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Hervé Chneiweiss1*, Christophe Antoniewski2, Ghislaine Morvan-Dubois1* and Marie-Pierre Junier1*

Abstract

Glioblastoma cell ability to adapt their functioning to microenvironment changes is a source of the extensive intra-
tumor heterogeneity characteristic of this devastating malignant brain tumor. A systemic view of the metabolic
pathways underlying glioblastoma cell functioning states is lacking. We analyzed public single cell RNA-sequencing
data from glioblastoma surgical resections, which offer the closest available view of tumor cell heterogeneity as
encountered at the time of patients’ diagnosis. Unsupervised analyses revealed that information dispersed
throughout the cell transcript repertoires encoded the identity of each tumor and masked information related to
cell functioning states. Data reduction based on an experimentally-defined signature of transcription factors
overcame this hurdle. It allowed cell grouping according to their tumorigenic potential, regardless of their tumor of
origin. The approach relevance was validated using independent datasets of glioblastoma cell and tissue
transcriptomes, patient-derived cell lines and orthotopic xenografts. Overexpression of genes coding for amino acid
and lipid metabolism enzymes involved in anti-oxidative, energetic and cell membrane processes characterized
cells with high tumorigenic potential. Modeling of their expression network highlighted the very long chain
polyunsaturated fatty acid synthesis pathway at the core of the network. Expression of its most downstream
enzymatic component, ELOVL2, was associated with worsened patient survival, and required for cell tumorigenic
properties in vivo. Our results demonstrate the power of signature-driven analyses of single cell transcriptomes to
obtain an integrated view of metabolic pathways at play within the heterogeneous cell landscape of patient
tumors.
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Introduction
Glioblastoma (GBM), the most common form of malig-
nant brain tumors in adults, are characterized by exten-
sive cell heterogeneity. This cell heterogeneity results
from irreversible processes such as clonal selection of
distinct mutations and differentiation of cancer stem
cells, but also from the cells’ ability to adapt their func-
tioning to variations in their environment and to therap-
ies [2, 13, 34]. As a result, cancer cells coexist within
GBM micro-territories in various functioning states, with

respect to stem-like, proliferation, migration, pro-
angiogenic, drug resistance, or tumor-initiating (i.e.
tumorigenic) capacities [9, 16, 49, 70]. Such heterogeneity
in cell functioning defies therapeutic targeting.
The changes in cell functioning state are accompanied

by variations in cell metabolic activities. These variations
are essential for GBM cells to exploit different sources
of nutrients such as glucose, glutamine or acetate, and
thereby cope with changes in oxygen and nutrient avail-
abilities that occur throughout tumor development [47,
48, 52]. The significance of these metabolic variations
for the cell behavior may extend beyond a passive re-
sponse to environmental signals, as recent evidence sup-
port a role for metabolism as a driver of changes in cell
functional status. Flavahan and colleagues demonstrated
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that upregulation of the high-affinity glucose transporter
GLUT3 promotes acquisition by GBM cells of tumori-
genic properties [24]. Conversely, we found that de-
creased activity of the mitochondrial enzyme SSADH
triggers GBM cell conversion into a less aggressive func-
tioning state, by coupling enhanced levels of the GABA
by-product GHB to altered epigenetic regulations [19].
These metabolic variations have been found to take
place within the patient tumors, and to be coherently
linked with relevant phenotypic markers [19], or pa-
tients’ clinical course [12, 24]. Metabolism is also emer-
ging as a player in GBM therapeutic resistance, as
exemplified by escape from the anti-angiogenic Bevaci-
zumab treatment. This escape has been linked to an in-
crease in glycolysis and its uncoupling from oxidative
phosphorylation in favor of lactate production in in vivo
GBM models as well as in patients [20]. Metabolic en-
zymes are at the core of the molecular pathways control-
ling cell functioning states. Correcting their deregulation
is therefore expected to be efficient to prevent acquisi-
tion and maintenance of aggressive cell functioning
states shared by cell subpopulations in all GBMs, regard-
less of their genomic specificities. Exploitation of meta-
bolic targeting for therapies demands therefore to identify
the metabolic pathways at play within the patient tumors
in link with the heterogeneity of cell functioning states ob-
served in GBMs. Here, we used publicly available GBM
single cell RNA-sequencing (scRNA-seq) data from four
patients with EGFR amplification [14] for identifying
metabolic pathways prevailing in GBM cell subpopula-
tions in their most aggressive functioning state (Fig. 1a).
Transcriptomes obtained by scRNA-seq are endowed

with the potential to deliver information on a cell func-
tioning state and its underlying molecular networks.
Analyses of scRNA-seq from different tumors using
current methods result in the predominant grouping of
cancer cells according to the tumor from which the cells
are isolated (hereafter designated as tumor of origin). In
contrast, normal cells present in the tumor are grouped
according to their lineage subtype (e.g. neural, immune,
vascular), regardless of their tumor of origin [14, 57, 64].
Characterizing the source of this specific influence of
the tumor of origin on cancer cell grouping led to the
development of a data reduction approach based on a
molecular signature for identifying cell functioning
states. Combining analyses of GBM unicellular and tissue
transcriptomes with experimental assays, we highlighted a
combination of metabolic pathways prevailing in cells with
high tumorigenic potential. The analytical method devel-
oped is provided.

Material and methods
All figures were prepared using Adobe Illustrator
(Adobe Systems). All bioinformatics analyses were

performed using the R software version 3.5.0 (https://
cran.r-project.org/). Detailed methods are provided in
Additional file 1. All resources and materials, R pack-
ages, corresponding websites and references are listed in
Additional file 2.

