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2Physics Division, National Center for Theoretical Sciences, Hsinchu, 30013, Taiwan
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We reconsider a key point in semiconductor physics, the splitting of the valence band states
induced by the spin-orbit interaction, through a novel approach which uses neither the group theory
formalism, nor the usual L · S formulation valid for atoms but conceptually incorrect for periodic
lattices, the angular momenta L and J having no meaning due to the absence of spherical symmetry.
We show that for zinc-blende structures, the valence band eigenstates resulting from spin-orbit
coupling are uniquely determined by: (i) the equivalence of the (x, y, z) crystal axes, (ii) the three-
fold degeneracy of the valence band. The fact that these two conditions are also fulfilled by atomic
p states allows us to understand why the spin-orbit eigenstates for three-fold atomic and valence
electrons have exactly the same structure, albeit the drastic differences in the potential and electronic
symmetries. We also come back to the commonly accepted understanding of the exciton-photon
interaction in terms of bright and dark excitons having total angular momenta J = (1, 2) respectively
and present a simple derivation of this interaction which only relies on spin conservation.

I. INTRODUCTION

Spin-orbit coupling is a relativistic effect that is easy
to study in the atomic physics context1. Regrettably,
the same approach is commonly used for semiconductor
crystals which do not have the spherical symmetry as
do atoms2–5. In practical terms, it means that the or-
bital angular momentum L associated with the spherical
harmonics Y`,`z (θ, ϕ), and the total angular momentum
J = L + S, have no meaning for electrons in a periodic
crystal. Yet, taking the valence band in zinc-blende-like
semiconductors as a ` = 1 atomic p state leads to the
same spin-orbit eigenstates and energy splittings as the
ones correctly derived from group theory6. In view of
the physically obscure derivation based on group theory,
it is tempting to adopt a pragmatic attitude by forget-
ting about the inconsistency of using the total angular
momentum (j, jz) as quantum indices to characterize the
spin-orbit eigenstates of semiconductor crystals.

The purpose of this work is to understand why the
spin-orbit eigenstates for three-fold level in a zinc-blende-
like semiconductor crystal with cubic symmetry7, have
the same structure as the j = (3/2, 1/2) atomic spin-
orbit eigenstates, without resorting to group theory and
the hard-to-grasp classification of the various Γn bands.
Here, we derive the effects of the spin-orbit coupling on
crystal structures from scratch, by using only the fact
that the valence band is three-fold and the (x, y, z) crystal
axes are equivalent in a zinc-blende structure.

To better understand the deep reason why the atomic
procedure incorrectly used for semiconductor crystals
still leads to the correct spin-orbit eigenstates, we first
rederive the spin-orbit splitting for atoms using two dif-
ferent methods: (i) in the first, standard, method, we
from the very first line, make use of the spherical sym-
metry of the electrostatic potential V(r) = V(r) felt by
the electrons, as induced by the nucleus. This readily
leads us to write the spin-orbit coupling in terms of L ·S
and then of J; (ii) in the second method, we propose

a pedestrian approach that does not start with any as-
sumption on the symmetry of the potential. This sec-
ond method is the one that can be used for semiconduc-
tor crystals because their electrostatic potential V(r) is
not spherically symmetric, but has the lattice periodic-
ity, V(r) = V(r + a), with a being a lattice vector. We
show that the Clebsch-Gordan coefficients which relate J
to L states and provide the spin-orbit atomic eigenstates,
appear in a natural way for semiconductor valence-band
eigenstates having a cubic symmetry. This result is not
trivial at all because the electrostatic potentials felt by
atomic and semiconductor electrons do not have the same
symmetry; moreover, atomic p states have an odd parity
while orbital states for valence electrons can be even or
odd.

Our pedestrian approach provides a transparent way
to understand the structure of the semiconductor valence
band, and its further coupling to photons, as necessary
to correctly predict the very rich pattern of polarization
effects that result from band symmetries. In particular,
the spin-orbit coupling does not mix up and down spins
in two valence states only, these two states being the ones
out of which the two dark excitons are constructed.

