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ABSTRACT

Horizontal fluxes of heat and other scalar quantities in the ocean are due to correlations between the

horizontal velocity and tracer fields. However, the limited spatial resolution of ocean models means that

these correlations are not fully resolved using the velocity and temperature evaluated on the model grid,

due to the limited spatial resolution and the boxcar-averaged nature of the velocity and the scalar field. In

this article, a method of estimating the horizontal flux due to unresolved spatial correlations is proposed,

based on the depth-integrated horizontal transport from the seafloor to the density surface whose spatially

averaged height is the height of the calculation. This depth-integrated horizontal transport takes into

account the subgrid velocity and density variations to compensate the standard estimate of horizontal

transport based on staircase-like velocity and density. It is not a parameterization of unresolved eddies,

since it utilizes data available in ocean models without relying on any presumed parameter such as dif-

fusivity. The method is termed the horizontal residual mean (HRM). The method is capable of estimating

the spatial-correlation-induced water transport in a 1/48 global ocean model, using model data smoothed

to 3/48. The HRM extra overturning has a peak in the Southern Ocean of about 1.5 Sv (1 Sv[ 106 m3 s21).

This indicates an extra heat transport of 0.015 PW on average in the same area. It is expected that im-

plementing the scheme in a coarse-resolution ocean model will improve its representation of lateral

heat fluxes.

1. Introduction

The stirring andmixing of tracers by mesoscale eddies

in the ocean interior is thought to occur along locally

referenced potential density surfaces (Griffies 2004;

McDougall and Jackett 2005; McDougall et al. 2014,

2017). The justification for this ‘‘epineutral’’ direction of

mesoscale mixing relies on the observation that den-

sity overturns in the ocean interior are observed only

at small scales (,1m) during active three-dimensional

turbulence. The mixing due to such small-scale three-

dimensional turbulence is best understood and param-

eterized as isotropic turbulent diffusion (although this

type of mixing is often called ‘‘diapycnal mixing’’). The

remaining mixing processes in the ocean interior occur

along locally referenced potential density surfaces as if

there were no small-scale density overturns (McDougall

et al. 2014). This decomposition is justified by ocean

observations at the fine and microscales and motivates

the standard approach, in oceanographic theory and

modeling, of representing mixing of tracers as the sum

of epineutral mixing by mesoscale eddies and isotropic

mixing by small-scale turbulence.

A key development in modeling ocean mixing was

made by Gent and McWilliams (1990). These authors

realized that the epineutral diffusion of scalars would be

affected by lateral variations of the thickness between

pairs of closely spaced isopycnals, and they proposed a

parameterization that acted as a sink of gravitational

potential energy via the diffusion of this thickness. At

the time it was thought that the Gent and McWilliams

(1990) parameterization acted in a diabatic manner,

increasing the amount of diapycnal mixing. However,

Gent et al. (1995) showed that the parameterizationCorresponding author: Yuehua Li, yuehua.li@unsw.edu.au
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could be represented as an extra nondivergent velocity

and that the total velocity advects ocean tracers in an

adiabatic and isohaline manner.

McDougall and McIntosh (2001) subsequently showed

that the Gent and McWilliams (1990) procedure was a

parameterization of the eddy contribution to the tem-

poral residual mean (TRM) circulation. The concept of

residual mean circulation is common in atmospheric

science, where the mean circulation is calculated from a

zonal average (Andrews and McIntyre 1976). By contrast,

the TRM velocity involves temporal averaging at a fixed

longitude and latitude. The TRM theory of McDougall

andMcIntosh (2001) introduced a two-dimensional quasi-

Stokes streamfunction to represent the extra nondivergent

advection due to eddies (the quasi-Stokes velocity). The

total TRM velocity is then the sum of the Eulerian mean

velocity and the eddy-induced quasi-Stokes velocity.

McDougall andMcIntosh (2001) showed that the product

of the lateral diffusivity and the slope of isopycnals used

by Gent and McWilliams (1990) can be regarded as a

parameterization of the quasi-Stokes streamfunction.

McDougall and McIntosh (2001) also demonstrated

an intuitive link between the quasi-Stokes velocity of the

TRM circulation (which is based in Cartesian coordi-

nates) and the eddy-induced extra advection caused by

thickness-weighted averaging, which is the natural way

of averaging in density coordinates. They considered the

horizontal transport of seawater denser than the density

surface whose time-mean height is the height being

considered, and showed the quasi-Stokes velocity cor-

responds to the contribution of mesoscale eddies to this

horizontal transport of seawater. Thus, in TRM theory,

eddy effects are implemented in the conservation equa-

tion for the scalar variables (such as temperature and

salinity) by modifying both the advective velocity and

the advected scalar field. This is in contrast to recent

work on representing the role of mesoscale eddies in

ocean models by parameterizing eddy effects directly in

the momentum equation (Young 2012; Maddison and

Marshall 2013; Porta Mana and Zanna 2014).

The Gent and McWilliams (1990) parameterization

essentially represents the horizontal density flux due to

unresolved temporal correlations between temperature

(or salinity) and the horizontal velocity. In the same

way, unresolved spatial correlations between tempera-

ture and horizontal velocity will contribute horizontal

density fluxes that should be included in ocean models

which carry scalar fields and velocities on a relatively

coarse spatial grid. This type of unresolved spatial cor-

relation and its importance for the oceanic meridional

heat transport have been discussed by Rintoul and

Wunsch (1991). They found that spatial smoothing

significantly reduced the estimate of the northward heat

flux across 368N in the Atlantic, due to missing spatial

correlations between velocity and temperature. There-

fore, insufficient spatial resolution in the western bound-

ary currents of geostrophic box inversions or numerical

ocean simulations may result in underestimation of the

meridional heat flux.

McDougall (1998) considered the effect of spatial res-

olution limitations on the horizontal transport of seawater

that is denser than the isopycnal whose average height is

the height being considered. The term horizontal residual

mean (HRM) was coined to describe the total velocity

that would include the extra advection of seawater of this

density class due to the unresolved spatial correlations.

McDougall (1998) also proposed an expression for the

eddy-induced HRM streamfunction in terms of the ver-

tical and horizontal shears of the resolved horizontal ve-

locity and the resolved-scale slope of density surfaces. Thus,

just as the quasi-Stokes advection of the TRM circulation

can be regarded as the adiabatic way of including the hor-

izontal density fluxes due to unresolved temporal correla-

tions between temperature and horizontal velocity, so the

eddy-induced advection of the HRM circulation can be

regarded as the adiabatic way of including the horizontal

density fluxes due to unresolved spatial correlations.

The idea proposed by McDougall (1998) was cast in

terms of spatial correlations between the velocity and

density that had both been temporally averaged. How-

ever in practice, the spatial correlations are present at

every instant and can also be calculated at each time step

when running ocean models. Hence, we calculate and

apply the HRM streamfunction to the spatial correla-

tions of the instantaneous velocity and density surfaces

at each time step, instead of using temporalmean values.