Computational analyses
Single cell transcriptomes of 1033 GBM and 2417 nor-
mal cells from four patients were used [14]. This dataset
distinguishes cancer from normal cells on the basis of
chromosome copy number variations (CNV) profiling,
and further distinguishes normal cells according to their
neural or immune lineage subtype [14]. We filtered out
low complexity transcriptomes on the basis of the graph-
ical distribution of the number of transcripts and genes
per cell (Additional file 3: Figure S1A and S1B). Cells
with fewer than 90,000 transcript reads and fewer than
1700 detected genes were filtered out (Additional file 3:
Figure S1A and S1B). We used log2-transformed Counts
Per Million (log2(CPM + 1)) to allow comparison of read
abundance across libraries of different sizes, unless
otherwise specified. In an analysis subset, tumor-per-
tumor data standardization was achieved by centering
and reducing the data on a gene-by-gene basis
(Additional file 4, [8, 45]). Normalization on the basis of
the expression of a set of 17 housekeeping genes (HKG)
is detailed in Additional file 1. Tissue transcriptomes
corresponded to the TCGA RNA-seq dataset of 155 un-
treated GBM patients [5] (normalized counts,
log2(TPM+ 0.5), Additional file 2). For comparison pur-
poses, we also used single cell transcriptomes of the
4916 GBM cells derived from 20 GBMs operated from
adult patients, which became available during the
reviewing process of this article [51]. Gene expression
data currently available for this dataset are in
log2((TPM/10) + 1). TPM (Transcripts Per Million)
normalization takes into account an eventual biased esti-
mation of long transcript numbers, by dividing the num-
ber of mapped reads by the transcript’s length. Since we
could not calculate expression values in CPM + 1 from
these data, we just transformed the log2((TPM/10) + 1)
into log2(TPM + 1) to optimize the comparison between
the Darmanis [14] and Neftel datasets [51]. Grouping
analyses were performed using the Hierarchical Cluster-
ing on Principal Components (HCPC) approach
(Additional file 4). Results were visualized using Princi-
pal Component Analysis (PCA) or t-distributed Stochas-
tic Neighbor Embedding (tSNE). HCPC was also used to
identify genes whose mean expression in one cluster dif-
fers from their mean across all cells (i.e. variables driving
cell grouping). Normalized Mutual Information (NMI)
scores were calculated to determine the contribution of
cells issued from distinct tumors to each cluster. A NMI
value of 1 implies that clusters gather objects (here,
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Fig. 1 (See legend on next page.)
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cells) corresponding to a single label (here, the tumor
label) whereas a value of 0 denotes that all labels are
split across all clusters (Additional file 2, [46]). R scripts
used for unsupervised grouping and associated analyses
are provided in Additional file 4. Tumorigenic and other
scores were obtained by computing the geometric mean
of the expression values per cell of each element of the
molecular signature corresponding to a given score.
When null, expression values were imputed a value of 1.
Each element of the signature was detected in at least
25% of GBM cells. Gene differentially expressed between
cell or tissue groups with differing scores were identified
following Mann-Whitney (Wilcoxon Rank Sum) test with
p-values adjusted for multiple testing (Benjamini-Hochberg
(BH), p-value < 0.01) [62]. Gene ontology analysis was done
using the human genome as background (Additional file
2). Functional gene network reconstruction was achieved
using the information-theoretic method, MIIC (multivari-
ate information-based inductive causation, Additional file 1
[61, 69]). Four independent datasets comprising 153 to 485
primary GBM transcriptomes were used for patient sur-
vival analysis (Additional file 2). Construction of a principal
curve was achieved with a PCA based on the expression of
each component of the lipid subgroup (16 genes coding for
enzymes of the lipid metabolism overexpressed in
TumHIGH cells and tissues and detected in at least 25% of
GBM cells, see results). Each cell was projected onto the
curve using the Pathifier algorithm (Additional file 2, [18]).
Lipid subgroup and vesicle scores (Additional file 2) were
calculated as described for the tumorigenic score.

Biological experiments
Patient-derived cells (PDC) 6240**, R633 and 5706**
were obtained from neurosurgical biopsy samples of dis-
tinct primary GBMs, characterized and cultured as de-
scribed [19, 60]. Lentiviral transduction (Additional file 2)
was achieved as described [4, 19]. Viable cell counting,
gene expression analysis, intracranial xenografts, and bio-
luminescence imaging (Additional file 2) were performed

as described [4, 19]. All experiments were performed
using independent biological samples, each independently
repeated at least three times with the exception of the
xenograft experiments. Prism 7.0 software (GraphPad)
was used for statistical analyses.

Statistical analyses
Statistical analyses were performed with significance
level set at p < 0.05, except for differential gene expres-
sion analysis for which a p < 0.01 was chosen to reduce
the chances of false positives. The type of statistical test
and p-values are provided in the figure legends.

Results
Unsupervised clustering analysis highlights first GBM
cells’ tumor of origin
We used the publicly available single cell transcriptome
dataset from Darmanis and colleagues [14] after remov-
ing low-complexity cell transcriptomes. Genes detected
in at least 3 transcriptomes were retained for analysis
(18,577 genes for GBM cells and 19,699 genes for nor-
mal cells). Previous scRNA-seq analyses of GBMs and
other cerebral tumors focused on the most dispersed
[14] or most expressed genes [23, 53, 65, 68] or on
meta-modules of genes revealed by hierarchical cluster-
ing of cells tumor per tumor and recurring in several tu-
mors [51]. These analyses resulted in the identification
of cell lineages and cell genomic anomalies rather than
cell functioning states. We chose therefore to conserve
all potential information by analyzing the full set of se-
lected genes.
Gene expressions were computed as log2(CPM + 1).

