
HAL Id: hal-02345012
https://hal.sorbonne-universite.fr/hal-02345012v1

Submitted on 4 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Size and structure of the sequence space of repeat
proteins

Jacopo Marchi, Ezequiel A Galpern, Rocío Espada, Diego U Ferreiro,
Aleksandra M. Walczak, Thierry Mora

To cite this version:
Jacopo Marchi, Ezequiel A Galpern, Rocío Espada, Diego U Ferreiro, Aleksandra M. Walczak, et al..
Size and structure of the sequence space of repeat proteins. PLoS Computational Biology, 2019, 15
(8), pp.e1007282. �10.1371/journal.pcbi.1007282�. �hal-02345012�

https://hal.sorbonne-universite.fr/hal-02345012v1
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

Size and structure of the sequence space of

repeat proteins

Jacopo Marchi1, Ezequiel A. GalpernID
2,3, Rocio Espada4, Diego U. Ferreiro2,3,

Aleksandra M. Walczak1☯*, Thierry MoraID
1☯*
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Abstract

The coding space of protein sequences is shaped by evolutionary constraints set by require-

ments of function and stability. We show that the coding space of a given protein family—

the total number of sequences in that family—can be estimated using models of maximum

entropy trained on multiple sequence alignments of naturally occuring amino acid

sequences. We analyzed and calculated the size of three abundant repeat proteins families,

whose members are large proteins made of many repetitions of conserved portions of*30

amino acids. While amino acid conservation at each position of the alignment explains most

of the reduction of diversity relative to completely random sequences, we found that correla-

tions between amino acid usage at different positions significantly impact that diversity. We

quantified the impact of different types of correlations, functional and evolutionary, on

sequence diversity. Analysis of the detailed structure of the coding space of the families

revealed a rugged landscape, with many local energy minima of varying sizes with a hierar-

chical structure, reminiscent of fustrated energy landscapes of spin glass in physics. This

clustered structure indicates a multiplicity of subtypes within each family, and suggests new

strategies for protein design.

Author summary

Natural protein molecules are only a small subset of the possible strings of amino acids.

This naturally calls the question of how many protein sequences theoretically exist that

are functional, and how many have already been explored by nature. To help answer this

question, we developed a statistical method to calculate the total potential number of pro-

tein sequences of a given family, focusing on three families of repeat proteins, which play

important roles in a variety of cellular processes. The number of sequences that we com-

pute is limited by functional interactions between the residues of the protein, as well as its

evolutionary history. Applying techniques from the physics of disordered systems, we
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show that the space of sequences has a rugged structure, which could hinder their evolu-

tion. Individual proteins can be organised into distinct clusters corresponding to basins of

attraction of the landscape, suggesting the existence of subfamilies within each family.

Introduction

Natural proteins contain a record of their evolutionary history, as selective pressure constrains

their amino-acid sequences to perform certain functions. However, if we take all proteins

found in nature, their sequence appears to be random, without any apparent rules that distin-

guish their sequences from arbitrary polypeptides. Nonetheless, the volume of sequence space

taken up by existing proteins is very small compared to all possible polypeptide strings of a

given length [1], even more so when specializing to a given structure [2]. Clearly, not all vari-

ants are equally likely to survive [3–5]. To better understand the structure of the space of natu-

ral proteins, it is useful to group them into families of proteins with similar fold, function, and

sequence, believed to be under a common selective pressure. Assuming that the ensemble of

protein families is equilibrated, there should exist a relationship between the conserved fea-

tures of their amino acid sequences and their function. This relation can be extracted by exam-

ining statistics of amino-acid composition, starting with single sites in multiple alignments (as

provided by e.g. PFAM [6, 7]). More interesting information can be extracted from covariation

of amino acid usages at pairs of positions [8–10] or using machine-learning techniques [11].

Models of protein sequences based of pairwise covariations have been shown to successfully

predict pair-wise amino-acid contacts in three dimensional structures [12–17], aid protein

folding algorithms [18, 19], and predict the effect of point mutations [17, 20–22]. However, lit-

tle is known on how these identified amino-acid constraints affect the global size, shape and

structure of the sequence space. Accounting for these questions is a first step towards drawing

out the possible and the realized evolutionary trajectories of protein sequences [23, 24].

We use tools and concepts from the statistical mechanics of disordered systems to study col-

lective, protein-wide effects and to understand how evolutionary constraints shape the land-

scape of protein families. We go beyond previous work which focused on local effects—

pairwise contacts between residues, effect of single amino-acid mutations—to ask how amino-

acid conservation and covariation restrict and shape the landscape of sequences in a family.

Specifically, we characterize the size of the ensemble, defined as the effective number of

sequences of a familiy, as well as its detailed structure: is it made of one block or divided into

clusters of “basins”? These are intrinsically collective properties that can not be assessed locally.

Repeat proteins are excellent systems in which to quantify these collective effects, as they

combine both local and global interactions. Repeat proteins are found as domains or subdo-

mains in a very large number of functionally important proteins, in particular signaling pro-

teins (e.g. NF-κB, p16, Notch [25]). Usually they are composed of tandem repetitions of *30

amino-acids that fold into elongated architectures. Repeat proteins have been divided into dif-

ferent families based on their structural similarity. Here we consider three abundant repeat

protein families: ankyrin repeats (ANK), tetratricopeptide repeats (TPR), leucine-rich repeat

(LRR) that fold into repetitive structures (see Fig 1). In addition to interactions between resi-

dues within one repeat, repeat protein evolution is constrained by inter-repeat interactions,

which lead to the characteristic accordeon-like folds. Through these separable types of con-

straints, as well as the possibility of intra- and inter-familly comparisons, repeat proteins are

perfect candidates to ask questions about the origins and the effects of the constraints that

globally shape the sequences.

Size and structure of the sequence space of repeat proteins
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A recent study [26] addressed the question of the total number of sequences within a given

protein family, focusing on ten single-domain families. They took a similar thermodynamic

approach to the one followed here, but had to estimate experimentally the free energy thresh-

old ΔG below which the sequences would fold properly. Here we overcome this limitation by

forgoing this threshold entirely. Instead we determine the sequence entropy directly, which is

argued to be equivalent to using a threshold free energy by virtue of the equivalence of ensem-

bles. We precisely quantify the sequence entropy of three repeat-protein families for which

detailed evolutionary energetic fields are known [27]. We explore the properties of the evolu-

tionary landscape shaped by the amino-acid frequency constraints and correlations. We ask

whether the energy landscape, defined in sequence space of repeat proteins, is made of a single

basin, or rather of a multitude of basins connected by ridges and passes, called “metastable

states”, as would be expected from spin-glass theory. Using the specific example of repeat pro-

teins makes it possible to analyze the source of the potential landscape ruggedness, and use it

to identify which repeat-protein families can be well separated into subfamilies. The rich meta-

stable state structure that we find demonstrates the importance of interactions in shaping the

protein family ensemble.