To calculate the HRM streamfunction, we linearly in-

terpolate the staircase-like velocity and depth functions in

order to represent the velocity and density variationwithin

grid boxes. The linearly interpolated velocity is then in-

tegrated from the bottom of the ocean up to a certain

isopycnal whose spatially averaged height is the height one

is considering. The proposed method hence approximates

the transport of seawater that is denser than this isopycnal

and characterizes the spatial correlations between the

velocity and the density surface. An extra velocity can

be derived based on the spatial-correlation-induced

transport. This extra velocity should be added to the

TRM velocity, which is the sum of the Eulerian-mean

and temporal-correlation-induced velocities. The total

velocity is the velocity with which tracers are advected,

and it includes the extra velocity that is induced by

spatial correlations between velocity and density.

In this article, we demonstrate the ability of the pro-

posed HRM approach to capture subgrid-scale spatial

correlations using a 3D snapshot from a global ocean
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model, the Modular Ocean Model (MOM) 5. We argue

that the HRMmethod improves an oceanmodel’s ability

to incorporate contributions from subgrid-scale processes.

We further demonstrate that the HRM component

shows a peak of around 1.5 Sv (1 Sv [ 106m3 s21) me-

ridional overturning in the ACC area and a typical

0.015 PW extra heat transport in the same area. These

findings indicate howHRM can influence model results

in water transport, heat transport and tracer advections.

Here, we focus on the theoretical aspects and preliminary

diagnostics of the HRMmethod. The article is organized

in the following way. Expressions for HRM theory are

presented in section 2. In section 3 we demonstrate that

the method of calculating the transport from coarsely

resolved model fields gives a good approximation to

the corresponding transport of seawater that would be

available in a finer-resolution ocean model. In section 4

we diagnose the contribution of the extra nondivergent

advection to basin-scale meridional heat and mass trans-

ports obtained from a model snapshot. Section 5 jus-

tifies the nontapering choice of the HRM method. We

summarize our findings in section 6.

2. Expressions for the extra nondivergent
advection of HRM

a. The HRM transport and streamfunction

Instantaneous density surfaces are commonly not

aligned with constant pressure, as shown in Fig. 1a.

The horizontal line labeled as z0 denotes the constant

depth at which water transport is calculated. However,

the water transport of interest is the transport of water

that is denser than the density surface, shown as the

shaded area in Fig. 1a. Since the velocity within a grid

box also varies, the spatial correlations between the

velocity and slope will contribute to the water transport

under the instantaneous density surface. Within a grid

box, this contribution by the meridional velocity under

the density surface can be represented as

ðDx/2
2Dx/2

ðza(x)
z0

y(x, z) dz dx, (1)

where Dx is the zonal width of a grid box, z0 is the con-

stant pressure/depth at which one calculates the water

transport, za(x) is an approximated height of the instanta-

neous density surface, and y is themeridional velocity.Note

that za(x) varieswith the longitude x and y(x, z) varieswith

both the longitude x and height z within a grid box.

In z-coordinate ocean models, the height and velocity

are calculated and stored as step functions, that is, one grid

box corresponds to one height and one velocity. To rep-

resent subgrid density and velocity variations, we linearly

interpolate these functions within the grid box. Since the

density surface slopes in the model are calculated based

on adjacent casts, the density slopes in the two half-boxes

of a grid box are typically different, as shown in Fig. 1b.

Hence, the instantaneous density height is approximated

by two linear approximations, with zaW(x) being the height

for the western half and zaE(x) for the eastern half,

z
aE
(x)5 z

0
1 Sx

Ex and z
aW

(x)5 z
0
1Sx

Wx , (2)

where Sx
W and Sx

E are the western and eastern slopes,

respectively. The slope Sx is usually calculated and

stored in ocean models, thus requiring no additional

calculation. The algorithm of calculating the slope Sx

depends on the ocean model, but usually only requires

data from two adjacent casts. The curvature of the density

surface as a function of x has been taken into account

by allowing Sx
E and Sx

W to be different. The two linear

approximations are shown in Fig. 1b. The velocity var-

iation within a grid box is approximated by

FIG. 1. (a) An illustration of the instantaneous density surface

and the constant pressure. The horizontal straight line is the con-

stant pressure z0, at which the z-coordinate ocean model calculates

the water transport within the grid box. The instantaneous density

surface za(x) is illustrated by the straight line sloping up to the

right. (b) Slopes on the two sides of a cast are allowed to be dif-

ferent, as shown in Eq. (2). The sloping line in (a) is replaced by two

solid straight lines with different slopes. These two slopes can be

calculated using available data in ocean models. The HRM theory

requires that the density surface has zero average perturbation

from z0, while the average height of the solid lines is not z0. Hence,

the transport under the dashed line, za(x)2 dz, is considered.
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y(x, z)5 y
0
1 y

x
x1 y

z
(z2 z

0
) , (3)

where y0 denotes the velocity at the center of the grid box,

while yx and yz are the zonal and vertical velocity shears,

respectively. The way to calculate yx and yz depends on the

grid type that the oceanmodel uses, because the position of

velocity varies with different grid types. Substituting linear

approximation Eqs. (2) and (3) into Eq. (1), we have

ðDx/2
2Dx/2

ðza(x)
z0

y(x, z) dz dx5
1

8
y
0
(Sx

E 2 Sx
W)(Dx)2

1
1

24
y
x
Sx
E(Dx)

3 1
1

24
y
x
Sx
W(Dx)3

1
1

48
y
z
(Sx

E)
2(Dx)3 1

1

48
y
z
(Sx

W)2(Dx)3 . (4)

Notice that the average height of the density surface is

not at z0, since Sx
E and Sx

W are allowed to be different.

Rather, the average height differs from z0 by

dz5
1

8
(Sx

E 2 Sx
W)Dx . (5)

In the HRMmethod, we define the spatial average of the

density surface height perturbations to be zero. In other

words, the average height of the density surface has to

be the same as z0. Following this definition, the density

surface of interest is za(x)2 dz rather than za(x). Hence,

the integration should be from z0 to za(x)2 dz. Above-

mentioned density surfaces za(x) and za(x)2 dz are il-

lustrated in Fig. 1b, with solid lines representing za(x)

[separated into zaE(x) and zaW(x)] and dashed lines in-

dicating za(x)2 dz which has the average height at z0.