Hierarchical Clustering on Principal Components (HCPC)
of gene expressions in the mixed pool of GBM and
normal cells readily separated cancer from normal
cells (Additional file 3: Figure S1C). This result ob-
tained by analyzing all detected genes is similar to
the one obtained previously by analyzing the top 500
overdispersed genes [14]. Separate HCPC of normal

(See figure on previous page.)
Fig. 1 Spontaneous grouping of cancer cells by tumor of origin following unsupervised analysis. a Analytical and experimental strategy outline. b
Normal cells group independently from tumor of origin. PCA (top) and chord (bottom) plots. Each dot represents a cell in PCA. b1: cells colored
by normal cell type identity (purple: astrocytes; blue: oligodendrocytes; light blue: oligodendrocyte precursor cells; red: neurons; gold: myeloid
cells; brown: vascular cells). Normal cell types determined as described [14]. b2: cells colored by tumor of origin (pink, green, orange, black for
GBM1, 2, 4 and 6, respectively). c Cancer cells group by their tumor of origin. PCA (top) and chord (bottom) plots. Cells colored by tumor of
origin (pink, green, orange, black for GBM1, 2, 4 and 6, respectively). d Impact of data treatment on the dependence of cell clustering to tumors.
NMI: Normalized Mutual Information score. C: cells. MCH: metacell defined by hierarchical clustering. MCS: metacell defined by SNN (shared
nearest neighbor) clustering. HKG: housekeeping genes. CNV: copy number variations. DE: differentially expressed. ODG: overdispersed genes.
Black and white dotted lines: reference NMI scores of grouping analyses performed with all genes detected in GBM and normal cells, respectively.
Note that NMI scores of GBM cell grouping remain constant, regardless of data normalization or filtering modes. Only data standardization
reduces NMI score to a value similar to that obtained when analyzing normal cells. e Unsupervised analysis of data standardized by tumor results
in clusters mixing cells from different tumors. PCA plots highlighting the tumor from which the cells derive (top: pink, green, orange, black for
GBM1, 2, 4 and 6, respectively) or the 7 clusters identified (bottom) . f Gene ontology analysis of the genes describing each of the 7 clusters
highlights a variety of biological processes, not linkable to specific functioning states. DAVID toolkit. Corresponding cluster number is indicated
(colored as cluster colors in the bottom panel of e)
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cells resulted in six cell groups of immune or neural
subtypes (astrocytes, oligodendrocytes, oligodendrocyte
precursor cells, neurons, myeloid cells, vascular cells,
Fig. 1b1), each group mixing cells from different tu-
mors (Fig. 1b2). In striking contrast, GBM cell clus-
ters resulting from HCPC analysis were dominated by
cells from a single patient tumor (Fig. 1c). Contribu-
tion of the different tumors to clusters was scored by
computing Normalized Mutual Information (NMI) be-
tween clusters and tumor labels, NMI scores being
expected null if each tumor contributes equally to
each cluster (Additional file 1). Fully supporting our
observation, the NMI score of normal cell clustering
was only of 0.12 whereas the one of tumor cells was
of 0.55 (two first bars in Fig. 1d). This predominant
grouping of cancer cells by their tumor of origin has
been reported for a number of cerebral and non-
cerebral tumors [11, 14, 23, 35, 39, 57, 64]. For iden-
tifying traits common to all tumors, data can be ana-
lyzed tumor per tumor [65, 67, 73], or merged and
analyzed as a whole after standardization (i.e. sub-
tracting from each expression value the gene expres-
sion mean and dividing by its standard deviation
across cells within a given tumor) [50]. The numbers
of cancer cells precluding confident per-tumor ana-
lysis, we turned to standardization. HCPC analysis of
standardized data resulted in clusters mixing cells
from different GBMs (Fig. 1e), as shown by a NMI
score similar to the one calculated for normal cell
grouping (third bar in Fig. 1d). However, gene ontol-
ogy analysis of the genes identified in the HCPC as
driving the cell grouping (see methods) did not pro-
vide clear links between cell clusters and potential
cell functioning states (Fig. 1f, Additional file 5).
These results prompted us to further explore non-

standardized data for minimizing the factors that might
account for predominant grouping of cancer cells ac-
cording to their tumor of origin.

Tumor identity encoded by information dispersed
through GBM cell transcript repertoires
Two main factors can account for tumor-driven cell
grouping: the technical variations in tumor sample
scRNA-seq, collectively referred to as batch effect, and
the biological tumor-specific variations.
In scRNA-seq experiments, batch variations in RNA

quality and sequencing efficiency, regardless of their ori-
gin, translate into variations in sample-dependent gene
detection failures (referred to as dropouts) and in sample
sequencing depth. Grouping of normal cells independ-
ently from their tumor of origin indicates that such
batch variations are minor. We tested the influence of
dropouts [44] and of an additional normalization of the
sequencing depth using a set of GBM-specific

