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Abstract

An implementation of the coupled criterion (CC) for crack initiation simulation in the commercial finite

element (FE) code Abaqus/Standard is proposed. This finite fracture mechanics approach allows crack

initiation to be modeled by fulfilling simultaneously a stress and an energy conditions, which results in

the determination of the loading level and crack length at initiation. Two procedures are considered and

compared: the first one relies on matched asymptotic expansions while the second one is based on full

FE calculations. The asymptotic approach is computationally more efficient than the second one since it

requires less calculations to be performed. However, it is restricted to cases for which the crack initiation

length remains small compared to the smallest characteristic dimensions of the studied structure. For such

cases, both methods leads to similar results as illustrated by crack initiation modeling of notched specimen

under three point bending. The provided source codes and the tutorials help understanding and applying

the CC for crack initiation modeling.

Keywords: Coupled criterion; Crack initiation; Brittle fracture; Finite element method.

1. Introduction

Among various methods available for brittle fracture modeling such as, e.g., cohesive zone models [1,

2, 3, 4], models based on damage mechanics [5, 6] or phase-field models for fracture [7, 8, 9], the coupled

criterion (CC) [10, 11] in the framework of Finite Fracture Mechanics (FFM) [12, 13, 14] proved its ability

and efficiency to predict crack initiation in a broad range of materials and configurations. A detailed review

of the CC applications was presented by Weissgraeber et al. [15]. The principle of the CC is the simultaneous

fulfillment of a stress and an energy condition for crack initiation prediction. Coupling both conditions

allows determining the initiation loading and crack length. A main advantage of the CC is that it basically

requires only two fracture parameters, namely the material strength and fracture toughness which are physical

quantities that can be determined experimentally.
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The CC can be implemented through two different methods. The first one, initially proposed by Leguillon

[10], relies on the matched asymptotic (MA) expansion procedure proposed by Leguillon and Sanchez-Palencia

[16]. The MA approach consists in focusing only on a domain around the initiation crack location so as to

compute the energy and the stress conditions without considering the whole specimen or structure. The

boundary conditions imposed to the domain around the crack location are asymptotic displacement or stress

fields corresponding to the stress concentrator under investigation (e.g. sharp or blunted crack, V-notch, hole).

Therefore, it relies on the assumption that the initiation crack location is far enough from the structure

boundary or other features that may influence these displacement/stress fields. In the second approach,

referred to as the full finite element (FFE) approach, the whole structure under consideration is modeled.

Compared to the FFE approach, the MA one is usually more computationally efficient since it requires less

calculations. For instance, in the case of a sharp V-notch loaded in mode I, only one finite element (FE)

calculation is needed [10, 17, 18] whereas several calculations are necessary for the FFE approach. However,

the asymptotic approach is only valid if the crack length remains small compared to the characteristic

structure dimensions [19]. Moreover, the MA approach allows computing the initiation configuration but is

unable to deal with unstable crack propagation that possibly occurs after initiation, which can be accounted

for using the FFE approach [15, 20, 21, 22, 23, 24]. Some authors compared the MA and FFE implementation

of the CC. For instance Yosibash et al. [18] showed that the potential energy variations computed by both

approaches for a sharp V-notch were close to each other (difference less than 1%) for small enough cracks,

and that this difference was larger for larger cracks. Priel et al. [25] obtained similar results in the case of

a blunted V-notch. Martin et al. [19] showed that the range of validity of the asymptotic approach may be

determined by ensuring that the material characteristic length Lmat = EGc

σ2
c

(where E is the material Young’s

modulus, Gc the fracture energy and σc the tensile strength) is small enough compared to the characteristic

dimension of the structure (Lmat < 0.05h for the studied case of a bimaterial specimen submitted to a four

point bending test, where h is the substrate thickness).

The theory of the CC can be found in several papers in the case of MA (e.g., [17, 18, 25, 26, 27]) and

FFE approaches (e.g., [19, 20, 28, 29, 30, 31]). However, contrary to the other approaches for brittle fracture

modeling cited previously (such as cohesive zone or phase field models), dedicated tools are not available for

the CC application in commercial FE codes. The objective of this paper is to fill this gap and to provide

a FE procedure for the implementation in Abaqus/Standard of both MA and FFE applications of the CC,

and to offer practical recommendations for their use. In Section 2, the CC theory is recalled. Details on FE

implementation of both approaches are described in Section 3. Numerical results are given in section 4.

2. The coupled criterion

In this section, the CC theory is recalled in the case of MA (cf. Section 2.1) and FFE (cf. Section 2.2)

approaches. For the sake of pedagogy, it will only be presented in the bi-dimensional case of an isotropic

homogeneous linear elastic material loaded in pure mode I. The MA approach applied to a V-notch in the

general mixed mode case is described in the Appendix. As stated in introduction, the CC requires the
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simultaneous fulfillment of two separate conditions to ensure crack initiation.

The first condition requires that the stress σ normal to the crack plane overcomes the material tensile

strength σc on the whole presupposed crack path of length l and described by its arc length parameter s:

σ(s) ≥ σc , 0 ≤ s ≤ l. (1)

This stress condition is only a necessary condition for crack initiation. In the case of a monotonically

decreasing stress, which is classicaly encountered at singular or stress raisers, the distance ls on which stress

condition is fulfilled increases with increasing imposed loading. Moreover, if the stress condition is satisfied

over a distance ls for a certain imposed loading, it is also verified for all distances l′ such that l′ ≤ ls (Fig.