Results

Statistical models of repeat-protein families

We start by building statistical models for the three repeat protein families presented in Fig 1

(ANK, TPR, LRR). These models give the probability P(σ) to find in the family of interest a

particular sequence σ = (σ1, . . ., σ2L) for two consecutive repeats of size L. The model is

Fig 1. Repeat proteins fold into characteristic accordeon-like folds. Example structures of three protein families are shown,

ankyrin repeats (ANK), tetratricopeptide repeats (TPR), leucine-rich repeat (LRR), with the repeating unit highlighted in magenta.

All show regular folding patterns with defined contacts in and between repeats.

https://doi.org/10.1371/journal.pcbi.1007282.g001
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designed to be as random as possible, while agreeing with key statistics of variation and co-var-

iation in a multiple sequence alignment of the protein family. Specifically, P(σ) is obtained as

the distribution of maximum entropy [28] which has the same amino-acid frequencies at each

position as in the alignment, as well as the same joint frequencies of amino acid usage in each

pair of positions. Additionally, repeat proteins share many amino acids between consecutive

repeats, both due to sharing a common ancestor and to evolutionary selection acting on the

protein. To account for this special property of repeat proteins, we require that the model

reproduces the distribution of overlaps IDðσÞ ¼
PL

i¼1
dsi ;siþL between consecutive repeats.

Using the technique of Lagrange multipliers, the distribution can be shown to take the form

[17]:

PðσÞ ¼ ð1=ZÞe� EðσÞ; ð1Þ

with

EðσÞ ¼ �
X2L

i¼1

hiðsiÞ �
X2L

i;j¼1

Jijðsi; sjÞ þ lIDðσÞ ; ð2Þ

where hi(σ), Jij(σi, σj), and {λID}, ID = 0, 1, . . ., L, are adjustable Lagrange multipliers that are fit

to the data to reproduce the experimentally observed site-dependent amino-acid frequencies

fi(σi), joint probabilities between two positions, fij(σi, σj), and the distribution of Hamming dis-

tances between consecutive repeats P(ID(σ)), which is equivalent to maximize the likelihood

of the data under the model. We fit these parameters using a gradient ascent algorithm: we

start from an initial guess of the parameters, then generate sequences via Monte-Carlo simula-

tions and update the parameters proportionally to the difference between the empirical

and model generated observables fiðsiÞ � f model
i ðsiÞ, fijðsi; sjÞ � f model

ij ðsi; sjÞ and P(ID(σ)) −
P(ID(σ))model. We repeat the previous steps until the model reproduces the empirical observ-

ables defined above, with a target precision motivated according to the finite size of our origi-

nal dataset, as in Ref. [17]. See Methods for more details. We tested the convergence of the

model learning by synthetically generating datasets and relearning the model (see Methods).

By analogy with Boltmzan’s law, we call E(σ) a statistical energy, which is in general distinct

from any physical energy. The particular form of the energy (2) resembles that of a disordered

Potts model. This mathematical equivalence allows for the possibility to study effects that are

characteristic of disordered systems, such as frustration or the existence of an energy landscape

with multiple valleys, as we will discuss in the next sections.

Eq 2 is the most constrained form of the model, which we will denote by Efull(σ). One can

explore the impact of each constraint on the energy landscape by removing them from the

model. For instance, to study the role of inter-repeat sequence similarity due to a common

evolutionary origin, one can fit the model without the constraint on repeat overlap ID, i.e.
without the λID term in Eq 2. We call the corresponding energy function E2. One can further

remove constraints on pairwise positions that are not part of the same repeat, making the two

consecutive repeats statistically independent and imposing hi = hi+L (Eir), or only linked

through phylogenic conservation through λID (Eir,λ). Finally one can remove all interaction

constraints to make all positions independent of each other (E1), or even remove all constraints

(Erand� 0).

Statistical energy vs unfolding energy

The evolutionary information contained in multiple sequence alignments of protein families is

summarized in our model by the energy function E(σ). Since this information is often much

Size and structure of the sequence space of repeat proteins
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easier to access than structural or functional information, there is great interest in extracting

functional or structural properties from multiple sequence alignments, provided that there

exists a clear quantitative relationship between statistical energy and physical energy.

Such a relationship was determined experimentally for repeat proteins by using E(σ) to pre-

dict the effect of point mutations on the folding stability measured by the free energy differ-

ence between the folded and unfolded states, ΔG, called the unfolding energy [17, 20].

Synthetic sequences with low E(σ) have also been shown to reproduce the fold and function

of natural sequences [29]. Here, extending an argument already developed in previous work

[30–33], we show how this correspondance between statistical likelihood and folding stability

arises in a simple model of evolution.

Evolutionary theory predicts that the prevalence of a particular genotype σ, i.e. the probabil-

ity of finding it in a population, is related to its fitness F(σ). In the limit where mutations affect-

ing the protein are rare compared to the time it takes for mutations to spread through the

population, Kimura [34] showed that the probability of a mutation giving a fitness advantage

(or disadvantage depending on the sign) ΔF over its ancestor will fix in the population with

probability 2ΔF/(1 − e−2NΔF), whereN is the effective population size. The dynamics of success-

ful substitution satisfies detailed balance [35], with the steady state probability

PðσÞ ¼ ð1=ZÞe2NFðσÞ: ð3Þ

Again, one may recognize a formal analogy with Boltzmann’s distribution, where F plays

the role of a negative energy, and N an inverse temperature. If we now assume that fitness is

determined by the unfolding free energy ΔG, F(σ) = f(ΔG(σ)), then the distribution of geno-

types we expect to observe in a population is

PðσÞ ¼ ð1=ZÞe2Nf ðDGðσÞÞ: ð4Þ

Note that a similar relation should hold even if we relax the hypotheses of the evolutionary

model. While in more general contexts (e.g. high mutation rate, recombination), the relation

between ln P(σ) and F(σ) may not be linear, such nonlinearities could be subsumed into the

function f.
Identifying terms in the two expressions (1) and (3), we obtain a relation between the statis-

tical energy E, and the unfolding free energy ΔG:

EðσÞ ¼ � 2Nf ðDGðσÞÞ: ð5Þ

For instance, if we assume a linear relation between fitness and ΔG, f(ΔG) = A + BΔG, then

we get a linear relationship between the statistical energy and ΔG, as was found empirically for

repeat proteins [17].

Strikingly, the relationship f does not have to be linear or even smooth for this correspon-

dance to work. Imagine a more stringent selection model, where f(ΔG) is a threshold function,

f(ΔG) = 0 for ΔG> ΔGsel and −1 otherwise (lethal). In that case the probability distribution

is P(σ) = (1/Z)Θ(ΔG − ΔGsel), where Θ(x) is Heaviside’s function. Using a saddle-point

approximation, one can show that in the thermodynamic limit (long proteins, or large L) the

distribution concentrates at the border ΔGsel, and is equivalent to a “canonical” description

[30, 31, 33]:

PselðσÞ ¼ ð1=ZÞeDGðσÞ=Tsel ; ð6Þ

Size and structure of the sequence space of repeat proteins
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where the “temperature” Tsel is set to match the mean ΔG between the two descriptions:

hDGiTsel ¼ DGsel: ð7Þ

This correspondance is mathematically similar to the equivalence between the micro-

canonical and canonical ensembles in statistical mechanics.

