case. Both
had cystic lesions and emphysematous lesions with upper lobe predominance. Lung tissues of both
patients were available and both presented various degrees of fibrosis. The parenchymal destruction
was mild in the child and major in the mother; inflammatory cell recruitment was important in the
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child’s parenchyma and mild in the mother’s, in whom the ECM and elastic fiber deposition was
predominant. Both showed lymphoid nodules that evocated the autoinflammatory etiology of the
ILD. In COPA syndrome, the lung involvement is almost a constant feature. The princeps publication
reported no fibrosis in patients with ILD or in patients with alveolar hemorrhage [40]. However,
more HRCT scan aspects of the patients have been described since, some with fibrosis, especially
in a 12-year-old patient for whom the authors provided a 3-year-old follow-up of the HRCT scan:
over time, GGOs that were initially important seemed to decrease, whereas reticulations and cystic
lesions were increasing [41]. This was further confirmed by a COPA syndrome study: the authors
reported the HRCT scan aspects of 11 patients, in whom parenchymal cysts of variable distribution
were the most frequent feature, followed by GGOs and nodules. In only one patient were HRCT scan
aspects considered to be PF. Lung tissue analysis was available for 10 patients and showed a non-UIP
interstitial fibrosis in only 2 patients [42]. These reports, combined with our experience with STING
and COPA syndrome, suggest that parenchymal distortion and cysts can also be present at the early
stages of pediatric ILD and can evolve towards PF, mainly during the second decade (personal data).

5. Summary of Childhood and Adult PF Comparison

Altogether, despite the paucity of described cases, current information suggests that two distinct
situations may exist: diseases with onset in infancy/childhood and adult-onset diseases. The first
one presents with a cellular NSIP pattern and seems to evolve with age towards a paucicellular NSIP
pattern with features of UIP or probable UIP, such as fibroblast foci or smooth muscle proliferation.
On the other hand, disorders with adult or late-childhood onset seem to present with a UIP or probable
UIP pattern and less frequently with fibrosing NSIP [43]. Thus, although the term PF is used in children,
it seems to refer to a different pattern than in adults, with more inflammatory cell recruitment and less
fibroblast recruitment and ECM deposition (Table 3). The observed pattern in children would probably
not have been named “fibrosis” by adult pathologists. Thus, it seems obvious that, even when being of
the same genetic origin, the pathophysiological pathways of PF in children and adults are different.

Table 3. Childhood pathological findings of pulmonary fibrosis compared to adults.

Pediatric PF Adult IPF/Probable IPF

Parenchymal distortion + +++

Cellular recruitment +++ +

Extracellular matrix deposition + +++

Fibroblast foci +/− +++

Honeycombing +/− +++

Global pattern
Predominant NSIP mixed with
alveolar proteinosis, DIP, and

follicular bronchiolitis
Predominant UIP pattern

+/−: absent or moderate, +: moderate, +++: important; Abbreviations: PF, pulmonary fibrosis; IPF, idiopathic
pulmonary fibrosis; NSIP, nonspecific interstitial pneumonia; DIP, desquamative interstitial pneumonia; UIP, usual
interstitial pneumonia.

6. Pathophysiology

The heterogeneity of ILD phenotypes, even in the same family, has been well described in
surfactant disorders. However, the reason why individuals with a pathogenic mutation are able to
remain asymptomatic for decades remains unknown. The role of environmental triggers, especially
viral exposure in infancy, has been suggested. One could hypothesize that the pathophysiologic
fibrosing process may be different when occurring on a lung in development and growth versus
on grown-up, mature, and moreover senescent lung tissue. Environmental exposures may also be
different in children, in whom viral infections have been suggested as potential triggers of genetically
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predisposed ILD, whereas tobacco smoking and occupational exposures are the main suggested triggers
in IPF [44–46].