1a). Therefore, the stress condition allows determining an upper bound for all the admissible crack lengths

at initiation.

The second condition originates from a balance of the kinetic (δWk), potential (δWp) and crack surface

(Gcl, where Gc is the material fracture toughness) energies between the state prior to and after the nucleation

of a crack of length l:

δWk + δWp +Gcl = 0. (2)

A quasi-static initial state implies that δWk ≥ 0, which allows deriving the energy condition:

Ginc(l) =
−δWp

l
≥ Gc. (3)

Ginc is called the incremental energy release rate and reverts to the Griffith definition of the energy release

Stress criterion fulfilled 

Energy criterion fulfilled Initiation configuration

Crack length lower bound

Crack length upper bound

l
s

l
e

l
c

(a) (b)

Figure 1: Applied stress to strength ratio σ
σc

and incremental energy release rate to fracture toughness ratio Ginc

Gc
as a function

of the crack length l for a loading (a) lower than the initiation loading (the lower bound of admissible initiation length le is

higher than the upper bound ls) and (b) equal to the initiation loading (the lower bound of admissible initiation length le is

equal to the upper bound ls and to the initiation length lc).
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rate G when l → 0. Note that G can be expressed as a function of Ginc [15, 20, 21, 23], which can be

useful to study crack propagation after initiation. However, this point will not be treated in this work which

is exclusively dedicated to the prediction of crack initiation. We consider here a positive geometry which

implies that the crack propagates in an unstable manner after initiation. This corresponds to a monotonically

increasing variation of Ginc. Different situations (corresponding to negative geometries for which the crack

propagation is stable after initiation) can also be encountered (cf. e.g., [15, 19, 23, 28, 32, 33]) . Therefore,

for a given imposed loading, if the energy criterion is attained for a crack length le, it is also attained for

all crack lengths l′ such that l′ ≥ le (Fig. 1a). The energy condition thus allows determining a lower bound

for all the admissible initiation crack lengths. For a too small imposed loading (lower than the initiation

loading), the lower bound le for admissible initiation crack length provided by the energy criterion is higher

than the upper bound ls provided by the stress condition hence crack initiation is not possible (cf. Fig.

1a). With increasing loading, ls increases whereas le decreases and the initiation loading and crack length lc

can be determined as the loading for which lc = le = ls which ensures that both the stress and the energy

conditions are simultaneously fulfilled (cf. Fig. 1b). In the following, as a matter of example, the case of a

V-notch specimen (whose dimensions are depicted in Fig. 2) under three-point bending is studied. For the

sake of simplicity, a sharp V-notch will be considered. The scripts for the MA and FFE approaches provided

as supplementary materials (section 6.4 in the Appendix) also allow to analyze the case of a blunted V-notch

[17, 25, 34].

h

t

2L

x

y β

Figure 2: Geometry of the V-notch specimen submitted to three-point bending.

2.1. MA approach

In the example depicted in Fig. 2, a crack initiates at the V-notch in mode I in y-axis direction. In

the vicinity of the V-notch tip, under plane elasticity assumption, the outer asymptotic expansion of the far

displacement field is given by:

U(x, y) = U(0, 0) + krλu(θ) + ... (4)

(x, y) and (r, θ) respectively hold for the cartesian and polar coordinates, U(0, 0) denotes the rigid translation

of the origin located at the tip of the V-notch, λ is the singularity exponent and u(θ) is an angular shape

function. They are solutions to an eigenvalue problem [16] and depend on the V-notch opening angle β. For

V-notch opening angles comprised between 0 (crack) and π (straight edge), the exponent λ varies between 0.5

and 1. k is the critical stress intensity factor (GSIF) and is proportional to the applied displacement or load.
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The computation of the proportionality factor will be explained at the end of the section and illustrated in

Section 3. The application of the CC through the MA approach consists in performing a zoom on a domain

surrounding the crack initiation location. Dilating the space variables provides a (theoretically) unbounded

domain in which the length of the crack is now equal to 1. This domain is classically denoted as the inner one

and is used to define the inner asymptotic expansion of the near field. As shown by previous authors [35],

matching the inner expansion (near field) and the outer expansion (far field), the change δWp in potential

energy due to crack initiation over a length l is:

−δWp(l) = k2l2λB + ..., (5)

where B is a geometrical coefficient depending only on the V-notch opening angle β. The energy condition

(cf. Eq. (3)) then rewrites:

Ginc = −δWp

l
= k2l2λ−1B ≥ Gc. (6)

From Eq. (4) and using an appropriate normalization of the eigenvector u(θ) [10, 34], Eq. (1) rewrites as it

is indicated in the Appendix (section 6.1):

σ(l) = klλ−1 ≥ σc. (7)

By combining Eqs. (6) and (7), the initiation crack length lc and the critical stress intensity factor kc can

be derived:

lc =
Gc

Bσ2
c

=
1

EB
Lmat, with Lmat =

EGc

σ2
c

, (8)

kc = (
Gc

B
)1−λσ2λ−1

c . (9)

It is worth noting that tabulated values of the coefficient B can be found in a previous paper [34]. The MA

approach allows computing the generalized stress intensity factor kc and crack length lc at initiation without

considering the whole structure (as depicted, e.g., in Fig 2). Eq. (8) indicates that lc is proportional to the

material length Lmat. The smallest value is obtained for small opening angles [34] with:

lc ≥ lminc =
Lmat

2π
. (10)

Eq. (9) includes the usual Griffith criterion for a crack (β = 0, λ = 0.5) and the strength condition for a

straight edge (β = π, λ = 1).