Statistical energy and unfolding free energy are linearly related by equating (Eq 1) and (Eq

6):

EðσÞ ¼ E0 � DGðσÞ=Tsel; ð8Þ

despite f being nonlinear. Eq 8 is in fact very general and should hold for any f in the thermo-

dynamic limit in the vicinity of hEi.

Equivalence between two definitions of entropies

There are several ways to define the diversity of a protein family. The most intuitive one, fol-

lowed by [26], is to count the total number of amino acid sequences that have an unfolding

free energy ΔGsel above a threshold ΔGsel [2]. This number naturally defines a Boltzmann

entropy,

S ¼ lnN ðσ : DGðσÞ > DGselÞ: ð9Þ

Alternatively, starting from a statistical model P(σ), one can calculate its Shannon entropy,

defined as

S ¼ �
X

s

PðσÞ lnPðσÞ; ð10Þ

as was done in Ref. [27]. What is the relation between these two definitions?

By the same saddle-point approximation as in the previous section, the two are identical in

the thermodyamic limit (large L), provided that the condition (Eq 7) is satisfied. We can thus

reconcile the two definitions of the entropy in that limit.

To calculate the Boltzmann entropy (Eq 9), one needs to first evaluate the threshold Esel in

terms of statistical energy. This threshold is given by Esel = E0 − ΔGsel/Tsel, where E0 and Tsel

can be obtained directly by fitting (Eq 8) to single-mutant experiments. Esel can also be

obtained as a discrimination threshold separating sequences that are known to fold properly

versus sequences that do not [26]. In that case, assuming that the linear relationship (Eq 8) was

evaluated empirically using single mutants, this relationship can be inverted to get ΔGsel in

physical units.

Calculating the Shannon entropy Eq (10), on the other hand, does not require to define any

threshold. However, the threshold in the equivalent Boltzmann entropy can be obtained using

Eqs 7 and 8, i.e. Esel = hEi, where the average is performed using the distribution defined in

Eqs 1 and 2.

Entropy of repeat protein families

To compare how the different elements of the energy function affect diversity, we calculate the

entropy of ensembles built of two consecutive repeats from a given protein family for the dif-

ferent kinds of models described earlier, from the least constrained to the most constrained:

Erand, E1, Eir, Eir,λ, E2, Efull. In the case of models with interactions, calculating the entropy

directly from the definition Eq (10) is impossible due to the large sums. A previous study of

entropies of protein families used an approximate mean-field algorithm, called the Adaptive

Size and structure of the sequence space of repeat proteins
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Cluster Expansion [27], for both parameter fitting and entropy estimation. Here we estimated

the entropies using thermodynamic integration of Monte-Carlo simulations, as detailed in

Methods. This method is expected to be asymptotically unbiased and accurate in the limit of

large Monte-Carlo samples.

The resulting entropies and their differences are reported in Table 1 and Fig 2. All three

considered families (ankyrins (ANK), leucine-rich repeats (LRR), and tetratricopeptides

(TPR)) show a large reduction in entropy (*40 − 50%) compared to random polypeptide

string models of the same length 2L (of entropy Srand = 2L ln(21)). Interactions and phylogenic

similarity between repeats generally have a noticeable effect on family diversity, although the

magnitude of this effect depends on the family: (S1 − Sfull)/Sfull = 7% for ANK, versus, 13% for

LRR, and 16% for TPR. Thus, although interactions are essential in correctly predicting the

folding properties, they seem to only have a modest effect on constraining the space of accessi-

ble proteins compared to that of single amino-acid frequencies. However, when converted to

numbers of sequences, this reduction is substantial, from eS1 � 3 � 1054 to eSfull � 2 � 1050 for

ANK, from 1039 to 1034 for LRR, and from 7 � 1050 to 4 � 1042 for TPR.

By considering models with more and more constraints, and thus with lower and lower

entropy, we can examine more finely the contribution of each type of correlation to the

entropy reduction, going from E1 to Eir to Eir,λ to Efull. This division allows us to quantify the

relative importance of phylogenic similarity between consecutive repeats (λID) relative to the

impact of functional interactions (Jij), as well as the relative weights of repeat-repeat versus

within-repeat interactions (Fig 2). We find that phylogenic similarity contributes substantially

to the entropy reduction, as measured by Sir − Sir,λ = 4.5 bits for ANK, 4.3 bits for LRR, and

10.7 bits for TPR. The contribution of repeat-repeat interactions (Sir,λ − Sfull * 5 bits for all

three families) is comparable or of the same order of magnitude as that of within-repeat inter-

actions (S1 − Sir = 4.3 bits for ANK, 6.9 bits for LRR, and 11.4 bits for TPR). This result empha-

sizes the importance of physical interactions between neighboring repeats in the whole

protein.

On a technical note, we also find that pairwise interactions encode constraints that are

largely redundant with the constraint of phylogenic similarity between consecutive repeats, as

can be measured by the double difference Sir − Sir,λ − S2 + Sfull > 0 (Fig 2, orange bars). This

redundancy comes from the fact that, in absence of an explicit constaint on P(ID) in E2, the

interaction couplings Ji,i+L(σ, σ) between homologous positions in the two repeats is expected

to favor pairs of identical residues to mimic the effect of λID. This redundancy motivates the

need to correct for this phylogenic bias before estimating repeat-repeat interactions.

Comparing the three families, ANK has little phylogenic bias between consecutive repeats,

and relatively weak interactions. By contrast, TPR has a strong phylogenic bias and strong

within-repeat interactions.

Table 1. Entropies (in bits, i.e. units of ln(2)) of sequences made of two consecutive repeats, for the three protein families shown in Fig 1. Entropies are calculated for

models of different complexity: model of random amino acids (Srand = 2L ln(21), divided by ln(2) when expressed in bits); independent-site model (S1), pairwise interaction

model (S2); pairwise interaction model with constraints due to repeat similarity λID (Sfull); pairwise interaction model of two non-interacting repeats learned without (Sir)

and with (Sir,λ) constraints on repeat similarity. Fig 2 shows graphically some of the information contained in this table.

family 2L Srand S1 S2 Sfull Sir Sir,λ

ANK 66 290 181 ± 0.05 169.7 ± 0.6 167.2 ± 0.3 176.7 ± 0.1 172 ± 0.4

LRR 48 211 130 ± 0.05 114 ± 0.4 113.2 ± 0.3 123.1 ± 0.1 118.8 ± 0.1

TPR 68 299 169 ± 0.1 145.4 ± 0.7 141.4 ± 0.3 157.6 ± 0.1 146.9 ± 0.4

https://doi.org/10.1371/journal.pcbi.1007282.t001
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Effect of interaction range

We wondered whether interactions constraining the space of accessible proteins had a charac-

teristic lengthscale. To answer this question, for each protein family in Fig 1, we learn a

sequence of models of the form Eq 2, in which Jij was allowed to be non-zero only within a cer-

tain interaction range d(i, j)�W, where the distance d(i, j) between sites i and j can be defined

in two different ways: either the linear distance |i − j| expressed in number of amino-acid sites,

or the three-dimensional distance between the closest heavy atoms in the reference structure

of the residues. Details about the learning procedure and error estimation are given in the

Methods; see also S1 Fig for an alternative error estimate.