Figure 1b demonstrates the case where the average height

of za(x) is above z0 (dz is positive). It is also possible for the

average of za(x) to be below z0, where dz is negative. The

meridional HRM transport we consider now is given by

ðDx/2
2Dx/2

ðza(x)2dz

z0

y(x, z) dz dx5

ðDx/2
2Dx/2

ðza(x)
z0

y(x, z) dz dx1

ðDx/2
2Dx/2

ðza(x)2dz

za(x)

y(x, z) dz dx

5

ðDx/2
2Dx/2

ðza(x)
z0

y(x, z) dz dx2

�
y
0
2

1

2
y
z
dz

�
dzDx

5
1

24
y
x
Sx
E(Dx)

3 1
1

24
y
x
Sx
W(Dx)3

1
1

48
y
z
(Sx

E)
2(Dx)3 1

1

48
y
z
(Sx

W)2(Dx)3

1
1

2
y
z
(dz)2Dx . (6)

The zonal HRM transport is similar:

ðDy/2
2Dy/2

ðza(y)2dz

z0

u(y, z) dz dy5
1

24
u
y
S
y
N(Dy)

3 1
1

24
u
y
S
y
S(Dy)

3

1
1

48
u
z
(Sy

N)
2
(Dy)3 1

1

48
u
z
(Sy

S)
2
(Dy)3

1
1

2
u
z
(dz)2Dy , (7)

where Dy is the meridional width of a grid box, za(y) is

the approximated height of the instantaneous density

surface in the meridional direction, and u(y, z) is the

zonal velocity. Slopes for the north and south half of

the grid box are denoted by S
y
N and S

y
S, respectively. In

this direction,
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dz5
1

8
(Sy

N 2 S
y
S)Dy . (8)

The right-hand sides of Eqs. (6) and (7) are ex-

pressions for the transport due to unresolved spatial

correlations across the width of the boxes of hori-

zontal size Dx and Dy. The corresponding stream-

functions of the extra HRM velocity are found by

dividing these equations by Dx and Dy, respectively,
so we have

Cy
HRM 5

1

24
y
x
(Sx

E 1 Sx
W)(Dx)2

1
1

48
y
z

�
(Sx

E)
2 1 (Sx

W)2 1
3

8
(Sx

E 2 Sx
W)

�2
(Dx)2 ,

(9)

Cx
HRM 5

1

24
u
y
(Sy

N 1 S
y
S)(Dy)

2

1
1

48
u
z

�
(Sy

N)
2
1 (Sy

S)
2
1

3

8
(Sy

N 2 S
y
S)

2

�
(Dy)2 ,

(10)

where we have made use of Eqs. (5) and (8), respectively.

The extra horizontal velocities due to the HRM are

then the vertical derivatives of these streamfunctions, with

the vertical derivative ofCx
HRM [defined in Eq. (10)] being

the eastward velocity component, and the vertical

derivative of Cy
HRM [defined in Eq. (9)] being the

northward velocity component.

In a similar way, the extra horizontal quasi-Stokes

velocity of the Gent et al. (1995) form of the TRM

velocity is the vertical derivative of (Cx
TRM, C

y
TRM). On

the eastern face of a coarse-resolution box the extra

TRM streamfunction is given by Cx
TRM 52kSx

E while

on the northern face it is given by Cy
TRM 52kS

y
N . Note

that the eastward and northward components of the

quasi-Stokes TRM streamfunction are proportional to

(minus) the slopes of the density surfaces in these di-

rections. In contrast, the dominance of the first terms in

Eq. (9) and (10) (demonstrated in section 3) implies

that the eastward component, Cx
HRM, is proportional to

the northward slope of the isopycnals and the northward

component,Cy
HRM, is proportional to the eastward slope

of the isopycnals. Thus, the extra advection of HRM

and that of TRM act in horizontal directions that are

approximately perpendicular to one another.

The streamfunction of the total velocity field is the

sum of (i) the Eulerian-mean streamfunction (Cx, Cy),

(ii) the quasi-Stokes TRM streamfunction, and (iii) the

quasi-Stokes HRM streamfunction, that is,

Cx
Total 5Cx 1Cx

TRM 1Cx
HRM and

Cy
Total 5Cy 1Cy

TRM 1Cy
HRM , (11)

FIG. 2. Vertical cross section through three boxes of a coarse-resolution ocean model, with

the central box showing three boxes of a finer-resolution ocean model that has 3 times the

horizontal resolution compared with the coarse-resolution model. At the fine-resolution

boxes, density surfaces follow the lines from the central point to the small dots at points. The

small dots mark intersects of the density surfaces and the tracer casts. At the coarse-resolution,

density surfaces follow the lines from the central point to the larger dots. The large dots

mark intersects of density surfaces and the tracer casts. The corresponding heights of in-

tersects are denoted zW for the western intersect and zE for the eastern intersect. Since data

is on anArakawa B grid where velocity is located on the vertices of a grid box, yW and yE are

vertically averaged velocities. For the same reason, yupper and ylower are zonally averaged

velocities. The velocities available in the model are originally on vertices of grid boxes.
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with the eastward components being evaluated on the

eastern face of each coarse-resolution box, and north-

ward component on the northern face of each coarse-

resolution box. Since the quasi-Stokes streamfunction

of the HRM can be readily evaluated using the variables

that are available during the running of an ocean model, its

adoption should be straightforward. Moreover, the evalu-

ation of this streamfunction can be readily adjusted to

the grid on which the model is formulated. This three-

dimensional quasi-Stokes velocity of the HRM can be

added to the Eulerian-mean velocity and the quasi-Stokes

velocity of the TRM. The resulting total velocity can be

used in ocean models’ higher-order advection schemes.

In the following section, we will present details of the

HRM transport calculation on anArakawa B grid ocean

model. The contributions of unresolved spatial correla-

tions characterized by HRMequations, namely, Eqs. (6)

and (7), can be written in the form of data available in

ocean models. We also describe our method for evalu-

ating the accuracy of the contributions from unresolved

spatial correlations, using higher-resolution data.

b. Estimating the HRM transport with
coarse-resolution data on an Arakawa B grid

TheHRMapproach aims at quantifying the unresolved

subgrid-scale spatial correlations between velocities

and density surfaces [referring to Eqs. (6) and (7)].

These correlations will be calculated within each grid

box using data that are already available in ocean models

and can complement the subgrid-scale contributions that

FIG. 3. Fine-resolution current speeds of the Gulf Stream area at

a depth of 414m are shaded. Velocity arrows are overlain every

three grid points.

FIG. 4. (left) The zonal velocity differences and slopes in the same selected area as in the right panel. The

magnitude of zonal velocity differences is shown as a color map in which red represents positive and blue negative.

The averaged slopes of the eastern and western neutral density plane slopes are shown by the blue lines in cor-

responding grid boxes. (right) The comparison of the transports (Sv; 1 Sv [ 106m3 s21) calculated by the two

methods at six different depths in the Gulf Stream region. Red curves correspond to the two-triangle method of the

appendix that uses the high-resolution data, while the blue curves correspond to the right-hand side of Eq. (13)

applied to the coarse-resolution fields. The x axis is the number of coarse-resolution grid boxes from the coast.
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are not considered at the resolution at which the HRM is

implemented. To test the HRM method’s ability to com-

pensate the subgrid-scale contributions missed by the cur-

rent resolution, we calculated the water transport including

the HRM transport at a coarse resolution (3/48 in this

paper), and then compared it with the transport of water

calculated at a finer resolution (1/48 in this paper). The

comparison is designed to determine whether the HRM

method at the coarse resolution can give a reasonably

good approximation to the higher-resolution calculation,

in which the 3/48-scale processes are better resolved.