The link between the load applied on the structure and the generalized stress intensity factor kEF can be

established by computing the following contour integral from a FE analysis on the uncracked structure:

kEF =
Ψ(UEF, r−λu−(θ))

Ψ(rλu(θ), r−λu−(θ))
, (11)

with Ψ(Ua, Ub) =
∫

Γ
σ(Ua) ·N ·Ub−σ(Ub) ·N ·Uadl, where Γ is any closed contour surrounding the V-notch

and the crack extension and ending on the two faces of the V-notch and N the unit normal to Γ pointing

toward the V-notch tip. The term r−λu−(θ) is the so-called dual function to the singular mode rλu(θ)
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[16]. An example of calculation of the stress intensity factor using Eq. (11) is provided as a Supplementary

material.

In the case of a blunted V-notch, for which the CC solution is given in Appendix (cf. Section 6.3),

the inner domain is obtained by dilatation of the coordinates with respect to the blunted V-notch radius d.

Hence, contrary to the sharp V-notch for which the crack length in the inner domain is 1 (all quantities being

dilated with respect to it), a non-dimensional crack length η = l/d is defined.

2.2. FFE approach

In the FFE approach, the whole structure under investigation is considered rather than only a domain

surrounding the crack. The stress criterion can thus be computed using only one calculation on the un-

damaged configuration. Under linear elasticity and the assumption of small deformations, the local stress is

proportional to the applied displacement U0 so that Eq. (1) rewrites:

σ(s) = ξ(s)E
U0

w
≥ σc , 0 ≤ s ≤ l. (12)

ξ(s) is a dimensionless function depending only on the structure geometrical features and w a characteristic

length of the studied structure (selected here as the sample height as schematised in Fig. 2). Eq. (12) can be

rewrited so as to determine the minimum imposed displacement U stress
0 necessary to fulfill the stress criterion

on a distance l:

U stress
0 (l) = w

σc

E

1

ξ(l)
. (13)

The energy criterion requires several calculations with varying crack length in order to compute the potential

energy variation, and hence the incremental energy release rate. Under linear elasticity and the assumption

of small deformations, the potential energy is proportional to the square applied displacement so that Eq.

(3) provides:

Ginc(l) = A(l)Ew(
U0

w
)2 ≥ Gc. (14)

A(l) is a dimensionless function depending only on the structural geometry. Eq. (14) supplies the minimum

imposed displacement U energy
0 necessary to fulfill the energy criterion for a crack length l:

U energy
0 (l) = w

√
Gc

A(l)Ew
= w

σc

E

√
Lmat

w

1√
A(l)

, (15)

where
√

Lmat

w is similar to the brittleness number introduced by Mantic̆ [36].

The initiation displacement U c and crack length lc can thus be determined as the minimum applied

displacement for which both criteria are fulfilled, i.e.:

lc = argmin
l

(max(U energy
0 (l), U stress

0 (l))), (16)

U c = max(U energy
0 (lc), U stress

0 (lc)). (17)

In the case of monotonically decreasing stress and monotonically increasing energy release rate, the initiation

loading predicted by the stress and the energy conditions are equal so that the initiation length lc can be
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estimated by combining and solving Eqs. (13) and (15):

ξ(lc)2

A(lc)
=
σ2

cw

GcE
=

w

Lmat
. (18)

The applied displacement at initiation is then obtained with:

U c

w σc

E

=

√
Lmat

w

1√
A(lc)

=
1

ξ(lc)
. (19)

Eq. (18) reveals that the initiation length lc depends on the material length Lmat and on the structural

geometry. In the case of a small notch defect submitted to traction, it was shown [31] that the upper bound

of the initiation length is:

lc ≤ lmaxc =
Lmat

2
. (20)

It must be noted that the value of this upper bound was obtained while considering a monotonically increasing

behaviour of the incremental energy release rate versus the crack length. Configurations for which B(l)

exhibits a maximum are qualified as negative geometries [37]. For these configurations, such as for instance

debonding initiation along an interface, lmaxc is a structural value which only depends on the geometry [19].

3. Finite element procedure - The case of a V-notch specimen

The numerical implementations of the MA and FFE approaches are described in this section, based on

the three-point bending geometry depicted in Fig. 2.

3.1. Implementation of the MA approach

The asymptotic approach of the CC requires the coefficient B to be estimated so as to determine the

initiation length and stress intensity factor at initiation with the help of Eqs. (8) and (9). The computation

of B is based on the potential energy change due to the crack initiation (cf. Eq. (6)). The potential energies

in presence of and without a crack of length unity are therefore assessed in the inner domain. An example of

mesh of the inner domain is presented in Fig. 3. The displacement field related to the V-notch (cf. Eq. (4)

and Eq. (24) in the Appendix) is imposed as a Dirichlet condition on the domain boundary and the V-notch

faces are stress-free. It is recommended to use the exact same mesh topology to compute the potential energy

change and to double the node lying on the crack path in the cracked case since it reduces the numerical

errors made on the potential energy change. Note that another possibility to calculate the potential energy

change consists in using the contour integral Ψ defined by Eq. (11) [18].