The entropy of all families decreases with interaction rangeW, both in linear and three-

dimensional distance, as more constraints are added to reduce diversity (Fig 3 for ANK, and

S2 Fig for LRR and TPR). The initial drop as a function of linear distance (Fig 3A) is explained

by the many local interactions between nearby residues in the sequence. The entropy then pla-

teaus until interactions between same-position residues in consecutive repeats are included in

theW range, which leads to a sharp entropy drop atW = L. This suggests that long range inter-

actions along the sequence generally do not constrain the protein ensemble diversity, except

for interactions at exactly the scale of the repeat. This result suggests that the repeat structure is

Fig 2. Contributions of within-repeat interactions (S1 − Sir green), repeat-repeat interactions (Sir,λ − Sfull, purple), and

phylogenic bias between consecutive repeats (Sir − Sir,λ, blue), to the entropy reduction from an independent-site model. All

three contributions are comparable, but with a larger effect of within-repeat interactions and phylogenic bias in TPR. The fourth bar

(orange) quantifies the redundancy between two constraints with overlapping scopes: the constraint on consecutive-repeat similary,

and the constraint on repeat-repeat correlations. This redundancy is naturally measured within information theory by the difference

of impact (i.e. entropy reduction) of a constraint depending on whether or not the other constraint is already enforced.

https://doi.org/10.1371/journal.pcbi.1007282.g002
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an important constraint limiting protein sequence exploration. These observations hold for all

three repeat protein families. The importance of 3D structure in reducing the entropy can also

be appreciated in the entropy decay as a function of physical distance (Fig 3B for ANK) where

most of the entropy drop happens within the first 10 angstroms, indicating that above this

characteristic distance interactions are not crucial in constraining the space of accessible

sequences.

Multi-basin structure of the energy landscape

The energy function of Eq (2) takes the same mathematical form as a disordered Potts model.

These models, in particular in cases where σi can only take two values, have been extensively

studied in the context of spin glasses [36]. In these systems, the interaction terms −Jij(σi, σj)
imply contradictory energy requirements, meaning that not all of these terms can be mini-

mized at the same time—a phenomenon called frustration. Because of frustration, natural

dynamics aimed at minimizing the energy are expected to get stuck into local, non-global

energy minima (Fig 4), significantly slowing down thermalization. This phenomenon is simi-

lar to what happens in structural glasses in physics, where the energy landscape is “rugged”

with many local minima that hinder the dynamics. Incidentally, concepts from glasses and

spin glasses have been very important for understanding protein folding dynamics [37].

We asked whether the energy landscape of Eq (2) was rugged with multiple minima, and

investigated its structure. To find local minima, we performed a local energy minimization of

Efull (learned with all constraints including on P(ID), but taken with λID = 0 to focus on func-

tional energy terms). By analogy with glasses, such a minimization is sometimes called a zero-

temperature Monte-Carlo simulation or a “quench”. The minimization procedure was started

Fig 3. Entropy reduction as a function of the range of interactions between residue sites. A) Entropy of two consecutive ANK

repeats, as a function of the maximum allowed interaction distanceW along the linear sequence. The entropy of the model decreases

as more interactions are added and they constrain the space of possible sequences. After a sharp initial decrease at short ranges, the

entropy plateaus until interactions between complementary sites in neighbouring repeats lead to a secondary sharp decrease atW =

L − 1 = 32 (dashed line), due to structural interactions between consecutive repeats. B) Entropy of two consecutive ANK repeats as a

function of the maximum allowed three-dimensional interaction range. The entropy decreases rapidly until*10 Angstrom, after

which decay becomes slower. In both panels entropies are averaged over 10 realizations of fitting the model; See Methods for details

of the learning and entropy estimation procedure. Error bars are estimated from fitting errors between the data and the model; see

Methods and S1 Fig for error bars calculated as standard deviations over 10 realizations of model fitting.

https://doi.org/10.1371/journal.pcbi.1007282.g003
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from many initial conditions corresponding to naturally occuring sequences of consecutive

repeat pairs. At each step of the minimization, a random beneficial (energy decreasing) single

mutation is picked; double mutations are allowed if they correspond to twice the same single

mutation on each of the two repeats. Minimization stops when there are no more beneficial

mutations. This stopping condition defines a local energy minimum, for which any mutation

increases the energy. The set of sequences which, when chosen as initial conditions, lead to a

given local minimum defines the basin of attraction of that energy mimimum (Fig 4). The size

of a basin corresponds to the number of natural proteins belonging to that basin.

Performing this procedure on natural sequences of consecutive repeat pairs from all three

families yielded a large number of local minima (Fig 5). To control for the phylogenetic bias

that links natural sequences, we repeated this analysis on sequences synthetically generated

from the model (Efull), and obtained very similar results (see S6 Fig for ANK). When ranked

from largest to smallest, the distribution of basin sizes follows a power law (Fig 5A for ANK

and S3A and S4A Figs for LRR and TPR). The energy of the minimum of each basin generally

increases with the rank, meaning that largest basins are also often the lowest. Despite this mul-

tiplicity of local minima, the Monte-Carlo dynamics that we used in previous sections for

learning the model parameters and for estimating the entropy did not get stuck in these min-

ima, suggesting relatively low energy barriers between them.

The partition of sequences into basins allows for the definition of a new kind of entropy

Sconf = −∑b P(b) ln P(b) called configurational entropy, based on the distribution of basin sizes,

Fig 4. A rugged energy landscape is characterized by the presence of local minima, where proteins sequences can

get stuck during the evolutionary process. The set of sequences that evolve to a given local minimum defines the

basin of attraction of that mimimum.

https://doi.org/10.1371/journal.pcbi.1007282.g004
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P(b) = ∑σ2b P(σ), where σ 2 bmeans that energy minimization starting with sequence σ leads

to basin b. This configurational entropy measures the effective diversity of basins, and is thus

much lower than the sequence entropy Sfull, while the difference Sfull − Sconf measures the aver-

age diversity of sequences within each basin. We find Sconf = 5.1 bits for ANK, 6.0 bits for LRR,

Fig 5. Interactions within and between repeats sculpt a rugged energy landscape with many local minima. Local

minima were obtained by performing a zero-temperature Monte-Carlo simulation with the energy function in Eq (2),

starting from initial conditions corresponding to naturally occurring sequences of pairs of consecutive ANK repeats. A,

bottom) Rank-frequency plot of basin sizes, where basins are defined by the set of sequences falling into a particular

minimum. A, top) energy of local minima vs the size-rank of their basin, showing that larger basins often also have

lowest energy. Gray line indicates the energy of the consensus sequence, for comparison. B) Pairwise distance between

the minima with the largest basins (comprising 90% of natural sequences), organised by hierarchical clustering. The

panel right above the matrix shows the size of the basins relative to the minima corresponding to the entries of the

distance matrix. A clear block structure emerges, separating different groups of basins with distinct sequences. C-D)

Same as A) and B) but for single repeats. Since single repeats are shorter than pairs (length L instead of 2L), they have

fewer local energy minima, yet still show a rich multi-basin structure. Equivalent analyses for LRR and TPR are shown

in S3 and S4 Figs.

https://doi.org/10.1371/journal.pcbi.1007282.g005
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and 10.4 bits for TPR. As each basin corresponds to a distinct sub-family within each family

[32], this entropy quantifies the effective number of these subgroups.