The paper is organized as follows: in Sec. II, we re-
call the microscopic expression of the spin-orbit inter-
action and provide a short derivation of the spin-orbit
interaction along Thomas’ understanding8, with details
given in Appendix A. Section III deals with atoms. The
spin-orbit eigenstates are derived in two different ways,
the standard one that uses the total angular momen-
tum J being definitely the smartest. Section IV deals
with semiconductor crystals. We consider three-fold de-
generate states with periodic symmetry and even or odd
parity. We show that the zinc-blende-like semiconductor
spin-orbit eigenstates have exactly the same structure as
the ones of atomic p states, and that this structure does
not depend on the valence state parity. In Sec. V, we
provide some key results on spin-orbit eigenstates within
the language of group theory. We also provide a physical
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understanding that a posteriori explains the similarity in
the spin-orbit eigenstates of atoms and cubic semiconduc-
tors. We discuss some implications for two-dimensional
materials. We finally discuss the importance of sepa-
rating the (intrinsic) spin subspace from the subspace in
which electrons and photons move. This will in particular
avoid the incorrect understanding of the exciton-photon
interaction in terms of photons having a spin S = (±1, 0)
and dark excitons having a spin S = ±2. We ultimately
conclude.

II. SPIN-ORBIT INTERACTION

The general expression of the spin-orbit interaction for
an electron having an electrostatic energy V(r), reads as1

Hso = λso

(−→
∇V(r)× p

)
· S, (1)

where p = (~/i)~∇ is the electron momentum opera-
tor and S = (~/2)~σ is the electron spin operator, the
components of the ~σ operators being the Pauli matrices,
(σx, σy, σz). The λso prefactor is given by

λso =
1

2m2
0c

2
, (2)

where m0 is the free electron mass and c is the speed of
light. We wish to stress that the spin-orbit interaction
given in Eq. (1) is valid for whatever potential V(r). This
general expression reduces to the well-known L·S formula
in the case of atoms due to the V(r) spherical symmetry.
In the case of crystals having a periodic symmetry, we
must stay with Eq. (1), which is less convenient to handle
than the L · S form.

The physical origin of the 1/2 factor contained in λso
has puzzled the leading physicists of the 1920’s for quite a
long time9. Appendix A presents a detailed derivation of
this factor along Thomas’ idea8. It relies on a succession
of different physical effects that we find of interest to
outline below.

(1) An electron with mass m0, charge e = −|e|, and
spin S, has a magnetic moment MS ,

MS = ge
e

2m0c
S , (3)

the Landé factor ge being equal to 2 for the electron spin.
(2) In an external magnetic field Hext, the electron

energy associated with its MS magnetic moment reads

−MS ·Hext = −ge
e

2m0c
S ·Hext . (4)

(3) We now consider an electron moving with a veloc-
ity v = p/m0 in the laboratory frame F in which exists
an electromagnetic field (Hext,Eext). The Lorentz trans-
formation gives the magnetic part of this field in a frame

F′ that moves at a velocity v with respect to the F frame,
as

Hext − v
c ×Eext√

1− v2/c2
' Hext +

Eext × v

c
. (5)

(4) In the F′ frame, the electron also feels an electric
force, which at lowest order in v/c is equal to eEext. So,
the charged electron feels an acceleration a given by

m0a = eEext . (6)

Consequently, the frame in which the electron is at rest
is not the F′ frame that moves at a constant velocity v,
but a frame that accelerates. As a result, Eq. (5), which
results from a Lorentz transformation valid for constant
velocity, does not give the correct magnetic field felt by
the electron.

(5) It is possible to solve this problem by using the
Dirac equation10. This equation gives relativistic correc-
tions associated with spin, up to the 1/c2 order, as

−S ·
[
e

m0c
Hext +

e

2m0c2
Eext × v

]
. (7)

The second term corresponds to the spin-orbit interac-
tion. It is absent from the Pauli equation (see Eq. (A16)),
which only is correct up to the 1/c order.

(6) Actually, it is possible to bypass relativistic quan-
tum theory by using Thomas’ argument8. It relies on
the keen observation that the acceleration of the frame
in which the electron is at rest, corresponds to a rotation
with respect to the laboratory frame, with an angular
precession velocity given by

Ωacc = −v× a

2c2
(8)

(see Appendix A 4 for details on this key result).
(7) The derivation then follows by noting that an elec-

tron spin S in a magnetic field H along the z direction
has an energy −MS · H ≡ ωHSz that makes it rotate
around H with a frequency ωH which corresponds to an
angular precession velocity

ΩH = −MS

S
H . (9)

So, this magnetic field H gives to the spin-S electron a
rotational kinetic energy that can be written as S ·ΩH .
Conversely, the angular precession velocity Ωacc induced
by the electron acceleration a in Eq. (6) corresponds to
an effective magnetic field which gives the spin-S electron
an energy

S ·Ωacc = − 1

2c2
S ·
(
v× eEext

m0

)
=

e

2m0c2
S · (Eext × v) .