The inner domain is artificially bounded at a large distance and boundary conditions are necessary to

prescribe a behavior at infinity (matching conditions), thus it is recommended to ensure that the inner domain

is large enough. Following the convergence analysis presented in next section, we recommend to use an inner

domain radius at least 200 times larger than the largest characteristic length (e.g., crack length, blunt notch

radius) in the inner domain. Furthermore, the minimum mesh size mMA at the crack tip must be sufficiently

small with mMA ≤ l
100 . The MA procedure also requires that the initiation length remains small compared
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to the defect length. Using Eq. (20), which gives an estimate of the upper bound of the initiation length,

leads to:

Lmat ≤
h

5
. (21)

As will be shown in next section, Eq. (21) must be satisfied to avoid any artefact introduced by the MA

approach. In the present example, the stress variation can be derived analytically (Eq. (26) in the Appendix).

In other cases for which no analytical solutions exist, it is also possible to compute the stress condition using

a FE calculation in the inner domain without crack. It does not require any supplementary calculations

than those already performed to compute the potential energy change, but only a post-processing of the

FE calculation in the inner domain with no crack. The steps to follow in a FE implementation of the MA

approach are the following:

1) Generation of the inner domain geometry and mesh,

2) Computation of the displacement boundary conditions imposed on the inner domain boundary,

3) Computation of the potential energy difference and thus B coefficient, B = W̃P(0)− W̃P(1) where W̃P

denotes the potential energy computed in the inner domain and where 0 and 1 denote respectively the

uncracked and cracked cases,

4) Introduction of the material properties (E, ν, σc, Gc) and calculation of the initiation crack length lc

and stress intensity factor kc using Eqs. (8) and (9).

It can be noted that the FE calculations in the inner domain can be done once and for all with given

values of (E,ν)=(E1,ν1) for which a value of the coefficient B = B1 is computed. Indeed, it can be shown

that the coefficient B2 corresponding to another couple (E2,ν2) can be expressed as a function of B1 and

(E1, ν1, E2, ν2) with B2 = B1
1−ν2

2

E2

E1

1−ν2
1

.

We provide as supplementary data (section 6.4 in the Appendix) a python source code to perform steps 1

to 3 with Abaqus/Standard (ScriptV notch.py). Standard linear quadratic elements (plane strain conditions)

Aurélien Doitrand - 8

β

R

crack

Figure 3: Inner domain of radius R in the case of a V-notch with angle β containing a unity length crack and an example of

mesh employed for the computation of the energy difference (MA approach).
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are used. Then, a second script solves the CC (step 4) (CC Solution from FE calculations.py). Those two

scripts can also be used to consider a mixed-mode loading. In this case, the crack may initiate with an

orientation γ as schematized in Fig. 10. Minimizing kcI (γ) offers an estimate of the initiation angle γc.

The relevant formulation of the CC is given by Eqs. (31) and (32) in section 6.2 of the Appendix. The

calculations for several V-notch openings β and crack angles γ have been performed (with E= 1 MPa and

ν=0.36) and the results were stored in a database file (Data Vnotch r0.txt) provided as a Supplementary

material. Similar results (only with γ = 0) were already given in a previous paper [34]. A python script

(Solution Vnotch r0 modeIandII.py) allows solving the CC (step 4) in the case of a sharp V-notch (under

mode I and mixed mode loading) using the MA without any FE calculations. It only requires these pre-

calculated data and is therefore computationally very efficient.

Eqs. (43) and (44) in Section 6.3 of the Appendix give the formulation of the CC for a blunt V-notch

under mixed-mode loading. The same scripts (ScriptV notch.py) and (CC Solution from FE calculations.py)

can be used to solve the CC with the MA approach. As already mentioned, the inner domain is obtained

by dilatation of the spatial coordinates with respect to the blunted V-notch radius d and a non-dimensional

crack length η = l/d is introduced. Therefore, an estimate of an upper bound to the initiation crack length

must be obtained before generating the FE mesh of the inner domain including a blunted V-notch radius of

dimension 1 and a crack of non dimensional length η. In practice, the following procedure must be followed

so as to compute the maximum non-dimensionnal crack length in the inner domain:

1) Choose the minimum blunted V-notch radius dmin for which the CC solution has to be calculated,

2) Estimate the maximum initiation length with the condition lc ≤ Lmat

2 ,

3) Compute the non-dimensional upper bound for the initiation length Lmat

2dmin
that can be employed to

generate the inner domain mesh.

Then the MA approach can be used as already described in Section 2.1.

3.2. Implementation of the FFE approach

Crack initiation length lc and loading level U c are determined using Eqs. (18) and (19), which involves the

dimensionless functions A(l) and ξ(s). The computation of ξ only requires one calculation on the structure

without crack, whereas several calculations with increasing crack lengths are requested so as to obtain A.