While basins are very numerous, they are also not independent of each other. An analysis

of pairwise distances (measured as the Hamming distance between the local minima) between

the largest basins reveals that they can be organised into clusters (panels B of Fig 5, S3 and S4

Figs), suggesting a hierarchical structure of basins, as is common in spin glasses [36].

The impact of repeat-repeat interactions on the multi-basin structure can be assessed by

repeating the analysis on the model of non-interacting repeats, Eir. In that model the two

repeats are independent, so it suffices to study local energy minima of single repeats—local

minima of pairs of repeats follow simply from the combinatorial pairing of local minima in

each repeat. The analyses of basin size distributions, energy minima, and pairwise distances in

single repeats are shown in panels C and D of Fig 5, S3, and S4 Figs. We still find a substantial

number of unrelated energy minima, suggesting again several distinct subfamilies even at the

single-repeat level. For comparison, the configurational entropy of pairs of independent

repeats is 6.9 bits for ANK, 6.7 for LRR, and 7.6 for TPR. While for ANK and LRR repeat-

repeat interactions decrease the configurational entropy, as they do for the conventional

entropy, they in fact increase entropy for TPR, making the energy landscape even more frus-

trated and rugged.

Note that the independent sites model E1 defines a convex energy landscape with a single

local minimum—the consensus sequence—as all constraints hi can be optimized indepen-

dently. To address how the interactions contribute in shaping the sequence space, going from

a convex to a rugged landscape, we repeated the analysis with a limited linear interaction range

W of 3 and 10 (models of Fig 3A). We find that the more interactions we add, the more local

minima we find (S5A and S5B Fig for ANK withW = 3, and C and D forW = 10). The minima

cluster into clearer sub-blocks structure as the interaction range is increased, consistent with

the entropy reduction observed in Fig 3A.

In summary, the analysis of the energy landscape reveals a rich structure, with many local

minima ranging many different scales, and with a hierarchical structure between them.

Distance between repeat families

Lastly, we compared the statistical energy landscapes of different repeat families. Specifically,

we calculated the Kullback-Leibler divergence between the probability distributions P(σ)

(given by Eqs 1 and 2) of two different families, after aligning them together in a single multi-

ple sequence alignment (see Methods).

We find essentially no similarity between ANK and TPR, despite them having similar

lengths: DKL(ANK||TPR) = 227.6 bits, and DKL(TPR||ANK) = 214.1 bits. These values are

larger than the Kullback-Leibler divergence between the full models for these families and a

random polypetide, DKL(ANK||rand) = 122.8 bits, and DKL(TPR||rand) = 157.6 bits. LRR is

not comparable to ANK or TPR as it is much shorter, and a common alignment is impractical.

These large divergences between families of repeat proteins show that different families impose

quantifiably different constraints, which have forced them to diverge into different troughs of

non-overlapping energy landscapes. This lack of overlap makes it impossible to find interme-

diates between the two families that could evolve into proteins belonging to both families.

Discussion

Our analysis of repeat protein families shows that the constraints between amino acids in the

sequences allows for an estimation of the size of the accessible sequence space. The obtained

numbers (ranging from 141 bits to 167 bits, corresponding to 1036 to 1050 sequences) are of
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course huge compared to the number of sequences in our initial samples (*20, 500 for

ANK, *18, 800 for LRR, and *10, 000 for TPR), but comparable to the total number of pro-

teins having been explored over the whole span of evolution, estimated to be 1043 in Ref. [1].

In particular, we have quantified the reduction of the accessible sequence space with respect

to random polypeptides. While most of this reduction is attributable to conservation of resi-

dues at each site, interactions between amino acids, both within and between consecutive

repeats, significantly constrain the diversity of all repeat families. The break-up of entropy

reduction between the three different sources of constraints—within-repeat interactions,

between-repeat interactions, and evolutionary conservation between consecutive repeats—is

fairly balanced, although TPR stands out as having more within-repeat interactions and more

conservation between neighbours, suggesting that it may have had less time to equilibrate.

All studied repeat families have rugged energy landscapes with multiple local energy min-

ima. Note that the emergence of this multi-valley landscape is a consequence of the interac-

tions between amino acids: models of independent positions (E1) only admit a single energy

minimum corresponding to the consensus sequence. This multiplicity of minima allow us to

collapse multiple sequences to a small number of coarse-grained attractor basins. These basins

suggest that mutations between sequences within one coarse-grained basin are much more

likely than mutating into sequences in other basins. In general, our results paint a picture of

further subdivisions within a family, and define sub-families due to the fine grained interaction

structure. Going beyond single families, this analysis suggest a view in which natural proteins

all live in a global evolutionary landscape, of which families would be basins, or clusters of

basins, with a hierarchical structure [32].

This overall picture of the sequence energy landscape is reminiscent of the hierarchical pic-

ture of the structural energy landscape of globular proteins, an overall funneled shape with

tiers within tiers [38]. The form of the energy landscape forcibly shapes the accessible evolu-

tionary paths between sequences. The rugged and further subdivided structure shows that the

uncovered constraints are global, and not just pairwise between specific residues. Therefore

even changing two residues together, as is often done in laboratory experiments, is not enough

to recover the evolutionary trajectories. While other approaches have explored local accessible

directions of evolution [39], our results suggest more global, non local modes of evolution

between clusters.

Interestingly, the sequences that correspond to the energy minima of the landscapes are not

found in the natural dataset. This observation can be either due to sampling bias (we have not

yet observed the sequence with the minimal energy, although it exists), or this sequence may

not have been sampled by nature. Alternatively, there may be additional functional constraint

that are not included in our model to avoid these low energy sequences (e.g. a too stable pro-

tein may be difficult to degrade).

Even more intriguingly, sequences with minimal energy do not correspond to the consen-

sus sequence of the alignment (whose energy is marked by a gray line in panel A of Fig 5, S3,

and S4 Figs), suggesting that the consensus sequence can be improved upon. All three repeat

protein families studied here have been shown to be amenable to simple consensus-guided

design of synthetic proteins. Synthetic proteins based on the consensus sequences of multiple

alignments [40] were found to be foldable and very stable against chemical and thermal dena-

turation. Mutations towards consensus amino acids in the ANK family members have been

experimentally shown to both stabilize the whole repeat-array and they may tune the folding

paths towards nucleating folding in the consensus sites [41, 42]. Our results suggest that inter-

actions may play an additional role in stabilizing the sequences, and propose alternative solu-

tions to the consensus sequences in the design of synthetic proteins.
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Methods

Data curation

We use a previously curated alignment of pairs of repeats for each family [17]: ANK (PFAM id

PF00023 with a final alignment of 20513 sequences of L = 66 residues each), LRR (PFAM id

PF13516 with a final alignment of 18839 sequences of L = 48 residues each) and TPR (PFAM

id PF00515 with a final alignment of 10020 sequences of L = 68 residues each). Those multiple

sequence alignments of repeats were obtained from PFAM 27.0 [6, 7]. In order to improve the

data obtained from the PFAM database, we used original full protein sequences available in

UniProt database [43] to add available information using the headers of the original aligne-

ment. Firstly, to decrease the number of gaps positions, misdetected initial and final amino

acids in repeats were completed with residues from full sequences. Secondly, individual repeats

which appeared consecutively in natural proteins were joined into pairs. Finally, positions

with more than 80% of gaps along the alignment were removed, eliminating in this way

insertions.