A dataset at 3/48 is constructed by boxcar averaging a

snapshot from a 1/48MOM5output. TheHRM transport is

calculated using the 3/48 data and compared with the

transport calculated using the 1/48 data. Figure 2 illustrates
the coarse- (3/48) and fine-resolution (1/48) grids considered
here. The scale of the grid box in the low-resolution model

is 3 times that of the fine-resolution grid box, as shown in

the central low-resolution box in Fig. 2. The ‘‘true’’ trans-

port on the left-hand side of Eq. (6) is estimated by verti-

cally integrating the velocity data of the fine-resolution

model up to the density surface whose heights are also

based on the fine-resolution tracer data. This integration of

the transport using the fine-resolution model data is de-

scribed with details in the appendix. The right-hand side of

Eq. (6) is calculatedusing the coarse-resolution data. Slopes

are calculated between coarse-resolution casts (see lines

labeled as z0 1 Sx
Wx and z0 1 Sx

Ex in Fig. 2) and velocities

are located on the vertices of coarse-resolution grid boxes

in B-grid models. Notice that the velocities used in the

calculation (yW , yE, yupper and ylower) are not shown on

vertices of coarse-resolution grid boxes as they should be.

This is because velocities on vertices are spatially averaged,

in order to calculate velocity shears yx and yz that apply to

the face of each coarse-resolution grid box. More specifi-

cally, yW and yE are the average of velocities at upper and

lower vertices of the western and eastern edges of the face,

respectively. The terms yupper and ylower are average veloc-

ities of adjacent vertices on the upper and lower edges of a

grid box face. They are averaged zonally for calculating the

vertical shear in Eq. (6) and meridionally for the vertical

shear inEq. (7). In the remainder of this sectionwedescribe

this procedure in more detail.

On the coarse-resolution model grid, the values of the

northward velocity can be estimated at the centers of the

eastern,western, upper and lower edgesof thenorthern face

of each grid box. In terms of these velocities the velocity

shears are yx 5 (yE 2 yW)/Dx and yz 5 (yupper 2 ylower)/Dz,
while the slopes of the density surface are Sx

W 5
(z0 2 zW)/Dx and Sx

E 5 (zE 2 z0)/Dx. We take the vertical

variation of the northward velocity across the whole width

of the box at the height of the density surface to be approx-

imately yz (which is actually the vertical gradient of the

northward velocity evaluated at the fixedheight z0).Wenote

again that zW and zE are defined at the centers of the coarse-

resolutionboxesoneither sideof the central box.Using these

expressions, the right-hand side of Eq. (6) can be written in

terms of these coarse-resolution model variables as

ðDx/2
2Dx/2

ðza(x)2dz

z0

y dz dx5
1

24
(y

E
2 y

W
)(z

E
2 z

W
)Dx1

1

48

(y
upper

2 y
lower

)

Dz
(z

E
2 z

0
)2 1 (z

W
2 z

0
)2 1 24(dz)2

h i
Dx . (12)

Using Eq. (5) for dz, Eq. (12) can be rearranged as

ðDx/2
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Correspondingly, the expression for the extra trans-

port of the HRM in the x direction is
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where dz is given by Eq. (8) and can be written as

(1/8)(zN 2 z0)1 (1/8)(zS 2 z0).

In the following section 3, we will demonstrate results

of calculating Eqs. (13) and (14) at 3/48 resolution,

using a dataset that was boxcar averaged from the nu-

merical output from the MOM5 ocean model (Griffies

2012) run at a horizontal resolution of 1/48. The results

are compared with the calculation at 1/48 in order to

demonstrate that the HRM calculations of Eqs. (13)

and (14), which rely on the coarse-resolution data,

approximately capture the horizontal transport of the

fine-resolution model output.

3. Assessment of the method using 1/4° model
snapshot

We use instantaneous model output from a global

MOM5 forced ocean simulation at nominally 1/48 reso-
lution. To construct a low-resolution dataset we box-

car average the model fields over three grid boxes,

obtaining a zonal resolution of 3/48. Another way to

construct a coarse-resolution dataset from the origi-

nal data is to subsample over three grid boxes. We

have compared these two methods of forming the

low-resolution datasets and the results were not sig-

nificantly different.

The right-hand side of Eq. (13) is an explicit way of

calculating the HRM extra transport of water through a

face of a grid box which is centered at height z0 and has a

zonal width of Dx. Every value used in this calculation

can be obtained after simple and fast operations on the

available data from an ocean model. The heights of the

density surfaces, namely, zE, zW , zN , and zS, are calcu-

lated on the central cast of the adjacent grid boxes in

corresponding directions. Transports are still calculated

face by face, and one face in our coarse-resolution cal-

culation is 3 times as large as a face of the fine-resolution

calculation that is outlined in the appendix. The other

possible way of calculating the HRM extra transport

of water is to use slopes of neutral density surfaces, as

shown in Eq. (6) using Sx
E and Sx

W . The terms Sx
E and Sx

W

are calculated and available to use in some ocean models,

such as MOM 6.

The transport of water denser than the density surface

whose average height perturbation is zero is given by the

left-hand sides of Eqs. (13) and (14). It is evaluated from

the fine-resolutionmodel output at 1/48 zonal resolution,
using the method described in the appendix. This trans-

port is considered as the true transport and is used as the

benchmark for evaluating the ability of theHRMmethod

to approximate the fine-resolution transport while using

coarse-resolution data.

In this section we compare these fine-resolution esti-

mates of the volume transport with those produced by

the HRM approach applied to the low-resolution data

[right-hand sides of Eqs. (13) and (14)]. The comparison

is made in three areas: the Gulf Stream, the East

Australian Current and the Antarctic Circumpolar

Current. In this way, we examine two western boundary

current regions as well as the eddy-rich Southern Ocean.

We have calculated the quasi-Stokes HRM transports in

FIG. 5. Scatterplot of transports calculated by the twomethods at

different latitudes from about 268 to 418Nand different depths from

about 382 to 1320m, in the Gulf Stream. On the x axis is the high-

resolution estimate of the streamfunction [the left-hand side of

Eq. (13)] and on the y axis is the low-resolution estimate [the right-

hand side of Eq. (13)]. The color bar indicates the heights of the

calculated transport in meters.

FIG. 6. Fine-resolution current speeds of the East Australian

Current area at a depth of 414m are shaded. Velocity arrows are

overlain every three grid points.
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both the zonal (eastward) and meridional (northward)

directions.

a. Gulf Stream

Weexamined the region fromabout 268Nto about 418N
and from 200 to 1300m deep. Figure 3 shows the fine-

resolution velocity field at a depth of 414m to illustrate

some features of the chosen area. The underlying colors

indicate the fine-resolution current speed and the arrows

indicate the fine-resolution velocities, but shown every

three grid points to avoid cluttering. Within the Gulf

Stream (GS), the northward velocity first increases and

then decreases with horizontal distance from the coast.