housekeeping genes (HKG) on the cell grouping
(Additional file 6). We also tested normalization based on
the scran method, which calculates scaling factors for
small homogeneous groups of cell libraries [66]. Neither
dropout imputation, nor scran normalization, nor
HKG normalization corrected tumor-driven cell
grouping (Fig. 1d, Additional file 3: Figure S2A-E).
These results confirmed that batch effects are not
major contributors of this grouping. Inter-tumor bio-
logical differences encompass genomic alterations
known to vary greatly from one GBM to another, the
tumor developmental stage, or the brain area and/or
cells from which it developed [58]. We reasoned that
differing biological characteristics, whatever their
source, would translate into gene repertoires differing
between tumors. To test this possibility, we consid-
ered binarization of the data by applying a value of
one to all expressed genes regardless of their relative
expression levels, and zero for non-detected ones.
Maintenance of cell grouping by tumor of origin fol-
lowing binarization of gene expression (Fig. 1d and
Additional file 3: Figure S2F) showed that cell gene
repertoires are more similar within a given tumor
than between two different tumors. We therefore
sought to better understand which genes contribute
most to this variability between cell transcriptomic
landscapes. We first tested the impact of chromosome
CNV on the cell grouping by filtering out genes
mapped to chromosomes with CNV as previously
identified [14]. Taking into account CNV did not
modify tumor-driven cell grouping (Fig. 1d and
Additional file 3: Figure S2G). Likewise, excluding
genes detected in a single tumor or including only
genes detected in all tumors did not change the
outcome of HCPC analyses (Fig. 1d and Additional
file 3: Fig. S2H and I). We then tested the influence
of inter-tumor variability in gene expression. Exclu-
sion of the 100 genes identified as differentially
expressed between tumors by Darmanis and col-
leagues [14] did not modify the outcome of the ana-
lysis (Fig. 1d and Additional file 3: Figure S2J). We
then considered the most expressed genes, calculating
the aggregate expression of each gene across cells,
and retaining genes with the highest aggregate expres-
sion as described [65]. HCPC using the resulting 9505
most expressed genes still grouped cells by their tumor of
origin (Fig. 1d and Additional file 3: Figure S2K). Likewise,
performing HCPC using the top 500 or 1000 genes with
expression variability between cells higher than expected
(i.e. overdispersed [21]), or after excluding them, resulted
in a similar tumor-driven cell grouping (Fig. 1d and
Additional file 3: Figure S2L-O). Altogether, these results
indicate that tumor-driven cell grouping is not based on
limited and tumor-specific sets of genes. This led us to
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envisage that primary grouping of cancer cells by tumor of
origin could result from information dispersed throughout
the whole cell transcriptome. We challenged this hypoth-
esis by performing iterative HCPC analyses on decreasing
numbers of genes randomly selected among the 18,577
detected genes. Ten analyses of distinct sets of randomly
selected genes were performed for each size of gene sets
(n = 2000, 1000, 500, 250, 100, and 50). NMI scores of the
clusterings remained unchanged for gene set sizes > 500
(Fig. 2a and b). Their gradual decrease below this thresh-
old indicated a progressive reduction of the influence of
the tumor of origin on cell grouping. This influence was
suppressed only when reducing the number of analyzed
genes to 50, as shown by NMI scores equivalent to that
calculated from the grouping analysis of the 19,699 genes
detected in normal cells (Fig. 2a and c). Altogether, these
results show that tumor-driven cell grouping is irreducible
to differential expression of circumscribed gene groups.
To the contrary, it is encoded by information dispersed
throughout the cell transcript repertoires, which is re-
trieved as soon as a combination of expressions of more
than 500 genes is included in the analyses. As a conse-
quence, unsupervised analysis turns out to be inadequate
for identifying cell functioning states common to all
tumors. We thus turned towards an approach of data
reduction based on a signature of a functionally co-
herent set of genes.

GBM cell grouping according to their tumorigenic
potential upon signature-driven reduction of scRNA-seq
data
We developed a grouping method based on a molecular
signature we previously identified [4]. The signature is
composed of five transcription factors, ARNT2, POU3F2,
OLIG2, SOX9 and SALL2, with co-varied expression in
GBM tissues and cells [4]. ARNT2 binding sites were
identified by chromatin-immunoprecipitation assays in
regulatory elements of the POU3F2, OLIG2 and SOX9
genes that were found to be downregulated upon ARNT2
knockdown [4]. Each of the five signature elements was
demonstrated to be required for GBM cell tumorigenic
properties [4, 30, 43, 63]. Altogether, these findings sup-
port the participation of these transcription factors to a
common regulatory network. We sought to use this signa-
ture to highlight subpopulations of cells in a tumorigenic
state, expected to be present in all tumors.
To obtain an index of the cells’ tumorigenicity, we cal-

culated a tumorigenic score corresponding to the geo-
metric mean of the expression of each signature
element. The score distribution curve exhibited a main
inflection point corresponding to the distribution’s mean
(Fig. 3a), which delineated two groups of 654 and 379
cells with low and high tumorigenic scores, respectively,
hereafter designed as TumLOW and TumHIGH (Fig. 3a).

Each of the four tumors contributed to each group
(Fig. 3b, NMI score = 0.057). TumHIGH GBM cells ex-
hibited higher numbers of transcripts and genes than

Fig. 2 Down-sampling gene numbers relieves tumor-driven cell
grouping. a Decreased Normalized Mutual Information (NMI) score
when reducing gene numbers used for grouping analyses. Ten
independent analyses performed with randomly selected genes for
each gene number analyzed. Mean ± SD. One-sample t-test. * p <
0.01 compared to the NMI score of the grouping analysis performed
with all genes detected in GBM cells. $ p < 0.0001 compared to the
NMI score of the grouping analysis performed with all 19,699 genes
detected in the dataset of normal cells. Note that NMI scores
consistently decrease below 500 genes analyzed, reaching values
similar to the NMI score of the grouping analysis of normal cells
only in grouping analyses performed with 50 genes. b Example of a
cell grouping analysis using 2000 randomly sampled genes. The
clusters are predominantly composed of cells from a single tumor.
Each dot represents a cell colored according to its tumor of origin.
PCA and tSNE visualizations in upper and lower panels, respectively.
c Example of a cell grouping analysis using 50 randomly sampled
genes. Cells from a given tumor are distributed in different clusters.
Each dot represents a cell colored according to its tumor of origin.
PCA and tSNE visualizations in upper and lower panels, respectively
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TumLOW GBM cells (Additional file 3: Figure S3A and B).
We identified 6630 genes differentially expressed between
both groups (Mann Whitney, BH-adjusted p-value < 0.01,
Additional file 7), 98% of these genes being overexpressed
in TumHIGH GBM cells. Highly similar results were ob-
tained using data normalized with the scran method
(Additional file 7). Of note, several items of the list of
genes with enhanced expression in TumHIGH cells
encoded proteins previously implicated in GBM cell ag-
gressiveness (e.g. E2F1 [71], EGFR [1], NOTCH1 [7],
FABP7 [15], PTPRZ1 [25]). Conversely, genes with known
tumor-suppressor properties were identified among the
genes overexpressed in TumLOW cells (e.g. TUSC3 [36],
SERPINB1 [33]). The whole workflow is summarized in
Additional file 3: Figure S4 and provided in
Additional file 8. These results suggest that cell function-
ing state can be inferred from scRNA-seq data following
signature-driven data reduction. We next challenged the
relevance of this approach by applying it to an independ-
ent dataset and using in vitro and in vivo GBM models.