From the multiple sequence alignement of each family, they were calculated the observables

that we use to constrain our statistical model. Particularly, we calculated the marginal fre-

quency fi(σi) of an amino acid σi at position i and the joint frequency fij(σi, σj) of two amino

acids σi and σj at two different positions i and j. These quantities were calculated using only

sequences selected by clustering at 90% of identity computed with CD-HIT [44] and then nor-

malizing by the amount of sequences. In this way, the occurrences of residues in every position

are not biased by overrepresentation of proteins in the database. Furthermore, to take into

account the repeated nature of the protein families that we are considering, an additional

observable was calculated, the distribution of sequence overlap between two consecutive

repeats, P(ID(σ)), with IDðσÞ ¼
PL

i¼1
dsi ;siþL .

Model fitting

In order to obtain a model that reproduces the experimentally observed site-dependent

amino-acid frequencies, fi(σi), correlations between two positions, fij(σi, σj), and the distribu-

tion of Hamming distances between consecutive repeats, P(ID(σ)), we apply a likelihood gradi-

ent ascent procedure, starting from an initial guess of the hi(σi), Jij(σi, σj) and λID(σ)

parameters.

At each step, we generate 80000 sequences of length 2L through a Metropolis-Hastings

Monte-Carlo sampling procedure. We start from a random amino-acid sequence and we pro-

duce many point mutations in any position, one at a time. If a mutation decreases the energy

(2) we accept it. If not, we accept the mutation with probability e−ΔE, where ΔE is the difference

of energy between the original and the mutated sequence. We add one sequence to our final

ensemble every 1000 steps. Once we generated the sequence ensemble, we measure its margin-

als f model
i ðsiÞ and f model

ij ðsi; sjÞ, as well as Pmodel(ID(σ)), and update the parameters of Eq 2 fol-

lowing the gradient of the likelihood. The local field and λID(σ) are updated along the gradient

of the per-sequence log-likelihood, equal to the difference between model and data averages:

hiðsiÞ
tþ1
 hiðsiÞ

t
þ �m½fiðsiÞ � f model

i ðsiÞ�; ð11Þ

lIDðσÞ
tþ1
 lIDðσÞ

t
� �ID½PðIDðσÞÞ � PðIDðσÞÞmodel

�: ð12Þ

As the number of parameters for the interaction terms Jij is large (= 212 L2), we force to 0

those that are not contributing significantly to the model frequencies through a L1

Size and structure of the sequence space of repeat proteins

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007282 August 15, 2019 14 / 23

https://doi.org/10.1371/journal.pcbi.1007282


regularisation γ∑ij, σ, τ|Jij(σ, τ)| added to the likelihood. This leads to the following rules of max-

imization: If Jij(σi, σj)t = 0 and jfijðsi; sjÞ � f model
ij ðsi; sjÞj < g

Jijðsi; sjÞ
tþ1
 0: ð13Þ

If Jij(σi, σj)t = 0 and jfijðsi; sjÞ � f model
ij ðsi; sjÞj > g

Jijðsi; sjÞ
tþ1
 �j½fijðsi; sjÞ � f

model
ij ðsi; sjÞ � gsignðfijðsi; sjÞ � f

model
ij ðsi; sjÞÞ�: ð14Þ

If ½Jijðsi; sjÞ
t
þ �j½fijðsi; sjÞ � f model

ij ðsi; sjÞ � gsignðJijðsi; sjÞ
t
Þ��Jijðsi; sjÞ

t
� 0

Jijðsi; sjÞ
tþ1
 Jijðsi; sjÞ

t
þ �j½fijðsi; sjÞ � f

model
ij ðsi; sjÞ � gsignðJijðsi; sjÞ

t
Þ�: ð15Þ

If ½Jijðsi; sjÞ
t
þ �j½fijðsi; sjÞ � f model

ij ðsi; sjÞ � gsignðJijðsi; sjÞ
t
Þ��Jijðsi; sjÞ

t
< 0

Jijðsi; sjÞ
tþ1
 0: ð16Þ

The optimization parameters were set to: �m = 0.1, �j = 0.05, �ID = 10, and γ = 0.001.

To estimate the model error, we compute fiðsiÞ � f model
i ðsiÞ and fijðsi; sjÞ � f model

ij ðsi; sjÞ.

We also calculate the difference of generated and natural repeat similarity distribution for all

the possible repeats Hamming distances, penalized by a factor 5 to better learn the parameter

λID: 5(P(ID(σ)) − P(ID(σ))model). We repeat the procedure above until the maximum of all

errors, jfiðsiÞ � f model
i ðsiÞj, jfijðsi; sjÞ � f model

ij ðsi; sjÞj and 5|P(ID(σ)) − P(ID(σ))model|, goes

below 0.02, as in Ref. [17].

Models with different sets of constraints

Using this procedure we can calculate the model defined in Eq 2 with different interaction

ranges used in the entropy estimation in Fig 3A. We start from the independent model hi(σi) =

log fi(σi). We first learn the model in Eq 2 with J = 0. We then re-learn models with interactions

between sites i, j along the linear sequence such that |i − j|�W, in a seeded way starting from

the previous model. The first and last point of Fig 3 correspond to the independent site model

with λID and the full model in Eq 2

The entropy in Fig 3B is calculated in the same way as in Fig 3, but now interactions are

turned on progressively according to physical distance in the 3D structure rather than the lin-

ear sequence distance. In order to obtain the physical distance between residues we use as a

reference structure the first two repeats of a consensus designed ankyrin protein 1n0r [45, 46],

which have exactly 66 amino-acids. We define the 3D separation between two residues as the

minimum distance between their heavy atoms in the reference structure.

To learn the Potts model without λID (E2) we remove λID from Eq 2 and re-learn the Potts

field using the full model parameters as initial contition.

To learn the single repeat models with and without λ (Eir and Eir,λ, we take as initial condi-

tion the model with interactions below the length of a repeat (W = L − 1, dashed vertical line

in Fig 3), and then learn a model removing all the Jij terms between different repeats. We also

impose that the hi fields and intra-repeats Jij terms are the same in each repeat, and the experi-

mental amino-acid frequencies to be reproduced by the model are the average over the two

repeats of the 1- and 2-points intra-repeats frequencies fi(σi) and fij(σi, σj), such that

f 0i ðsiÞ ¼ f
0
iþLðsiÞ ¼

1

2
fiðsiÞ þ fiþLðsiÞ
� �

; ð17Þ
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and

f 0ijðsi; sjÞ ¼ f 0iþL;jþLðsi; sjÞ ¼

¼
1

2
ðfijðsi; sjÞ þ fiþL;jþLðsi; sjÞÞ;

ð18Þ

if i and j represent sites within the same repeat. In this way we obtain a model for a single

repeat that can be extended to both the repeats in the original set of sequences of our dataset.