We compared the values of the transport due to

the spatial correlations between estimations using the

fine-resolution model output (labeled LHS) and the

coarse-resolution output (labeled HRM). The com-

parisons taken at latitude 33.848N and six successive

heights are shown in the right-hand side panel in Fig. 4

for five consecutive coarse-resolution grid boxes starting

at the coast. That is, the left-hand-most data points in this

figure begin at the first coarse-resolution box adjacent to

the coast; these may occur at different longitudes for the

different depths shown. This panel demonstrates that the

HRM calculation generally gives a good approximation

of the true transport due to the spatial correlations, with

a tendency to underestimate the true transport that is

computed based on the fine-resolution data. The left panel

of Fig. 4 demonstrates the magnitude of zonal velocity

differences and slopes of the neutral tangent plane across

the corresponding grid boxes in the same area as shown in

the right-hand side panel. Positive zonal velocity differ-

ences are shown as red in the color map and negative ones

are blue. Notice that zonal shears have the same sign as

zonal velocity differences. The lines emanating from the

center of each grid box indicate the directions and mag-

nitudes of the neutral tangent plane slopes. Notice that in

Eq. (6), there are two slopes for the eastern and western

neutral tangent plane respectively, while in the left panel

of Fig. 4, the eastern and western slopes have been in-

corporated into a single slope for simplicity. The changing

sign of these streamfunctions is often caused by the

change in sign of the zonal velocity shear yx; as already

mentioned, the northward velocity first increases and then

decreases with distance from the coast. The change of

direction of the slope also could result in a change in sign

of streamfunctions. The zonal velocity shear and the

slope are two dominant factors that affect the stream-

function as discussed later in section 3e. Figure 5 shows a

scatterplot comparing these high- and low-resolution

FIG. 7. (left) The zonal velocity differences and slopes in the same selected area as in the right panel. The

magnitude of zonal velocity differences is shown as a color map in which red represents positive and blue negative.

The averaged slopes of the eastern and western neutral density plane slopes are shown by the blue lines in cor-

responding grid boxes. (right) The comparison of transport calculated by two methods at six different depths in the

East Australia Current. Red curves correspond to the two-triangle method of the appendix that uses the high-

resolution data, while the blue curves correspond to the right-hand side of Eq. (13) applied to the coarse-resolution

fields. The x axis is the number of coarse-resolution grid boxes from the coast.
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estimates of the meridional water transport in the Gulf

Stream region. Most of the points stay close to the one-

to-one line, but there is a clear indication that the low-

resolution estimate of the transport underestimates the

true transport by several tens of percentage points. The

larger values of the transport occur at relatively shallow

depths, while most values at deeper levels are smaller.

b. East Australian Current

The region chosen for illustrating the transports in the

East Australian Current (EAC) is from 268 to 418S and

the same depth range as in the Gulf Stream. A snapshot

of the current speed at 414m is shown in Fig. 6, with the

corresponding comparisons between the fine and coarse-

resolution estimates of the HRM transport of Eq. (13)

shown in Fig. 7 and Fig. 8. The first two columns of grid

boxes in Fig. 7 give an example that the changing di-

rection of the slope causes the change in sign of the

streamfunction, while the change in sign between the

second and the third columns are due to the flipping

sign of the zonal velocity shears. Although the coarse-

resolution-based transport anomaly is generally of the

same sign as the fine-resolution one, the former tends

to underestimate the latter by about a factor of 2 (re-

ferring to Fig. 8). We interpret this underestimation as

due to the narrowness of the simulated East Australian

Current, which is confined to one or two grid cells along

the straight coast, causing partial failure of the HRM

approximation.Hence, in this boundary current region, the

extra advection calculated from the coarse-resolution

model fields only partly compensates for the missing

spatial correlations.

c. Antarctic Circumpolar Current

We also show a comparison between the left and right

hand sides of Eqs. (13) and (14) for a representative

subregion in the Antarctic Circumpolar Current (ACC),

at latitudes from about 508 to 658S. Figure 9 shows a

snapshot of the fine-resolution velocity field of the chosen

area at depth of 414m, illustrating the eddying nature of

the ACC. The quasi-Stokes HRM method quite accu-

rately approximates the corresponding transport evalu-

ated using the fine-resolution data, as can be seen in

Fig. 10. These favorable results are confirmed in the

scatterplots of Figs. 11a and 11b, which show results

from all longitudes in the range of latitudes of the ACC.

d. The distribution of estimations

In previous sections, the scatterplots of fine- and

coarse-resolution calculations imply that theHRMmethod

tends to underestimate the true transport. In this sec-

tion, Fig. 12 plots the distribution of the ratio between

coarse- and fine-resolution transport, and hence dem-

onstrates that the trend that the HRM approach un-

derestimates the true transport is dominant in three

selected areas described in previous sections and also

globally. The first three panels in Fig. 12 show the

distribution of the ratio of coarse- to fine-resolution

transports in the Gulf Stream, East Australian Current,

and Antarctic Circumpolar Current areas, respectively,

and the last panel illustrates the global distribution.

FIG. 8. Scatterplot of transports calculated by the twomethods at

different latitudes from about 268 to 418S and different depths from

about 382 to 1320m, in theEastAustralianCurrent.On the x axis is

the high-resolution estimate of the streamfunction [the left-hand

side of Eq. (13)] and on the y axis is the low-resolution estimate [the

right-hand side of Eq. (13)]. The color bar indicates the heights of

the calculated transport in meters.

FIG. 9. Fine-resolution current speeds in a region of theAntarctic

Circumpolar Current at 414-m depth are shaded. Velocity arrows

are overlain every three grid points.
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Rather than presenting results at a single depth, ratios

plotted in Fig. 12 include calculations at all depths

throughout the ocean. Figure 12 excludes ratios where

the denominator is within the range of the smallest 20%

of fine-resolution transports, as these small transports

are of less interest. However, shapes of the distribution

before and after the exclusion are almost identical.

Ratios plotted have been classified into four ranges,

namely, from 21.5 to 21 (colored red), from 21 to 0

(colored yellow), from 0 to 1 (colored green), and from 1

to 1.5 (colored blue). The red range is the area we least

want the estimation to fall in, because it indicates that the

HRM not only has the opposite sign, but also over-

estimates the true transport. The number of ratios that fall

into this bin ismuch smaller than that in other bins, in each

selected area and also globally. The small occurrence of

this situation is reassuring. The second bin colored in

yellow presents the number of ratios between 21 and 0,

within which the HRM method gives a different sign to

the true transport and underestimates the magnitude of

the true transport. In all four panels, a relatively large

proportion of ratios in this range is very close to 0. Even

though the sign is wrong, the magnitude of HRM trans-

portation is relatively small, which means the impact on

the transport will be small as well. In each panel, the range

marked green contains the largest proportion of ratios.