Similarly to the MA approach, it is recommended to use the exact same mesh topology to compute the

potential energy change by successively releasing the nodes lying on the crack path. A refined mesh of length

MFFE with the mesh size mFFE (Fig. 4) must be introduced in the vicinity of the notch in order to capture

accurately the initiation length lc. Using the lower bound lminc defined by Eq. (10) and the upper bound

lmaxc defined by Eq. (20), a convergence analysis presented in next section leads to select:

mFFE ≤
lminc

6
=
Lmat

12π
, (22)

MFFE ≥ lmaxc =
Lmat

2
. (23)

9



FFm

FFM

Figure 4: Refined mesh at the V-notch tip (FFE approach): the minimum mesh size and the length of the refined zone are

respectively denoted mFFE and MFFE.

If the node distribution is regular, the number of calculations necessary to evaluate the incremental energy

release rate A is N ≥ MFFE

mFFE
= 6π ∼= 20. It will be shown in next section that N can be reduced by introducing

a controlled variation of the mesh size within the refined zone. The steps to follow for a FE implemention of

the FFE approach are the following:

1) Generation of the geometry and mesh of the studied structure,

2) Generation of several meshes with varying crack length,

3) Introduction of the material properties (E, ν) and computation of the scale factors ξ and A,

4) Introduction of the material properties (σc, Gc) and calculation of the initiation crack length and loading

level using Eqs. (18) and (19).

In practice, the dimensionless functions ξ and A do not depend on Young’s modulus E and reveal weakly

dependant on Poisson’s ratio ν so that the material properties are only needed for the last step. We provide

as supplementary data (section 6.4 in the Appendix) a python source code (F3P Vnotch.py) for steps 1 to

3 (using Abaqus/Standard) and a complementary one (post F3P.py) for step 4. Standard linear quadratic

elements (plane strain conditions) are still used.

4. Numerical results

This section includes several convergence analysis and a comparison between MA and FFE approaches.

4.1. Convergence analysis to estimate the minimum mesh size and the radius of the inner domain (MA

approach)

Convergence analyses are performed in order to determine the best meshing conditions of the inner

domain. Fig. 5 shows the influence of the minimum mesh mMA size at the crack tip to crack length l ratio

on the coefficient B. The condition mMA

l ≤ 0.01 must be satisfied to reach convergence. The effect of the

radius R of the inner domain on the initiation stress intensity factor and crack length is depicted on Fig. 6.
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Both quantities are overestimated using a too small inner domain radius and converge to a constant value

for larger domain radii with R ≥ 200 l. It is thus recommanded to keep the radius of the inner domain 200

times larger than the largest characteristic length.

Figure 5: Coefficient B (MA approach) versus the minimum mesh size to crack length ratio mMA
l

for a sharp V-Notch with

β = 90deg., E = 3300MPa , ν =0.36. The inner domain radius to crack length ratio is R
l

=200.

4.2. Convergence analysis to estimate the minimum mesh size (FFE approach)

Fig. 7 depicts the crack length and applied displacement at initiation versus the ratio Lmat

w for given

values of h and β. For large values of the minimum mesh size, lc and U c are overestimated but decreasing

mFFE towards the reference value mREF=0.5 µm clearly demonstrates a convergence. Fig. 8a shows that a

value mFFE ≤ 1 µm is necessary to maintain the relative error with the reference solution below 1%. Similar

Figure 6: Initiation (a) critical stress intensity factor and (b) crack length determined with the MA approach as a function of

the inner domain radius to crack length ratio for a sharp V-Notch with β = 90deg., E = 3300MPa , ν =0.36 , σc =72MPa and

Gc =0.250MPa.mm. The minimum mesh size to crack length ratio is mMA
l

=0.01.
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Figure 7: a) Initiation length and b) Applied displacement determined with the FFE approach versus the characteristic length

for different values of the minimum mesh size mFFE at the notch tip with MFFE =200µm. The three-point bending geometry

with a sharp V-notch is considered with 2L = 40mm, w = 2mm, h = 0.3mm, β = 40deg. and E=400 GPa, ν = 0.2.

results were obtained for another angles β and V-notch depth h, which leads to recommand a mesh size

mFFE ≤ lmin
c

6 = Lmat

12π . Employing a non-uniform mesh is useful to reduce the number of nodes within the

refined zone. This is illustrated in Fig. 8b: starting from a mesh size mFFE=1.5 µm, a bias is introduced

in order to verify the condition (22) close to the notch tip while allowing progressively a larger mesh size

away from the notch tip. This procedure does not degrade or improve the accuracy but allows to reduce the

number of calculations required to evaluate the scale factor A.
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Figure 8: Relative error
Uc(mFFE)−Uc(mREF )

Uc(mREF )
in terms of applied displacement at initiation versus the characteristic length

(FFE approach) mREF =0.5 µm : a) The mesh is uniform, b) The mesh is non-uniform and obtained after introducing a bias.

The three-point bending geometry with a sharp V-notch is analysed with 2L = 40 mm, w = 2 mm, h = 0.3 mm, β = 40deg.

and E=400 GPa, ν = 0.2 and MFFE =200µm.