Specific amino acid and lipid metabolic pathways
distinguish GBM cells and tissues with high tumorigenic
potential
To probe the biological relevance of our approach, we
first applied the same analytical strategy to an

independent dataset. Additional GBM single cell tran-
scriptome datasets equivalent to the one published by
Darmanis and colleagues and including several patients
were not publicly available prior to submitting this paper
for publication. We therefore turned to the TCGA col-
lection of transcriptomes obtained by sequencing the
RNA extracted from 155 patients’ GBM tissue frag-
ments. As expected with respect to the heterogeneous
nature of GBM tumors where cancer cells with differing
properties co-exist with normal neural, vascular and im-
mune cells, we observed a smoother distribution curve
of the tumorigenic score across GBM tissues than across
GBM cells (Fig. 3c). We therefore used quartiles to de-
lineate two GBM tissue groups with low and high
tumorigenic scores, respectively (Fig. 3c), postulating
that TumHIGH tissues contain more TumHIGH than
TumLOW cells or a cell population expressing very
high level of the signature elements. Differential
expression analysis between these two groups yielded
a list of 6565 genes, 44% of them being overexpressed
in TumHIGH GBM tissues (Mann Whitney, BH-
adjusted p-value < 0.01, Additional file 7). The list of
genes overexpressed in TumHIGH GBM tissues showed
a 65.5% overlap with the list of genes overexpressed
in TumHIGH cells (Fig. 3d, Additional file 7). This re-
sult was remarkable considering that it was obtained

Fig. 3 Signature-driven data reduction approach identifies cells according to their potential tumorigenic state. a Splitting cells into groups with high
(TumHIGH) or low (TumLOW) tumorigenic potential. Left panel: tumorigenic score distribution across the cells. Dotted line: mean of the tumorigenic score. Right
panel: PCA plot based on the expression of the 5 elements of the tumorigenic signature. b Contribution of each tumor to the two tumorigenic groups
identified (chord plot). Note that each tumor contributes to each cell group. c Tumorigenic score distribution across GBM tissues (155 GBM tissues, TCGA
RNA-seq dataset). TumHIGH and TumLOW GBM tissue groups selected at the extreme quartiles of the distribution. d High overlap between genes
overexpressed in TumHIGH GBM tissues and cells. 65.5% (1688) of genes overexpressed in TumHIGH GBM tissues are also overexpressed in TumHIGH GBM cells
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by confronting a dataset derived from 4 tumors to another
derived from 155 tumors, and that tissue transcriptomes
correspond to gene expression levels averaged over sev-
eral hundred thousands of cells. Of the 1688 genes
overexpressed in TumHIGH GBM cells and tissues, 78
encoded metabolic enzymes (Additional file 9, [37]).
We further selected the 66 of them significantly correlated
to the tumorigenic score across all GBM cells as well as
across all GBM tissues (Pearson correlation, p-value < 0.01,
Additional file 9). Gene ontology analysis highlighted a 15
to 45-fold enrichment first in components of the lipid me-
tabolism (27 genes) and second in components of the
amino acids metabolic pathways (18 genes) (Fig. 4a,
Additional file 9 and Additional file 3: Figure S5). Seven of
the components of the amino acid metabolism belonged
to the glycine, serine and threonine metabolism (Fig. 4b)
whereas the lipid metabolism components were distrib-
uted among eight subpathways (Fig. 4b). Modeling of the
regulatory gene network from the single cell expression
data of the 66 metabolism genes using the MIIC algorithm
singled out very long chain polyunsaturated fatty acid
(VLC-PUFA) synthesis by highlighting ELOVL2 as the
densest node of the network (Fig. 4c).
During the reviewing process of this article, a novel

and larger dataset of GBM scRNA-seq based also on the
SMARTseq2 technology, and with sequencing depth
comparable to the one obtained by Darmanis and col-
leagues became available [51]. We therefore repeated our
analysis using the 4916 GBM cell transcriptomes, 2184
coming from GBMs bearing an amplified form of EGFR
(EGFRAMP) and 2732 from GBMs bearing a non-amplified
EGFR (EGFRNON-AMP). The distribution profile of the
tumorigenic score across this set of GBM cells was similar
to the one across the Darmanis GBM cell set (Additional
file 3: Figure S6A). Cells derived from EGFRAMP and
EGFRNON-AMP GBMs contributed both to the TumHIGH

and TumLOW GBM cell groups (Additional file 3: Figure
S6B). From the list of 6869 genes overexpressed in
TumHIGH cells compared to TumLOW cells, 60.9% (4185)
were also identified as overexpressed in TumHIGH cells
using the Darmanis scRNA-seq data (Additional file 3:
Figure S6C). These 4185 genes included 376 genes coding
for proteins involved in metabolic pathways and whose
expression correlates to the tumorigenic score. Crossing
this list of 376 genes with the corresponding list of genes
from GBM tissues of the TCGA yielded 59 common genes
(Additional file 3: Figure S6D, and Additional file 10).
Gene regulatory network reconstruction using MIIC tool
highlighted again ELOVL2 at the densest nodes of the net-
work (Additional file 3: Figure S6E-F). These results fur-
ther strengthen the relevance of our approach. They also
show that similar metabolic modules distinguish TumHIGH

and TumLOW GBM cells independently from EGFR
amplification.