Entropy estimation

In practice to calculate the entropy S of the protein families we relate it to the internal energy

E = −log p(σ) and the free energy F = −log Z:

S ¼ hEi � F

¼
X

σ

pðσÞEðpðσÞÞ þ logZ

¼ �
X

σ

pðσÞ log pðσÞ ;

ð19Þ

We generate sequences according to the energy function in Eq 2 and use them to numeri-

cally compute hEi. To calculate the free energy we use the auxilliary energy function:

EaðσÞ ¼ �
X

i

hiðsiÞ þ a �
X

ij

Jijðsi; sjÞ þ lID

" #

; ð20Þ

where the interaction strength across different sites can be tuned through a parameter α that is

changed from 0 to 1. We generate protein sequence ensembles with different values of α and

use them to calculate F as a function of α, Fð1Þ ¼ Fð0Þ þ
R 1

0
da dF

da:

Fð1Þ ¼ Fð0Þ þ
R 1

0
da �

X

ij

Jijðsi; sjÞ þ lID

* +

a

; ð21Þ

where the average over α is taken over the sequences generated with a certain value of α, char-

acterized by the ensemble with probability paðσÞ ¼ ð1=ZaÞe� EaðσÞ. F(0) is the free energy for an

independent sites model:

Fð0Þ ¼ �
X

i

log
X

si

ehiðsiÞ ; ð22Þ

where the first sum is taken over protein sites and the second over all possible amino-acids at a

given site. Eqs 22 and 19 result in the thermodynamic sampling approximation for calculating

the entropy [47]:

S ¼ hEi þ
X

i

log
X

si

ehiðsiÞ �
Z 1

0

da �
X

ij

Jijðsi; sjÞ þ lID

* +

a

: ð23Þ

We generate 80000 sequences using Monte Carlo sampling for the energy in Eq 20 with 50

different α values, equally spaced between 0 and 1 at a distance of 0.02, and then numerically

compute the integral in Eq 23 using the Simpson rule.
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Entropy error

The entropy estimate is subject to three sources of uncertainty: the finite-size of the dataset,

convergence of parameter learning, and the noise in the thermodynamic integration. We esti-

mate the contribution of each of these errors using the independent sites model. In the inde-

pendent sites model each site i is simply described by a multinomial distribution with weights

given by the observed amino-acid frequencies in the datasets. The variance in the estimation

of the frequencies from a finite size sample is Var(fi(σi)) = (pi(σi)(1 − pi(σi)))/Ns and the covari-

ance between the frequencies of different amino-acids σ and σ0 at the same site i is

CovðfiðsiÞ; fiðs0iÞÞ ¼ � ðpiðsiÞpiðs
0
iÞÞ=Ns where Ns is the sample size and pi(σi) are the weights

of the true multinomial distribution sampled. Through error propagation from these quanti-

ties we calculate the variance in the entropy of the independent sites model, to first order in 1/

Ns:

VarðSindepÞ ¼
1

Ns

X

i

X

si

piðsiÞ log piðsiÞ
2
� S2

indep

" #

þO
1

N2
s

� �

:

ð24Þ

Evaluating this equation using the empirical frequencies p = f assuming they are sampled

from an underlying multinomial distribution, gives an estimate of the standard deviation of

0.05. We assume that the interaction terms do not change the order of magnitude of this esti-

mation. Also the standard deviation in the averages in Eq (23) scales as 1=
ffiffiffiffiffi
Ns
p

with Ns =

80000.

The parameter inference is affected not only by noise, but also by a systematic bias depend-

ing on the parameters of the gradient ascent described above and the initial condition that we

chose to start learning from. S1 Fig shows the average entropy of 10 realizations of the learning

and thermodynamic integration procedure for the ANK family and its standard deviation as

error bars. If we learn the models with an increasingW window progressively we get a differ-

ent profile than learning each point starting from the independent model, and above L these

two profiles are more distant than the magnitude of the standard deviation, signalling a sys-

tematic bias. S1 Fig also shows that progressively learning the model results in a better parame-

ters convergence to values that give lower entropy values.

In order to estimate how this bias is reflected in the entropy estimation we take the single-

site amino-acid frequencies produced by the inferred energy function in the last Monte-Carlo

phase of the learning procedure and calculate the corresponding entropy for this independent-

sites model. We compute the absolute value of the difference between this estimate of the

entropy and the independent-sites entropy calculated from the dataset. Again in doing this we

assume that neglecting the interaction terms does not change the order of magnitude of this

error. These procedure results in the errorbars shown in Figs 3 and 2, Table 1, S2 Fig.

We repeat 10 realizations of both the parameter inference procedure and the entropy esti-

mation, and in Fig 3 we show the average entropy of these 10 numerical experiments for the

ANK family where error bars are estimated as explained above to sketch the order of magni-

tude of the error coming from systematic bias in the parameters learning. S1 Fig shows the

mean entropy of ANK as in Fig 3A with the standard deviations of the realizations entropy as

error bars, to give an idea of the combined noise in the thermodynamic integration and in the

gradient descent, starting from the same initial conditions and with the same update parame-

ters (see Section). The combined noise is smaller than the entropy decrease at 33 residues,

showing the decrease is real.
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To further check the robustness of the entropy estimation procedure, we generate two syn-

thetic ANK datasets, one with an independent sites model, the other with a model of two non-

interacting repeats obtained as explained above, and relearn the model from the synthetic

datasets. Repeating the learning and entropy estimation procedure on each on the synthetic

protein families gives results that are consistent with the model used for the dataset generation.

The entropy of the model learned taking an independent sites dataset does not decrease with

the interaction rangeW and the entropy of the model learned taking a non-interacting repeats

dataset does not show any drop around the repeat length.

We repeat the procedure described for the LRR and TPR repeat-proteins families reaching

similar conclusions (S2 Fig).

Calculating the basins of attraction of the energy landscape

In order to characterize the ruggedness of the inferred energy landscapes and the sequence

identity of the local minima, we start from all the sequences in the natural dataset as initial

conditions and for each of them we perform a T = 0 quenched Monte-Carlo procedure.

Repeating this analysis on sequences synthetically generated from Efull yields very similar

results (see S6 Fig for ANK)

We perform this energy landscape exploration learning the parameters of the Hamiltonian

in Eq 2 (refer to Section for the learning procedure), and then set λID = 0 in the energy func-

tion because we want to investigate the shape of the energy landscape due to selection rather

than the phylogenic dependence.