Ratios falling in this range demonstrate underestimations

with the same sign as the true transport. The results in this

range are favorable because they approximate the true

transport without imposing the danger of exploding the

ocean model. The last blue range gives the numbers of

overestimation with the correct sign. Ratios are concen-

trated within the range from 21 to 1 (yellow and green),

predominantly on the positive side, in each selected area

and globally. It demonstrates that a large portion of the

HRM calculation has the ability to approximate the true

transport, with a favorable tendency to underestimate the

true transport.

e. The dominance of the horizontal shear term
compared with the vertical shear term

The first termon the right-hand side ofEq. (13) gives the

transport induced by the correlation between the zonal

variations of velocity and density. In all regions examined

we find this first term to be significantly larger than the

remaining terms of the equation, which involve the vertical

shear of the horizontal velocity. This is illustrated in Fig. 13

and Fig. 14, which show that the horizontal shear term

dominates both the meridional and zonal components.

Nonetheless, this dominance is less strong in the Gulf

Stream region than in the East Australian Current or

Antarctic Circumpolar Current regions.

FIG. 10. (left) The zonal velocity differences and slopes in the same selected area as in the right panel. The

magnitude of zonal velocity differences is shown as a color map in which red represents positive and blue negative.

The averaged slopes of the eastern and western neutral density plane slopes are shown by the blue lines in cor-

responding grid boxes. (right) The comparison of the transport estimates in the meridional and zonal directions,

calculated by two methods at six different depths in the Antarctic Circumpolar Current. Red curves correspond to

the high-resolution estimate of the transport, while blue curves correspond the low-resolution estimate. The x axis is

number of coarse-resolution grid boxes.
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4. The HRM contribution to meridional
overturning and horizontal heat transport

The contribution of the quasi-Stokes velocity of the

HRM to the meridional overturning circulation is esti-

mated by calculating the zonally integrated meridional

streamfunction Cy
HRM given by Eq. (9). The extra me-

ridional overturning of the HRM is dominated by a cell

in the ACC region of strength 1.5 Sv, as shown in Fig. 15.

This overturning cell has the same sign and a similar

structure to that induced by the advection of the GM

scheme as calculated by Gent et al. (1995): it advects

surface waters southward and deeper water northward,

opposing the Ekman-induced overturning. Neverthe-

less, at a strength of 1.5 Sv, the extra meridional over-

turning induced by the HRM method is approximately

10% of that from the GM presented in Gent et al. (1995),

around 12% of the GFDL-GM calculated in Ferrari et al.

(2010) and from 12% up to 25% of the proposed pa-

rameterization in Ferrari et al. (2010).

Rintoul and Wunsch (1991) compared the heat fluxes

calculated by their inverse model with that of a previous

study, which used the same data and a similar method.

The difference in the magnitude of the heat fluxes cal-

culated by different studies was surprisingly large. Hence

they did more experiments and concluded that spatial

smoothing was primarily responsible for the difference in

the results. The present scheme aims to incorporate the

spatial correlations between velocity and scalar quantities

that are missing in ocean models, due to the limited

spatial resolution and the boxcar-averaged nature of the

velocity and the scalar field. In this way, it is expected

that implementing the scheme into a coarse-resolution

ocean model will improve its representation of lateral

heat fluxes. In this section, the meridional heat fluxes

induced by the extra HRM advection are calculated and

analyzed. The depth-integrated heat fluxes are calculated

across the northern and eastern faces of every coarse-

resolution grid column. Where the face of an individual

box is land, the streamfunction there is put equal to zero

before performing the vertical integration.

As in McDougall and McIntosh (2001), the contri-

bution of the extra streamfunction to the horizontal heat

flux is

r
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dz
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’ r
0
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2C

HRM,i11
),

(15)

whereQ stands for Conservative Temperature, r0 is taken

to be 1030kgm23, and the constant value of the specific

heat at constant pressure c0p is the TEOS-10 value given by

the Gibbs Seawater (GSW) code (McDougall and Barker

2011). The last step of Eq. (15) is the finite amplitude

approximation to the integrals on the first line. The in-

dex i in this equation goes from 1 at the sea surface to N

at the sea floor. The streamfunction is first interpolated

onto the interface heights (the heights of the top and

bottom of the model boxes) before being used in this

FIG. 11. Scatterplot of transports calculated by the two methods

in the (a) meridional and (b) zonal directions at different latitudes

from about 508 to 658S and different depths from about 382 to

1320m, in the Antarctic Circumpolar Current. The x axis is the

high-resolution estimate of the streamfunction and the y axis is

the low-resolution estimate. The color bar indicates the heights of

the calculation in meters.
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equation. For example, the shallowest box has index i5 1

with Conservative TemperatureQ1 at themidheight of the

grid box and the interpolated HRM streamfunction

CHRM,1 is forced to be zero at the sea surface, andCHRM,2

is at the bottom of this grid box. TheHRM streamfunction

at the sea floor CHRM,N11 is also forced to be zero. This

ensures that the vertically integrated mass flux is zero

within each water column, so that the depth-integrated

extra heat flux given by Eq. (15) is independent of whether

the temperature is measured in kelvins or degrees Celsius.

The depth-integrated heat flux, r0c
0
p�

N

i51Qi(CHRM,i 2
CHRM,i11), is shown inFig. 16.As expected, the additional

heat fluxes introduced by the scheme are concentrated

along the coast and at eddying locations, where flows are

both strong and of relatively small scale.When the values

of the meridional component of Eq. (15) are summed

across all longitudes we obtain the contribution of the

quasi-Stokes velocity field to the oceanic meridional heat

transport. This contribution is typically 0.015 PW, and

almost 0.02 PW at the latitudes of the ACC in the

Southern Ocean (Fig. 17). This 0.02 PW extra HRM

heat transport is approximately 10% the contribution

from GM at 608S (Gent et al. 1995). Thus, introducing

the HRM extra advection into an ocean model run at

3/48 resolution could impact the simulatedmeridional heat

fluxes. Figure 17 indicates that, when running an ocean

model at 3/48 resolution, the HRM correlations that are

missing due to the coarse nature of the model grid means

that the model misses typically 0.015 PW, and misses al-

most 0.02 PW at the latitudes of the ACC in the Southern

Ocean, of meridional heat flux which can readily be added

to the model code using our quasi-Stokes HRM stream-

function approach. This is an offline calculation. Caution

should be taken when interpreting the implications of the

result, since snapshotsmay include noise. The importance

of the extra HRM heat transport remains to be investi-

gated when it is incorporated into forward models.

5. Tapering of the quasi-Stokes HRM
streamfunction

Our HRM treatment has not applied tapering near

the sea surface. At the surface, the intersection of the

neutral tangent plane on an adjacent cast may be located

FIG. 12. The distribution of estimations made by the HRM. The first three panels show the distribution of the ratio of HRM to LHS

transports in the same selected areas described in previous areas and the last panel demonstrates the global distribution. Rather than

presenting results at a single depth, the ratios plotted include calculations at all depths throughout the ocean. The ratio has been classified into

four ranges: from 21.5 to 21 (colored red), from 21 to 0 (colored yellow), from 0 to 1 (colored green), and from 1 to 1.5 (colored blue).