4.3. Comparison between MA and FFE approaches

MA and FFE approaches are now used to estimate the influence of the V-notch angle on crack initiation

for the three-point bending geometry (Fig. 2) with 2L = 40 mm, w = 2 mm and h = 0.3 mm. The minimum

mesh size and the radius of the inner domain employed with the MA method are respectively mMA =10µm

12



and R=200mm with l=1mm. The minimum mesh size and the length of the refined zone employed with the

FFE method are respectively mFFE = mREF =0.5 µm and MFFE =200 µm. The MA approach requires the

calculation of the GSIF for a given applied displacement with the contour integral defined by Eq. (11) (which

can be obtained using the script Compute K2D.py provided in supplementary materials). Results displayed

in Fig. 9a show that the applied critical displacement increases with the notch angle. Both procedures give

similar results for lower values of the characteristic length but a significant difference appears with increasing

Lmat. The explanation is provided by Fig. 9b which plots the initiation length at crack initiation versus

the notch angle: lc increases with Lmat and β. As the scaling factor linking lc and Lmat reveals smaller for

the FF approach for higher values of Lmat, smaller initiation lengths are estimated with the FF method for

larger values of Lmat. To remain within the framework of the asymptotic analysis, the initiation length must

be at least one order of magnitude smaller than the notch length with lc ≤ h
10=30 µm. This condition is no

more satisfied for every notch angle for increasing values of Lmat for which the MA results exhibits (in Fig.

9a) a non-physical minimum corresponding to a “critical angle” as already shown by previous authors [38].
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Figure 9: Comparison between MA (square symbols and full lines) and FFE (disk symbols and dotted lines) approaches: a)

Applied displacement and b) Initiation length at crack onset versus the notch angle for various values of the characteristic length

Lmat. A three-point bending specimen with a sharp V-notch is considered with 2L = 40 mm, w = 2 mm, h = 0.3 mm and

E=400 GPa, ν = 0.2, σc = 100 MPa and Gc=1, 3 or 10 J/m2 corresponding to Lmat=40, 120, or 400 µm.

5. Conclusion

To predict crack initiation in the vicinity of a stress concentration, the CC can be implemented with

the help of MA or FFE methods. Both procedures are detailed in this paper in order to facilitate their

use with a FE code. In addition, python source codes are provided to illustrate their implementation in

Abaqus/Standard in the case of a sharp or a blunted V-notch. The supplied tools apply the MA approach

for mixed mode loading and the FFE approach for a specimen submitted to three-point bending. Results of

convergence analysis are analysed to link the characteristic length of the studied material with the needed

mesh refinement at the notch tip for the FFE method. The MA approach allows the initiation loading and

crack length to be determined without considering the whole structure under investigation by performing a

13
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Geometry and mesh generation
Standard « Pacman-like » geometry definition :

R : Inner domain radius

β: V-notch angle

γ: crack angle with respect to horizontal

 r  : Blunted notch radius
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γ

x

y
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θ
rγ

Figure 10: Inner domain of radius R containing a V-notch with opening angle β and tip radius d and a crack oriented with an

angle γ with respect to Oy axis.

zoom around the crack initiation location. It is computationally more efficient than the FFE approach that

requires several calculations with different crack lengths to be computed on the whole model. The domain in

which the calculations are performed must be large enough to prescribe a behavior ”at infinity” (see Section

3.1). The asymptotic approach is restricted by the assumption that the initiation length is small compared

to the structure characteristic dimensions, and that the crack location is far enough from any boundary or

features that may affect the displacement/stress field around the crack. If these assumptions are not fulfilled,

some differences on initiation crack length and loading level are obtained between both approaches. This is

directly linked to the material characteristic length Lmat which has an influence on the predicted initiation

length (that also depends on the geometrical features of the studied structure). An additional study is needed

to quantify more precisely these differences, nevertheless condition (21) provides a validity range estimate for

the MA approach.

6. Appendix

The CC solution in mixed mode using the asymptotic approach is explained in this appendix for ei-

ther sharp or blunted V-notch, which of course includes the particular case of a sharp V-notch specimen

loaded under pure mode I loading presented in the paper for the sake of pedagoy. The scripts provided as

supplementary data allow studying general cases of blunted V-notch under mixed mode loading.

6.1. Singularity exponents and asymptotic displacement field

The displacements in the vicinity of a traction free V-notch can be expressed by an asymptotic series, for

which the first three terms expressed in polar coordinates are:

u(r, θ) =

 ur

uθ

 = u(0, 0) + kIr
λ1

 uIr(θ)

uIθ(θ)

 + kIIr
λ2

 uIIr (θ)

uIIθ (θ)

 (24)
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with

uIr(θ) = [cos((1 + λ1)θ∗) + λL+3µL−λ1(λL+µL)
(λL+µL)(1−λ1)

sin(ω(1+λ1)/2)
sin(ω)(1−λ1)/2)cos((1− λ1)θ∗)]/(2µLλ1σ

I−0
θθ )

uIθ(θ) = [−sin((1 + λ1)θ∗)− λL+3µL+λ1(λL+µL)
(λL+µL)(1−λ1)

sin(ω(1+λ1)/2)
sin(ω)(1−λ1)/2)sin((1− λ1)θ∗)]/(2µLλ1σ

I−0
θθ )

uIIr (θ) = [sin((1 + λ2)θ∗) + λL+3µL−λ2(λL+µL)
(λL+µL)(1+λ2)

sin(ω(1+λ2)/2)
sin(ω)(1−λ2)/2)sin((1− λ2)θ∗)]/(2µLλ2σ

II−0
rθ )

uIIθ (θ) = [cos((1 + λ2)θ∗) + λL+3µL+λ2(λL+µL)
(λL+µL)(1+λ2)

sin(ω(1+λ2)/2)
sin(ω)(1−λ2)/2)cos((1− λ2)θ∗)]/(2µLλ2σ

II−0
rθ ) a

where λL, µL are the Lamé coefficient, θ∗ = θ − π/2, ω = 2π − β and

σI−0
θθ = (1+λ1)sin(ω(1+λ1)/2)