At the cellular level, the pathophysiology of lung fibrosis is supposed to be initiated by repeated
lung aggression that impairs the functioning of three main cellular types: AEC2, fibroblasts, and
alveolar macrophages. Prolonged denudation of the basement membrane after injury contributes to
altered interactions between AECs and mesenchymal cells, resulting in profound modifications of
cell functions with imbalanced production of polypeptide mediators, including cytokines, growth
factors, oxidants, and proteases [47–49]. The lung lesions induce endoplasmic reticulum (ER) stress
of the AEC2 that can promote cell death or cell reprogramming. Type 1 macrophages are activated
toward the alveolar space. Fibroblasts as well are activated, and they proliferate into the alveolar
epithelium and differentiate into a myofibroblastic pattern. Epithelial reprogramming can lead
to mesenchymal differentiation, which is called epithelial-to-mesenchymal transition. In parallel,
microvascular disorders are observed with local vascular leaks and intravascular coagulation with fibrin
clot deposition. Altogether, an increase of the alveolar epithelium thickness is observed, constituted
by cellular and ECM deposition. Ultimately, an alveolar collapse that affects the alveolar structure is
observed, with re-epithelialization phenomena [50]. This pathway, which is well described in adults,
has not been evaluated in children. The few observations that have been previously described sustain
that, in children, the fibrosing process could end at the cellular deposition stage without evolving,
in most cases, towards ECM accumulation and alveolar collapse. This hypothesis matches with
what has been observed in cell and mice models of surfactant disorders, which are associated with
increased ER stress, AEC2 death, and inflammatory cell recruitment [51,52]. In autoinflammatory
disorders, uncontrolled IFN-gamma production is a main feature of the pathophysiology. This could
explain the accelerated parenchymal destruction process (cysts) despite minor ECM deposition [16].
The alveolar collapse and the coalescence of thickened alveolar septal walls explain the reticulation
bands characteristic of ILD. However, even in these inflammatory disorders, less alveolar distortion
and ECM deposition is observed in children than in adult fibrosis.

In children, PF is observed at an earlier point of the pathophysiologic process. The differences
that are observed compared with adult and elderly patients could thus be related to the absence of
aging phenomena. Indeed, innate and adaptative immune response and wound-healing processes
become less effective with increasing age. Immunosenescence affects all cell types involved in the
immunomodulation process, including epithelial cells and macrophages. With age, epithelial cells
become more susceptible to cellular stress, including ER and oxidative stress, which leads to chronic
inflammation, abnormal remodeling, and uncontrolled apoptotic pathways [53]. Immunosenescence
also induces profound modifications in fibroblast function [54]. This is well illustrated by skin wound
healing in the fetus, which is characterized by complete regeneration of the skin and the absence of
any scar formation. This capacity for scarless repair is lost with age and the regeneration of the tissue
architecture is achieved through the formation of a scar that exceeds the wound bed. The slowing of
wound healing with age may be related to changes in the activity of various regulatory factors such as
fibroblast growth factor, vascular growth factor, epithelial growth factor, and transforming growth
factor (TGF)-beta production [55]. Other potential mechanisms of lung reconstruction following injury
during childhood include stem cells. Stem cells are the self-renewing, primitive, undifferentiated,
and multipotent source of multiple cell lineages [56–59]. They are critical during development, and
their lung pool, as in other organs, decrease with age, explaining the limited tissue regeneration
that occurs in adults [60,61]. In addition, bone-marrow-derived stem cells (BMSCs) are known to
be able to engraft in various organs, including the lung, and to differentiate into epithelial cells [62].
The ability of immortality of embryonic stem cells disappears with age, and they also show a gradual
decrease of telomere length [63,64]. Shorter telomeres are found in individuals with lung disease, and
telomerase mutations are reported to be associated with familial IPF. With increasing age, the limited
life span of cells may thus result from a limited cell replicative ability in response to various stresses,
including DNA damage, oxidants, and telomere erosion [65,66]. Senescent mechanisms are likely to be



J. Clin. Med. 2019, 8, 1312 9 of 15

of minor impact in infant and childhood lungs, but the difficulty of lung biopsy explains why no study
is available.