NOVEMBER 2019 L I E T AL . 2753



above the sea level. However, the effective height

difference we used is actually half of that calculated

on the adjacent cast (see the red dot in Fig. 18a),

because each calculation of the HRM transport is the

transport through half of the face of a grid box (the

eastern, western, northern, or southern half), shown

as one of the shaded areas in Fig. 18a. Even if the

effective height difference, based on extrapolating a

given isopycnal surface, would tend to outcrop as

shown in Fig. 18b, our estimate of the HRM stream-

function which clamps the height at the sea surface

is an underestimate of the true volume flux. These

considerations justify our decision to not taper the

HRM streamfunction toward zero except right at the

sea surface. This is an important difference between

the quasi-Stokes TRM and HRM streamfunctions,

since the former uses a gradual taper toward zero at

the upper and lower boundaries, which was physically

justified by McDougall (1998) and McDougall and

McIntosh (2001).

6. Conclusions

We have proposed a method of approximating the

transport of scalar quantities due to spatial correla-

tions that are unresolved by ocean models. There are

three key components of the proposed method. First,

the proposed method is based on the widely accepted

argument that mixing is mostly along density surfaces.

Second, the method applies a linear approximation

FIG. 13. The first term (the horizontal shear term) of the right-hand sides of Eqs. (6) (meridional) and (7) (zonal)

is plotted on the x axis, with the full right-hand sides of these equations plotted on the y axis of these figures.

(a),(b) Comparisons in the selected Gulf Stream region in the meridional and zonal directions, respectively.

(c),(d) As in (a) and (b), but for the East Australian Current region. The color bar indicates the corresponding

heights at which the terms are calculated.
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to subgrid velocity and density variations. Third, no

parameterization is needed for thismethod.Ourmethod

introduces an extra nondivergent advection, which

is calculated from resolved model fields via linear

approximations of the spatial variations of the hori-

zontal velocity and the slope of the density surface.

This extra advection, or quasi-Stokes HRM velocity,

can be added to the Eulerian-mean velocity of the

model.

As we have noted, the proposed quasi-Stokes HRM

streamfunction does not need a parameterization. In-

stead, it is estimated directly from the quantities known

to the model which appear on the right-hand sides of

Eqs. (13) and (14). The HRM captures the unresolved

correlations between velocity and density, but does

not resolve or parameterize the subgrid-scale physical

processes like GM. Therefore, the quasi-Stokes HRM

streamfunction should be considered as a complemen-

tary and independent component in the total stream-

function, as shown in Eq. (11).

The proposed method has been tested diagnosti-

cally using instantaneous output from a 1/48 model

simulation, boxcar averaged to 3/48 resolution. We

compared the transport of water of a certain density

class within the 1/48 dataset to the corresponding HRM

extra transport calculated at 3/48 resolution. We found

that the method gives a reasonable approximation

of the fine-resolution transports in the Gulf Stream,

East Australian Current and Antarctic Circumpolar

Currents regions, but tends to underestimate the true

transport by several tens of percentage points in the

first two of these regions. These results suggest that

the scheme could assist in mitigating the limitations

of coarse-resolution models in the representation of

tracer fluxes such as the meridional heat transport.

In the 3/48 resolution dataset, the contribution of the

HRM streamfunction to the meridional overturning

circulation peaks near 1.5 Sv in the Southern Ocean,

representing about 10% of the corresponding circula-

tion due to unresolved temporal correlations as pa-

rameterized using the Gent et al. (1995) TRM method.

The contribution to the poleward heat flux in the

Southern Hemisphere of the same dataset reaches

0.02 PW. In our discussion of the outcropping of iso-

pycnals at the sea surface, we found no physical reason

to taper the quasi-Stokes HRM streamfunction. Indeed,

we argued that the outcropping of isopycnals leads to an

underestimate of the quasi-Stokes HRM streamfunction.

It may come as a surprise that the zonal integral of

the northward quasi-Stokes HRM streamfunction is

quite smooth and predominantly of one sign in the

ACC region, and that it exhibits a similar structure

to the meridional overturning circulation associated

with the Gent and McWilliams (1990) parameteriza-

tion. This similarity may even seem paradoxical when

considering that the quasi-Stokes TRM streamfunction,

(Cx
TRM, C

y
TRM)5 (2kSx, 2kSy), points in the direction

of minus the slope of density surfaces, whereas the

quasi-Stokes HRM streamfunction is approximately

perpendicular to this direction. However, both the TRM

FIG. 14. The first term (the horizontal shear term) of the right-

hand sides of equations Eqs. (6) (meridional) and (7) (zonal)

is plotted on the x axis, with the full right-hand sides of these

equations plotted on the y axis of these figures. The compari-

son in the (a) meridional direction and (b) zonal direction. The

color bar indicates the corresponding heights at which the terms

are calculated.
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and the HRM quasi-Stokes advection aim to com-

pensate for missing correlations, which, in the context

of a modeled O(18)-resolution ACC, arise primarily

from the unresolved mesoscale eddies. Both the TRM

and the HRM extra streamfunctions thus contribute to

mimicking the effect of SouthernOceanmesoscale eddies,

which is to oppose the Ekman-forced overturning.

We proposed a method addressing the limited spatial

resolution, yet now we ask the question to what extent

the HRM method is affected by the resolution itself.

According to Eqs. (9) and (10), the HRM velocity

streamfunctions are proportional to the second powers

of resolution scale (Dx)2, (Dy)2. If changing the reso-

lution does not change the velocity shears and neutral

density slopes, then the quasi-Stokes HRM transport

would decrease proportionally to the fineness of the

resolution of the model. However, it is likely that as

the horizontal resolution is increased, both the ve-

locity shears and the slope of isopycnals will increase,

so it is not yet known how the quasi-Stokes HRM

streamfunctions might change as the horizontal res-

olution is increased. Also, since the HRM method is

independent of process-related parameters such as

diffusivity, there is no direct indication of how HRM

FIG. 15. The meridional overturning streamfunction of the HRM quasi-Stokes velocity in z

coordinates. The extra meridional overturning of the HRM is dominated by a cell in the ACC

region of strength 1.5 Sv. This overturning cell has the same sign and a similar structure to that

induced by the advection of the TRM and calculated with the Gent et al. (1995) scheme: it

advects surface waters southward and deeper water northward, opposing the Ekman-induced

overturning.

FIG. 16. The global values of the depth-integrated meridional heat flux r0c
0
p�

N

i51Qi(CHRM,i 2CHRM,i11) in

(PWm21). The extra HRM fluxes appear mostly along the cost and in eddy-rich areas.
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would behave as subgrid-scale processes are better

resolved.