(1−λ1)sin(ω(1−λ1)/2) − 1

σII−0
rθ = 1− (1−λ2)sin(ω(1+λ2)/2)

(1+λ2)sin(ω(1−λ2)/2)

The singularity exponents λ1 and λ2 associated with a V-notch with opening angle β can be computed

as the smallest roots of the following characteristic equations:

 sin(λ1(2π − β)) + λ1sin(2π − β) = 0

sin(λ2(2π − β))− λ2sin(2π − β) = 0
(25)

The stress field in the vicinity of the V-notch can be expressed in polar coordinates as:

σ(r, θ) =


σrr

σθθ

σrθ

 = kIr
λ1−1


σIrr(θ)

σIθθ(θ)

σIrθ(θ)

 + kIIr
λ2−1


σIIrr (θ)

σIIθθ (θ)

σIIrθ (θ)

 (26)

with

σIrr(θ) = [cos((1 + λ1)θ∗) + 3−λ1

1−λ1

sin(ω(1+λ1)/2)
sin(ω)(1−λ1)/2)cos((1− λ1)θ∗)]/σI−0

θθ

σIθθ(θ) = [−cos((1 + λ1)θ∗) + 1+λ1

1−λ1

sin(ω(1+λ1)/2)
sin(ω(1−λ1)/2)cos((1− λ1)θ∗)]/σI−0

θθ

σIrθ(θ) = [−sin((1 + λ1)θ∗) + sin(ω(1+λ1)/2)
sin(ω(1−λ1)/2)sin((1− λ1)θ∗)]/σI−0

θθ

σIIrr (θ) = [sin((1 + λ2)θ∗) + 3−λ2

1+λ2

sin(ω(1+λ2)/2)
sin(ω(1−λ2)/2)sin((1− λ2)θ∗)]/σII−0

θθ

σIIθθ (θ) = [−sin((1 + λ2)θ∗) + sin(ω(1+λ2)/2)
sin(ω(1−λ2)/2)sin((1− λ1)θ∗)]/σII−0

θθ

σIIrθ (θ) = [cos((1 + λ2)θ∗)− 1−λ2

1+λ2

sin(ω(1+λ2)/2)
sin(ω(1−λ2)/2)cos((1− λ2)θ∗)]/σII−0

rθ

6.2. The sharp V-notch under mixed mode loading

In the context of matched asymptotic expansions, the inner domain is dilated with respect to the crack

length l. In this case the potential energy difference for a V-notch with opening angle β is expressed as: −δWp = k2
I l

2λ1(B11(γ) +m(l)B12(γ) +m(l)2B22(γ))

m(l) = kII
kI
lλ2−λ1

(27)

where γ defines the crack angle with respect to the V-notch bisector (Fig. 10). Therefore the energy condition

of the CC writes:

Ginc = −δWp

l
= k2

I l
2λ1−1(B11(γ) +m(l)B12(γ) +m(l)2B22(γ)) > Gc (28)

The stress condition of the CC writes:

σθθ = kIl
λ1−1(σIθθ(γ) +m(l)σIIθθ (γ)) > σc (29)
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Therefore, the generalized stress intensity factor kI can be computed by combining Eqs. (28) and (29):

kI = (
Gc

B11(γ) +m(l)B12(γ) +m(l)2B22(γ)
)1−λ1(

σIθθ(γ) +m(l)σIIθθ (γ)

σc
)1−2λ1 (30)

Using Eq. (28), the initiation crack length lc can be obtained by solving the following equation which is

implicit because m depends on lc:

lc =
Gc

B11(γ) +m(lc)B12(γ) +m(lc)2B22(γ)
(
σIθθ(γ) +m(lc)σ

II
θθ (γ)

σc
)2 (31)

which allows determining the critical GSIF kcI

kcI = (
Gc

B11(γ) +m(lc)B12(γ) +m(lc)2B22(γ)
)1−λ1(

σc
σIθθ(γ) +m(lc)σIIθθ (γ)

)2λ1−1 (32)

For a given V-notch opening angle β, the critical GSIF is estimated for several crack angles γ, the ini-

tiation GSIF and crack angle being given by the configuration minimizing kcI . In practice, the solution of

the CC requires the knowledge of the functions Bij (i,j=1 or 2) and σkθθ (k=I or II). The latter can be

computed analytically in the case of a sharp V-notch (cf. Eq. (26)) while the former have to be computed

by FE computations. First, FE calculations are performed for (kI=1, kII=0) in order to estimate the po-

tential energies with (δW I
p(l)) and without (δW I

p(0)) a crack in pure mode I (and hence their difference

−δW I
p=δW I

p(0)− δW I
p(l)) from the stress σI and strain εI fields.