Functional association of the lipid metabolism enzyme
ELOVL2 to patient clinical outcome and GBM
development
ELOVL2 is a fatty acid elongase involved in the elong-
ation of 22- to 24-carbon VLC-PUFA [29]. In agreement
with ELOVL2 overexpression in TumHIGH cells, we ob-
served ELOVL2 overexpression in cells with tumorigenic
properties in an independent transcriptome dataset of
human GBM cells in culture [40] (Additional file 3:
Figure S7A). In addition, we observed a higher expres-
sion of ELOVL2 in GBM than in normal brain tissues
(Additional file 3: Figure S7B), as well as in single GBM
cells compared to single normal cells (Additional file 3:
Figure S7C). Its expression was also higher in primary
GBMs characterized by a wild-type form of IDH1 com-
pared to diffuse glioma that are characterized by a mu-
tant form of IDH1 (Additional file 3: Figure S7D). Of
note, ELOVL2 levels were also higher in GBMs bearing
an amplified EGFR gene than in GBMs with non-
amplified EGFR (Additional file 3: Figure S7E). Finally,
ELOVL2 high expression was found to be associated
with worse patient survival in independent patient co-
horts (Fig. 5a and Additional file 3: Figure S7F). Knock-
ing down ELOVL2 expression in patient-derived cells
(PDC) using lentiviral transduction of small hairpin (sh)
RNA (Fig. 5b and Additional file 3: Figure S8A) resulted
in a sharp decrease in cell proliferation (Fig. 5c and
Additional file 3: Fig. S8B). ELOVL2 role in the control
of GBM cell tumorigenicity was evaluated in vivo using
orthotopic xenografts of PDC stably expressing lucifer-
ase and either shControl or shELOVL2. Tumor develop-
ment monitoring with bioluminescent imaging showed
delayed tumor formation and reduced tumor burden in
mice grafted with shELOVL2-PDC, compared to mice
grafted with shControl-PDC (Fig. 5d and e). Of note, tu-
mors that developed in a delayed manner from xeno-
grafts of shELOVL2-PDC had escaped from ELOVL2
inhibition, as shown by QPCR detection of human
ELOVL2 mRNA levels at similar levels to those mea-
sured in tumors developing from xenografts of
shControl-PDC (Fig. 5f). To gain insight into the cell
process affected by ELOVL2, we selected from the 27 genes
of the lipid metabolism, a lipid subgroup of 16 genes de-
tected in at least 25% of the cells (Additional file 9). These
genes were used to construct a principal curve onto which
each GBM cell was projected (Fig. 5g). In addition, we com-
puted a score with the expression of these 16 genes, follow-
ing the same procedure as for the tumorigenic score. Of
note, highest lipid scores (Fig. 5h), highest ELOVL2 expres-
sion values (Fig. 5i) and highest tumorigenic scores (Fig. 5j)
all coincided in cells along the principal curve. This result
further strengthens the relationship between the expression
of the lipid subgroup, ELOVL2 expression and the tumori-
genic state of the cells. Another member of the ELOVL
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family, ELOVL4, was involved in extracellular vesicle for-
mation and release [31]. This prompted us to determine
whether ELOVL2 expression is associated with molecular
signatures of extracellular vesicles at the single cell level.
Scores calculated for each of the four molecular signatures
associated with extracellular vesicles were correlated with
the tumorigenic scores (Additional file 11) and coincided
with high ELOVL2 expression in cells along the principal
curve (Fig. 5k and Additional file 3: Figure S9A-C). Using
nanoparticle tracking analysis, we also observed a reduction
in the proportion of small-sized extracellular vesicles (50-
250 nm) in the culture media of shELOVL2-PDC compared
to shControl-PDC (Additional file 3: Figure S9D-E). This
experimental set of results demonstrates that ELOVL2 is re-
quired for the tumorigenic behavior of GBM cells. It also
suggests that ELOVL2 requirement stems from its involve-
ment in the regulation of intercellular communication via
extracellular vesicles. In addition, it provides robust experi-
mental support for the relevance of signature-driven reduc-
tion of single cell transcriptomes to decipher the metabolic
pathways underscoring GBM cell behaviors within the pa-
tients’ tumors.

Discussion
Metabolism is at the heart of cell behavior and its de-
pendence on enzymatic activities makes it a target of
choice for therapeutic targeting. GBM cells adapt their
functioning state to changes in their microenvironment,
whether these changes result from natural tumor growth
or therapies. Progress towards identification of the most
relevant possible targets for patient therapy requires ac-
cess to molecular players active in the actual context of
the patient tumors while taking into account the hetero-
geneity of the tumor tissue. Transcriptomes of single
cells sorted from patient GBMs offer such an access.
Unsupervised analysis of scRNA-seq from brain and non-

brain tumors was found to result in predominant grouping
of cancer cells according to the tumor from which they ori-
ginate, and of normal cells independently from their tumor
of origin [11, 14, 23, 35, 39, 57, 64]. This mode of grouping
obtained with different normalization and analytical
methods was never questioned. We considered in all ways
we thought eventual influences of scRNA-seq technical

biases as well as of the tumor-specific differences in gene
repertoires expected to reflect inter-tumor biological differ-
ences whatever their sources. We did not find one account-
ing for cell grouping-dependence on the tumor of origin. In
contrast, unsupervised analyses of down-sampled numbers
of genes randomly selected showed that tumor-driven cell
grouping disappears below a critical number of genes (100
to 50 in this study). Collectively, our results show that can-
cer cell clustering per tumor is not due to scRNA-seq tech-
nical bias, as expected with respect to the lack of influence
of the tumor on normal cell grouping. They also show that
cancer cell clustering per tumor is not driven by circum-
scribed gene subsets reflecting inter-tumor biological differ-
ences. They support the notion that the identity of the
tumor to which each cancer cell belongs is encoded by in-
formation dispersed throughout the cell transcript
repertoire.
To unmask cell functioning states regardless of their