The HRM streamfunction can be implemented in

ocean models to incorporate the contribution from

missing spatial correlations. It does not need param-

eterization and can be calculated using data that are

already available in the model. This enhances our con-

fidence in the feasibility of implementing the HRM

method into ocean models to capture the unresolved

spatial correlations.
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APPENDIX

HRM: Evaluation of the Left-Hand Side of Eq. (6)

To calculate the left-hand side of Eq. (6), we use a

two-triangle calculation. The vertical face at constant

latitude through which the transport passes is shown in

Fig. A1, and the words ‘‘two triangle’’ refer to triangles

ABC and ADE for the calculation of transport through

area ADE. Figure A1 covers the width of three boxes of

the coarse-resolution model, that is, it contains three T,

S points and eight velocity points. The total transport

through the whole area is the sum of the signed transport

through ADE and AD0E0 compared with that of the

Eulerian-mean transport. Note that because the slopes

of AD andAD0 are being calculated separately, they are

not necessarily the same. The first step of the two-

triangle calculation is to calculate the velocities at points

E, C, E0, and C0 by vertically averaging the given velocity

FIG. 17. The quasi-Stokes HRM zonally and depth-integrated

meridional heat transport.

FIG. 18. An example of outcropping locally referenced neutral

tangent plane in which the effective height (the red dot) is below

the sea surface.

FIG. A1. Vertical cross section through three boxes of a coarse-

resolution ocean model, with the central box showing three boxes

of a finer-resolution ocean model that has 3 times the horizontal

resolution compared with the coarse-resolution model. For the

fine-resolution boxes, the slopes of the density surfaces are given by

the lines from the central point to the dots at points on the finescale

grid boxes, while for the coarse-resolution data the slopes of the

density surfaces are determined by the lines from the central

point to the other two dots at the center (horizontally) of the

coarse-resolution boxes.
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data that is at the vertices of the cubes of the T, S

boxes of the fine-resolution data. Then we calculate

the spatially averaged Eulerian velocity at z0 using

y0 5 (1/6)yE0 1 (1/3)yC0 1 (1/3)yC 1 (1/6)yE. This spatially

averaged Eulerian mean velocity is then subtracted

from all velocities to obtain the perturbation veloci-

ties. Since the same method is conducted similarly

on the western half of Fig. A1 as on the eastern half,

we concentrate here on describing what we do on the

eastern half.

The heights of points D and B are given by zD 2 zE 5
(3/2)(zH 2 zE) and zB 2 zE 5 (1/2)(zH 2 zE), where zH
indicates the height where the neutral tangent plane

connects the central point A to point H on the verticalT,

S cast at the longitude midway between the longitudes

of points C and E. Now knowing the locations of points

B and D, we find the vertically adjacent locations on the

fine-resolution model grid where the velocity compo-

nents are stored, and the velocities at points B andD are

then found by vertical interpolation.

First consider the (perturbation) transport into the page

passing through the vertical area ACB. The perturbation

velocities at these points are y0A, y
0
C, and y

0
B. At any position

(x, z) within ABC, the velocity through the vertical

area can be denoted as y0 5 y0A 1 (y0C 2 y0A)(x/X)1
(y0B 2 y0C)(z/Z), where X and Z are the signed lengths

of AC and BC. The required horizontal volume flux of

marked fluid is equal to the ‘‘volume’’ of a three-

dimensional space where the spatial directions to the

east and upward (x, z) are two of the dimensions, and

the third dimension is the perturbation meridional

velocity y0. The volume is

‘‘volume’’ of ABC

5

ðX
0

ð x
X

Z

0

y0 dz dx

5

ðX
0

ð x
X

Z

0

y0A 1 (y0C 2 y0A)
x

X
1 (y0B 2 y0C)

z

Z

� �
dz dx

5

ðX
0

"
y0A

Z

X
x1

(y0C 2 y0A)
X

Z

X
x2 1

1

2

(y0B 2 y0C)
Z

�
Z

X

�2

x2

#
dx

5
1

2
XZ

�
1

3
(y0A 1 y0B 1 y0C)

�
. (A1)

We note from this expression that the transport into the

page is equal to the signed area of triangle ABC multi-

plied by the average of the perturbation velocity at the

three vertices of the triangle. The derivation of this

expression follows the same linear approximation and

spatial integration as performed in section 2, and the

correspondence to the main HRM result Eq. (13), can

be seen as follows. HRM took the perturbation velocity

at the center, y0A, to be zero, and in this case, we canwrite
the last line of Eq. (A1) as (1/6)XZ[2y0C 1 (y0B 2 y0C)].
With X being half the box width, that is, X5 (1/2)Dx,
with Z being Z5 (1/2)DxSx, with 2y0C being yxDx, and
with (y0B 2 y0C) being (1/2)S

xyzDx, the right-hand side of

Eq. (A1) is one-half of the right-hand side of Eq. (6);

the factor of one-half being due to the fact that triangle

ABC represents just the right-hand half of the transport

of marked fluid in this model box.

We note that in Eq. (A1), y0C and y0B are not individ-

ually important; rather it is their mean value that enters

this expression. We will use this property to simplify the

evaluation of the three-dimensional space corresponding

to area AED, where we will take the average of the

perturbation velocities at points D and E, as well as

those at points B and C. In Fig. A2 we sketch the three-

dimensional volume whose volume we seek to evalu-

ate. We have drawn Fig. A2 with both y0D and y0E equal

to the same value, 0:5(y0D 1 y0E). The same is done for

y0A and y0B, both having the value 0:5(y0A 1 y0B). These
average perturbation velocities are now used to ex-

trapolate these velocities to the spatial location of point

A, obtaining, namely, y
0
A0. Note that this extrapolated

velocity is different to the actual perturbation velocity at

point A, namely, y0A (obtained by interpolation of the

perturbation velocities at the height of point A).

From Fig. A2 the transport through the vertical tri-

angle ACEDBA of Fig. A1 is equal to the difference

between two volumes; being the volume from the y0 5 0

plane up to the inclined triangle A0DE, minus the vol-

ume between the two inclined triangles A0BC and ABC.

Both of these volumes can be evaluated using the above

‘‘triangular volume’’ equation with suitable reassignments

of the corners of the triangle. Note that the first volume
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usually dominates: for example, the relevant value of

XZ for the large triangle is 9 times the corresponding

value of XZ for the small triangle.

The evaluation of HRM transport is at the average

height of the neutral density surface z0. However, in

practice, the average depth of the above triangle cal-

culations is not necessarily the same as za, since the

slopes of the density surfaces are different to the east

and to the west. The two-triangle calculation includes

extra transport due to its density surface being higher

in the water column by the height difference given by

Eq. (5), namely, dz5 (1/8)(zE 2 za)1 (1/8)(zW 2 za)5
(1/8)(Sx

E 2 Sx
W)Dx. The extra transport is

�
1

6
y0
D0 1

1

3
y0
B0 1

1

3
y0B 1

1

6
y0D 2

1

2
y
z
dz

�
Dxdz , (A2)

and this transport is subtracted from that calculated

using the above two-triangle calculation.
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