δW I
p =

1

2

∫
Ω

σI : εIdV (33)

It provides B11 for a given crack angle γ (the procedure being repeted for crack angles γ varying between

-90 and 0 deg.), from Eq. (27):

B11(γ) =
−δW I

p

k2
I l

2λ1
= δW I

p(0)− δW I
p(l) since kI = 1 and l = 1 (34)

Then, FE calculations are performed for (kI=0, kII=1) in order to evaluate the potential energies with

(δW II
p (l)) and without (δW II

p (0)) a crack in pure mode II (and hence their difference −δW II
p =δW II

p (0) −

δW II
p (l)) from the stress σII and strain εII fields.

δW II
p =

1

2

∫
Ω

σII : εIIdV (35)

It allows determining A22 for a given crack angle γ (the procedure being repeted for crack angles γ varying

between -90 and 0 deg.), from Eq. (27):

B22(γ) =
−δW II

p

k2
IIl

2λ2
= δW II

p (0)− δW II
p (l) since kII = 1 and l = 1 (36)

Finally, the knowledge of B11 and B22 gives access to B12 by computing the potential energy difference

−δW I+II
p for any GSIFs so that (kI,kII) 6=(0,0). For the sake of simplicity, we choose (kI=1, kII=1).

B12(γ) =
1

m(l)
(
−δW I+II

p

k2
I l

2λ1
−A11(γ)−m(l)2A22(γ)) (37)
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Actually, no extra FE calculations than those in pure mode I and pure mode II are required to compute B12

since the potential energy in mode I+II can be computed by combining the stress and strain fields obtained

in pure mode I and II:

δW I+II
p =

1

2

∫
Ω

(σI + σII) : (εI + εII)dV (38)

hence simplifying Eq. (37) into:

B12(γ) = −δW I+II
p −B11(γ)−B22(γ) since kI = 1, kII = 1 and l = 1 (39)

6.3. The blunted V-notch under mixed mode loading

In the case of a V-notch with a blunted tip of radius d (cf. Fig. 10), the inner domain is dilated with

respect to either the crack length l or the notch radius d (leading to the same results). For practical reasons

(ease of FE mesh generation), we choose a dilatation with respect to d hence defining the normalized crack

length η = l/d. The potential energy difference reads: −δWp = k2
I d

2λ1(Bb11(γ, η) +m(d)Bb12(γ, η) +m(d)2Bb22(γ, η))

m(d) = kII
kI
dλ2−λ1

(40)

Therefore the energy condition of the CC writes:

Ginc = −δWp

l
= k2

I l
2λ1−1B

b
11(γ, η) +m(d)Bb12(γ, η) +m(d)2Bb22(γ, η)

η2λ1
> Gc (41)

The stress condition of the CC writes:

σθθ = kId
λ1−1(σIbθθ(γ, η) +m(d)σIIbθθ (γ, η)) > σc (42)

where σkbθθ differs from σkθθ (k = I or II) defined in Section 6.2 because of the blunted notch tip. These

functions can be computed by FE calculations on uncracked configuration. By combining Eqs. (41) and

(42), we obtain the equation that must be solved so as to determine the initiation crack length lc = dηc for

a given value of γ:

1

(σIbθθ(γ, η) +m(d)σIIbθθ (γ, η))2

Bb11(γ, ηc) +m(d)Bb12(γ, ηc) +m(d)2Bb22(γ, ηc)

ηc
=

1

d

Gc
σ2
c

(43)

It can be noted that the solution of Eq. (43) depends on the actual value of the the blunted notch radius d

(expressed in length unit) and not on a ratio between d and another characteristic length. From (41) and

(42) we deduce the critical GSIF:

kcI = (
Gc

D(γ, ηc)
)1−λ1(

σc
σIbθθ(γ, ηc) +m(d)σIIbθθ (γ, ηc)

)2λ1−1 (44)

with D(γ, ηc) =
Bb

11(γ,ηc)+m(d)Bb
12(γ,ηc)+m(d)2Bb

22(γ,ηc)
ηc

The crack initiation angle γc is solved as the one minimizing the critical GSIF kcI . In practice, the solution

of the CC for the blunted V-notch requires the knowledge of the functions Bbij (i,j=1 or 2) and σKθθb (k=I

or II). Contrary to the sharp V-notch case, the latter are not computed analytically but by means of FE

calculations, as well as the former. For a given V-notch opening, Bbij must be computed for several crack
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angles γ and normalized lengths ηc in order to solve Eq. (43) for all these angles and find the one minimizing

kcI . In fact, it was shown in [25] that the same crack initiation angle as for a sharp V-notch was found for a

blunted V-notch. Therefore, the computation of Bbij can directly be performed for the crack angle γc that

minimizes the GSIF in the case of a sharp V-notch, which reduces the number of calculations required to

solve the CC. The same approach as described in Section 6.2 is adopted to compute the Bbij functions.

6.4. Supplementary data

Supplementary data associated with this article can be found in the online version. Scripts to be

used with Abaqus/Standard are provided for the MA approach (Script V notch.py, Auxiliary functions.py,

CC Solution from FE calculation.py, Data Vnotch r0.txt and Solution Vnotch r0 modeIandII.py, Compute K2D.py)

and for the FFE approach (F3P Vnotch.py and post F3P.py) together with the corresponding instruction

files (Readme MA.txt and Readme FFE.txt).
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