tumor of origin, we reduced the data based on previ-
ously acquired biological knowledge. Signature-driven
data reduction was previously used to infer cell lineages
from single cell transcriptomes of oligodendrogliomas
and diffuse infiltrative pontine gliomas [23, 65]. These
studies were performed on centered data. Cell lineages
were inferred using sets of top correlated genes to the
principal component scores of a PCA of the dataset
under scrutiny [65], or on the basis of mouse or human
gene sets differentiating normal neural subtypes [23, 65].
Here, we based our analysis on a molecular signature re-
lated to a major functioning state, tumorigenicity.
Cells from a given GBM have long been known to be

endowed with differing abilities to initiate neoplasms
[32, 56, 70]. We postulated that such a choice would en-
hance the likelihood to group cells based on their func-
tioning state irrespective of their tumor of origin. We
postulated also that using a signature defined [4] and ex-
perimentally validated in independent prior studies [4,
30, 43, 63] would reduce the risk of obtaining results
relevant only for the dataset analyzed. Our choices
proved fruitful to identify two contrasting functioning
states, with respect to the following findings. Genes pre-
viously described as controlling GBM cell aggressiveness
were found to be overexpressed in cells with high

(See figure on previous page.)
Fig. 4 Enrichment in lipid and amino acid metabolism enzymes in TumHIGH GBM cells and tissues. a Gene ontology analysis of the 66
metabolism genes identified among genes overexpressed in both GBM TumHIGH cells and tissues. DAVID toolkit. b Schematic representation of
the lipid and amino acid metabolic pathways containing genes overexpressed in TumHIGH GBM cells and tissues. Asterisks mark genes coding for
components of the glycine, serine and threonine metabolism. LA: linoleic acid; ALA: linolenic acid; ETA: eicosatetraenoic acid; EPA;
eicosapentaenoic acid; ADA: docosatetraenoic acid; CA: clupanodonic acid; TTA: tetracosatetraenoic acid; TPA: tetracosapentaenoic acid; THA:
tetracosahexaenoic acid. c Modeling interconnections between the 66 metabolism genes highlights ELOVL2 at the most densely connected node
of the network. Gene network built on the basis of the gene expression values across all GBM cells using MIIC tool. Line thickness represents the
strength of the edge. Arrowheads linking variables in a v-structure of the type x→ y← z denotes the absence of a graphical structure of the
type: x→ y→ z, x← y← z and x← y→ z (variable x cannot be reached passing through y, nor y passing through x, nor y is a common parent
of the two other variables). These 3 models can be excluded since in a v-structure y does not mediate mutual information between x and z
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tumorigenic scores. A highly similar list of differentially
expressed genes was obtained when applying the same
analytical strategy to an independent dataset of GBM
cell scRNA-seq and of another made of tissue bulk tran-
scriptomes of a much larger number of GBMs. Highest
scores for the lipid subgroup found to be enriched in
TumHIGH cells and tissues coincided with highest
tumorigenic scores. Finally, experimental knockdown of
the most interconnected gene of this lipid metabolism
subset, ELOVL2, impaired GBM cell tumorigenic
properties.
Oncogenic mutations have long been known to favor

mobilization of metabolic pathways, most notably by
allowing cancer cells to adapt their mode of energy pro-
duction to different microenvironments and sources of
nutrients [42, 55]. GBM cells, like other cancer cell
types, are considered to favor glycolysis over oxidative
phosphorylation for ATP production. This prevalence of
glycolysis is considered as a cell adaptation to its need
for feeding carbon into biosynthesis of nucleic acids,
fatty acids and proteins for cell growth and proliferation.
At the single cell level, overexpression of genes coding
for enzymes of the glycolysis pathway was not associated
with high tumorigenic scores. This suggests that en-
hanced mobilization of glycolysis enzymes is not proper
to GBM cells in a tumorigenic state, at least at the tran-
scriptional level. Overexpression of two genes coding for
enzymes of the amino acid pathways, GATM and CKB
(Fig. 4b) rather suggests that another source of energy
distinguishes tumorigenic from non-tumorigenic GBM
cells. GATM is one of the two enzymes ensuring brain-
endogenous synthesis of creatine, starting from glycine.
The other enzyme, GAMT, was found to be overex-
pressed in tumorigenic high GBM cells but not retained
for final analyses because absent from the list of genes
overexpressed in tumorigenic high GBM tissues. CKB is
responsible for the phosphorylation of creatine, which
serves for ATP regeneration and plays an essential role
in brain energy metabolism [59]. Interestingly, GATM is

the most interconnected of the genes coding for ele-
ments of amino acid metabolism in the modeling of the
gene expression network (Fig. 4c). Lipids are also a sig-
nificant source of energy. Lipid metabolism association
to GBM cell aggressiveness has been reported to stem
from lipid contribution to cell energetics through fatty
acid beta-oxidation and to transduction pathways
through the mevalonate metabolism [42]. Accordingly,
we found that genes coding for key enzymes of the fatty
acid synthesis (e.g. ACLY, FASN) and beta-oxidation
pathways (CPT1C), as well as the mevalonate pathways
(MVD) were overexpressed in TumHIGH cells. In
addition, we observed an overexpression of genes in-
volved in the synthesis of phospholipids, glycerolipids
and sphingolipids, essential components of plasma mem-
branes and/or sources of potent autocrine/paracrine sig-
naling molecules.
The biological relevance of the results of our bioinfor-

matics analyses was further validated in in vivo experi-
mental models of human GBMs. Our study unveiled an
unexpected causal link between ELOVL2, the endpoint
enzymatic component of the lipid subpathway ensuring
synthesis of VLC-PUFA, and the tumorigenic status of
GBM cells. Notably, we show that ELOVL2 knockdown
in PDC decreases tumor growth in vivo. Little is known
on this member of the ELOVL family that catalyzes the
elongation of saturated and monounsaturated VLC-FA
(ELOVL1, 3, 6 and 7) and of VLC-PUFA (ELOVL2, 4
and 5) by adding two carbon units to the carboxyl end
of a fatty acid chain [29]. ELOVL2 is specifically involved
in the elongation cascade starting from the dietary PUFA
linoleic and linolenic acids, which cannot be synthesized
by humans. The products of the enzymatic process of
these essential PUFA are thought to modulate diverse
biological phenomena ranging from cell survival to in-
flammatory responses [3, 10]. In mouse models, Elovl2
knockout has been shown to result in defective PUFA
composition in the liver, serum and testis in association
with male infertility and a reduced capacity to