We scan all the possible mutations that decrease the sequence energy and then draw one of

them from a uniform random distribution. The possible mutations are all single point muta-

tions. If the same amino-acid is present in the same relative position in the two repeats we

allow for double mutations that mutate those two positions to a new amino-acid, that is identi-

cal in both repeats, at the same time. We do this so that the phylogenetic biases that are still

partially present in the parameters of the model do not result in spurious local minima biasing

the quenching results. The Monte-Carlo procedure ends when every proposed move results in

a sequence with an increased energy, and the identified sequence is a local minimum of the

energy landscape.

To explore how turning on interactions makes the energy landscape more rugged, we per-

form the same procedure with the Hamiltonian corresponding to two intermediate interaction

ranges in Fig 3A. That is Eq 2, in which Jij was allowed to be non-zero only within a certain

interaction rangeW. We pickedW = 3 andW = 10.

In order to assess what is the role of the inter-repeat interactions we repeat this T = 0

quenched Monte-Carlo procedure on single repeats, with all the unique repeats in the natural

dataset as initial condition. The learning procedure of the Hamiltonian for a single repeat is

explained in Section. In this single repeat case the possible mutations are just the single point

mutations.

Once we have the local minima of the energy landscape, we obtain the coarse-grained min-

ima using the Python Scipy hierarchical clustering algorithm. In this hierarchical clustering

the distance between two clusters is calculated as the average Hamming distance between all

the possible pairs of sequences belonging each to one cluster. As a result we plot the clustered

distance matrix, the clustering dendogram and the basin size corresponding to the distance

matrix entries.

In the end we can repeat the quenching procedure described above for LRR and TPR fami-

lies. The result are sketched in S3 and S4 Figs and lead to similar conclusions as for the ANK

family.
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Kullback-Leibler divergence

The Kullback-Leibler divergence between two families A and B is defined as DKL(A||B) = ∑σ
pA(σ) log2 pB(σ)/pA(σ). We can substitute the sequence ensembles for ANK and TPR in the

definition of the probabilities obtaining:

DKLðANKjjTPRÞ ¼ hETPR � EANKiANK þ FANK � FTPR ; ð25Þ

DKLðTPRjjANKÞ ¼ hEANK � ETPRiTPR þ FTPR � FANK ; ð26Þ

where the notation hiANK means that the average is calculated over sequences drawn from the

ANK ensemble: PðσÞANK ¼ ð1=ZANKÞe� EðσÞANK . Therefore hETPRiANK is the average TPR energy

function evaluated, via the structural alignment between the two families, on 80000 sequences

generated through a Monte Carlo sampling of the ANK model 2 (and analogously for

hEANKiTPR). The terms FANK and FTPR are calculated in the same way as when estimating the

entropy through Eqs 21 and 22, as explained in Section.

For the control against a random polypeptide of length L we use DKL(FAM||rand) = log Λ −
S(FAM), where Λ = 21L is the total number of possible sequences of length L.

Supporting information

S1 Fig. Reproducibility of entropy estimation. Entropy as a function of the maximum linear

interaction rangeW along the sequence. Green curve: entropy of the ANK family with error

bars calculated as standard deviations over 10 model learning realizations, where models are

learned by incrementally adding more interaction terms asW is increased, taking the model

learned atW − 1 as initial condition. This plot is the same as in Fig 3A but with the different

error bar estimates, showing that our results are robust to the details of error estimation. Red

curve: entropy obtained after de novo learning for eachW, starting from a non-interacting

model as initial condition. With those initial conditions the learning gets stuck, leading to sys-

tematically overestimating the entropy and missing the second entropy drop atW = L − 1. See

Section for details of the learning and entropy estimation procedure.

(TIFF)

S2 Fig. Range dependence of entropy in LRR and TPR families. Entropy of the LRR (A) and

TPR (B) family as a function of the maximum interaction distanceW along the sequence. The

entropy of the model decreases as a more interactions are added and they constrain the space

of possible sequences. As with ANK, the entropy first drops, plateaus, then drops again at the

distance corresponding to homologous positions along the two repeats (W = L − 1 = 23 for

LRR, and 33 for TPR, dashed line). This second drop indicates that there is a typical distance

along the sequence, corresponding to the repeat length, where interactions due to structural

properties constrain the sequence ensemble. The error bars are estimated approximately from

errors in learning (see Section). Entropies are averaged over 5 realizations of the learning and

entropy estimation procedure.

(TIFF)

S3 Fig. Analysis of local energy minima for pairs of consecutive repeats of LRR. Energy

minima were obtained by zero-temperature dynamics. Sequences falling into a given mini-

mum with these dynamics define its basin of attraction. A, bottom) rank-frequency plot of the

sizes of the basins of attraction. A, top) energy minimum of each basin. Gray line shows the

energy of the consensus sequence B) Pairwise Hamming distances between energy minima,

organised by hierarchical clustering. The panel right above the matrix shows the the size of the
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basins relative to the minima corresponding to the entries of the distance matrix. C and D)

Same analysis as A) and B), but for single LRR repeats.

(TIFF)

S4 Fig. Analysis of local energy minima for pairs of consecutive repeats of TPR. Energy

minima were obtained by zero-temperature dynamics. Sequences falling into a given mini-

mum with these dynamics define its basin of attraction. A, bottom) rank-frequency plot of the

sizes of the basins of attraction. A, top) energy minimum of each basin. Gray line shows the

energy of the consensus sequence B) Pairwise Hamming distances between energy minima,

organised by hierarchical clustering. The panel right above the matrix shows the the size of the

basins relative to the minima corresponding to the entries of the distance matrix. C and D)

Same analysis as A) and B), but for single TPR repeats.

(TIFF)

S5 Fig. Interactions within repeats increase the ruggedness of the energy landscape. Local

minima were obtained by performing a zero-temperature Monte-Carlo simulation with the

energy function in Eq (2) with non-zero Jij within linear interaction rangeW, starting from

initial conditions corresponding to naturally occurring sequences of pairs of consecutive ANK

repeats, forW = 3 (A and B) andW = 10 (C and D). See Fig 5 for the full model (W = 2L). A

and C, bottom: Rank-frequency plot of basin sizes, where basins are defined by the set of

sequences falling into a particular minimum. A and C, top: energy of local minima vs the size-

rank of their basin. Gray line indicates the energy of the consensus sequence, for comparison.

B and D: Pairwise distance between the minima with the largest basins (comprising 90% of

natural sequences), organised by hierarchical clustering. The panel right above the matrix

shows the size of the basins relative to the minima corresponding to the entries of the distance

matrix. The block structure starts emerging as interactions are turned on (D versus B).

(TIFF)

S6 Fig. Analysis of local energy minima from generated pairs of consecutive repeats of

ANK. Energy minima were obtained by zero-temperature dynamics starting from sequences

generated in silico from Efull. Sequences falling into a given minimum with these dynamics

define its basin of attraction. A, bottom) rank-frequency plot of the sizes of the basins of attrac-

tion. A, top) energy minimum of each basin. Gray line shows the energy of the consensus

sequence B) Pairwise Hamming distances between energy minima, organised by hierarchical

clustering. The panel right above the matrix shows the size of the basins relative to the minima

corresponding to the entries of the distance matrix. C and D) Same analysis as A) and B), but

for single ANK repeats.

(TIFF)
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