7. Treatments in Pediatric PF

Defining children’s PF characteristics is of major importance to develop targeted therapies. It seems
that pediatric ILD is more responsive to therapeutic strategies than adult ILD [67,68]. However, due to
the rarity of the disease, treatment options are based on limited experiences from small series, cases
reports, and local habits of the reference centers without any appropriately designed clinical trial.
Moreover, it is likely that on a growing lung, treatments that are used can interfere with the fibrosing
evolution of the lung. Corticosteroids are currently the preferred choice for its anti-inflammatory
effects, with an initial daily oral dose of 1–2 mg/kg/day of prednisolone and/or a pulsed intravenous
monthly dose of 10–30 mg/kg/day for 3 days consecutively of methylprednisolone [69]. Corticosteroids
are highly effective when the cellular quota is predominant and less so when ECM deposition is
predominant. Corticosteroids also display effects on lung maturation. This property is well known
in preterm infants, and antenatal corticosteroids are widely used to enhance lung maturation and
surfactant synthesis by AEC2 in mothers at risk of premature delivery to reduce the risk of respiratory
distress syndrome [70]. It has been associated with beneficial effects in almost all chILD forms, including
surfactant disorders [3,21,69,71,72], hemosiderosis [73,74], but also in severe forms of neuroendocrine
cell hyperplasia of infancy (NEHI) [75].

An alternative to steroids is hydroxychloroquine (HCQ), which has a recommended dose of
6–10 mg/kg/day orally [76–78]. The decision as to which agent to use may be guided by the local habits
of the clinicians or the lung biopsy findings, with a preference for steroids in case of a large amount of
cellular desquamation and inflammation and for HCQ if increased amounts of collagen representing
prefibrotic change are found [76]. In case of severe disease, steroids and HCQ may be combined.
Besides its effect against malaria, HCQ displays various mechanisms of immune action, such as
interference with inhibition of lysosomal proteolysis, chemotaxis, phagocytosis, antigen presentation,
decreasing of various cytokines, increase of interleukins, and matrix metalloproteinase inhibition [76].
In surfactant disorders, it has been shown that HCQ may inhibit the intracellular processing of the
precursor protein of SP-C [79]. HCQ accumulates in blood cells and cells of various organs including
the lungs, explaining why despite low plasma levels, tissue levels can be more than 10 times higher.
It has been suggested that this property could enhance the cellular effect of other medications, such as
corticosteroids, without increasing their systemic side effects.

In situations of the inefficiency of steroids and HCQ, but also as a first intention treatment case
of autoinflammatory disorders, other drugs such as immunosuppressive, immunomodulatory, or
cytotoxic agents, such as azathioprine, cyclophosphamide, cyclosporine, or methotrexate, may be
used [16,38,39,42].

Other therapeutic options include macrolides. Indeed, these antibiotics have been shown to
display a number of anti-inflammatory and immunomodulatory actions. Of interest is the ability of
macrolides to accumulate in parenchymal cells, including epithelial cells and phagocytes [20,80].

In the future, antifibrotic therapies that are used in adult cases of IPF will certainly be proposed for
children ILD with fibrosing features. They include pirfenidone, a compound with anti-inflammatory and
antifibrotic properties, and nintedanib, a tyrosine kinase inhibitor initially developed as an antitumor
agent, with further activity against fibroblasts through inhibition of several growth factors [81,82].
The use of such therapies in children will require better defining the criteria of PF in the pediatric
population. However, despite eventual long-term side effects, it could be anticipated that targeting
multiple pathophysiologic pathways could be of benefit to avoid the fibrosing evolution of ILD in
children and adults [50,83,84].
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8. Outcome of PF in Childhood

Limited information is available in the literature about the evolution of pediatric patients with PF.
This is partly due to the fact that the PF definition is not consensual and these patients may represent a
very small proportion of the chILD population. chILD evolution is very heterogeneous, and despite
being incurable in some cases, long-term survival has been described. Our experience of histologically
proven pediatric PF seems to be in favor of a severe evolution towards terminal respiratory failure in
childhood (lung transplantation or death). However, when comparing patients 3–5 (Table 2), who
had very similar clinical, radiological, and histologic presentations, we observed a radically different
evolution of patient 5, who recovered clinically in a few years, with no clue for explaining such a
disparity. Thus, despite a global poor prognosis, further studies of long-term follow-up of pediatric
patients with PF are needed.

9. Conclusions

PF in children is poorly described and refers to a small proportion of chILD. The aggregation of
national cohorts into international networks will allow pediatricians, radiologists, and pathologists
to get to a consensual definition of PF criteria in children. This preliminary evaluation of available
information on pediatric PF highlights that the term “pulmonary fibrosis” may have a different
meaning in children than in adults, with more cellular recruitment, less collagen deposition, and
less parenchymal destruction (Figure 2). Thus, unlike in adults, the hypothesis that PF is a scar
state with few fibrosis lesions in children allows for considering the significant beneficial effects of
antifibrotic therapies.
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