(See figure on previous page.)
Fig. 5 Association of the lipid metabolism enzyme ELOVL2 to patient clinical outcome and GBM development. a High ELOVL2 expression is
associated with worse patient survival. GBM tissue transcriptomes (microarrays) of 485, 156 and 173 GBMs of TCGA, French and Rembrandt
datasets, respectively. Log-rank (Mantel-Cox) test. b Decreased ELOVL2 mRNA levels in shELOVL2 patient-derived cells (PDC) compared to
shControl-PDC. 6240**, R633 and 5706** PDC. QPCR assay. Unpaired t-test with Welch’s correction, mean ± SD, n = 4–5 independent biological
samples. c ELOVL2 knockdown decreases cell proliferation. 6240**, R633 and 5706** PDC. Unpaired t-test with Welch’s correction, mean ± SD,
n = 4–5 independent biological samples. d ELOVL2 knockdown delays tumor development. Bioluminescent analyses of tumor growth initiated by
grafting PDC transduced with a luciferase construct and either shControl (shCTL) or shELOVL2 constructs. n = 4 (6240**) and n = 6–8 (5706**) mice
per group. e ELOVL2 knockdown decreases tumor burden as shown by quantification of the tumor bioluminescent signals. DPG: days post-graft.
n = 4 (6240**) and n = 6–8 (5706**) mice per group. Mean ± SD. Unpaired t-test with Welch’s correction. Background signal (mean ± SD): 6240**
537 ± 68, n = 8, 5706** 589 ± 59, n = 14 mice. f Recovery of ELOVL2 expression in tumors forming from xenografts of 6240** shELOVL2. QPCR
assay. Mean ± SD. n = 4 for shCTL and n = 3 for shELOVL2. Unpaired t-test with Welch’s correction. g-k Principal curve resulting from PCA of the
expression of the subgroup of genes encoding lipid metabolism enzymes overexpressed in TumHIGH cells and tissues. g Cell density along the
principal curve. The ellipse delineates the portion of the curve with the highest cell density. h-k Cells colored according to their (h) score
calculated with the components of the lipid subgroup, (i) ELOVL2 expression levels, (j) tumorigenic score, and (k) extracellular vesicle biogenesis
score. Note that cells with either high score or expression value cluster on the same portion of the curve (ellipses). Pathifier tool
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accumulate fat [54, 74]. PUFA are structural compo-
nents of membrane phospholipids especially enriched in
neural tissues, and provide potent signaling compounds
[41]. In the MCF7 cell line that models breast cancers
requiring estrogen for growth, ELOVL2 expression is
positively regulated by estrogen [28], and its knockdown
is associated with epithelial to mesenchymal transition
[38]. In this epithelial cancer high ELOVL2 expression is
associated with higher metastatic relapse-free survival
[38]. On the opposite, ELOVL2 upregulation in prostate
cancer has been associated with the oncogenic effect of
SPOP loss of function mutations [72]. Here, finding of
the association between high ELOVL2 expression in
GBMs and worsened patient prognosis (Fig. 5a and
Additional file 3: Figure S7F), coupled with the demon-
strated requirement of ELOVL2 for GBM cells tumori-
genicity in vivo, demonstrates a causal link between
ELOVL2 and GBM growth. We investigated through
bioinformatics analysis what might be the mechanism of
action of ELOVL2 overexpression in tumorigenic high
cells. The correlation between ELOVL2 overexpression
and molecular signatures of extracellular vesicles sug-
gests that formation and release of extracellular vesicles
is one of the cell processes by which ELOVL2 controls
GBM tumor development. This possibility is coherent
with the reported involvement of another member of the
family, ELOVL4, in the formation of synaptic vesicles in
the brain and retina [31]. Extracellular vesicles have been
involved in intercellular communications within GBM,
by carrying metabolites, nucleotides and proteins able to
affect the behavior of cancerous as well as non-
cancerous cells composing the tumor [6, 22]. Our
experimental results are coherent with our modeling re-
sults that place ELOVL2 at the core of the metabolic
pathways essential for sustaining GBM cell tumorigen-
icity. ELOVL2 importance for GBM is strengthened by a
study published during writing of this article that de-
scribes ELOVL2 as a super-enhancer associated gene
controlling glioblastoma stem cell properties [27].

Conclusions
The present findings underscore the power of single cell
transcriptome analyses for unveiling the complexity of
the participation of metabolism in relation to the hetero-
geneity of cell functioning states encountered in GBMs.
It is worth emphasizing that the discovery of a molecular
deregulation that proved to be a predictor of patient sur-
vival in independent cohorts of several hundred tumors
stems from the study of cells derived from only four tu-
mors. Our results show the high relevance of integrating
the cell functioning status, even when focusing on only
two contrasting states, for the discovery of metabolic
modules controlling GBM aggressiveness. Further devel-
opment of signature-driven data reduction based on

established experimental evidence will lead to further re-
fine the identification of functioning states and of the di-
versity of the molecular networks required for their
maintenance.
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