(10)
This electron energy has to be added to the energy

due to the magnetic field given in Eq. (5). So, the total
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energy of a spin-S electron moving with a velocity v in a
(Hext,Eext) field reads as

− e

2m0c
S ·
[
geHext + ge

Eext × v

c
− Eext × v

c

]
. (11)

Since ge = 2, while the electrostatic energy eEext can
be written in terms of the electrostatic potential V(r)

as −e
−→
∇V(r), the second and third terms of the above

equation combine to give the spin-orbit interaction as

− e

2m0c2
S ·Eext × v =

1

2m2
0c

2
S · (
−→
∇V(r)× p) , (12)

in agreement with Eqs. (1) and (2). The 1/2 prefactor
directly follows from Ωacc given in Eq. (8). To prove
this crucial result is rather lengthy; this is why we have
relegated its detailed derivation to Appendix A 4.

III. SPIN-ORBIT SPLITTING FOR ATOMS

In the case of atoms, the electrostatic potential due
to the nuclear charge has spherical symmetry. So, for
V(r) = V(at)(r),

−→
∇V(r) =

r

r

dV(at)(r)

dr
. (13)

The spin-orbit interaction in Eq. (1) then reduces to

H(at)
so = λso(r)

(
r× p

)
· S , (14)

where λso(r) is a positive scalar that depends on r as

λso(r) =
λso
r

dV(at)(r)

dr
= λso

r

r2
·
−→
∇V(at)(r) . (15)

Indeed, the electrostatic potential V(at)(r) felt by the
electron is attractive, that is, negative, being minimum
for r small.

A. Derivation using the standard L · S formulation

• The standard way to derive the spin-orbit energy
splitting of atomic levels is to note that (r× p) is just L
the electron orbital angular momentum1,11,12. So, Eq. (1)
also reads

H(at)
so = λso(r) L · S =

1

2
λso(r)(J

2 − L2 − S2) , (16)

where J = L + S is the total angular momentum of the
atomic electron. This spin-orbit coupling splits the (2×
3)-fold degeneracy of an electron with spin ±1/2 in a
p atomic level, into four-fold and two-fold states which
correspond to |j, jz〉 with j = (3/2, 1/2) and −j 6 jz 6 j.
Since all states are made of ` = 1 orbital states and

s = 1/2 spin states, the above equation gives for the two
different j values,

L · S |j, jz〉 =
~2

2

[
j (j+1)−1(1+1)−1

2

(
1

2
+1

)]
|j, jz〉 ,

(17)
the bracket being equal to 1 for j = 3/2 and to −2 for j =

1/2. The above equation shows that theH
(at)
so eigenstates

correspond to the four-fold |3/2, jz〉 states and the two-
fold |1/2, jz〉 states.
• The normalized |j, jz〉 states read in terms of the
|`z = (±1, 0)〉⊗ |sz = ±1/2〉 states as (see Appendix B 2)∣∣∣∣32 , 3η

2

〉
= |η〉 ⊗

∣∣∣η
2

〉
, (18a)∣∣∣∣32 , η2

〉
=

1√
3

(
|η〉 ⊗

∣∣∣−η
2

〉
+
√

2 |0〉 ⊗
∣∣∣η
2

〉)
,(18b)∣∣∣∣12 , η2

〉
=

1√
3

(√
2 |η〉 ⊗

∣∣∣−η
2

〉
− |0〉 ⊗

∣∣∣η
2

〉)
.(18c)

for η = ±1. By using Landau-Lifschitz phase factor for
the Y`,`z (θ, ϕ) spherical harmonics13, the |`z = (±1, 0)〉
states read in terms of the |λ = (x, y, z)〉 states as

|±1〉 =
∓i |x〉+ |y〉√

2
, (19a)

|0〉 = i |z〉 . (19b)

The orbital part of the atomic state (n, `, `z), where
n is the principal quantum number, corresponds to
Rn,`(r) Y`,`z (θ, ϕ), which gives, for the atomic p states
labeled by λ,

〈r|λ〉 = i

√
3

4π

λ

r
Rn,`=1(r) . (20)

Note that the state norm

〈λ|λ〉 =
3

4π

∫
d3r

λ2

r2
|Rn,1(r)|2 =

1

4π

∫
d3r|Rn,1(r)|2

(21)
does not depend on λ; so, this norm is also equal to the
norms 〈`z|`z〉 with `z = (0,±1).

Using Eq. (17), this gives the eigenvalues of the spin-
orbit operator as

〈j, jz|H(at)
so |j, jz〉

〈j, jz|j, jz〉
(22)

= Oj
~2

2

∫
d3r λso(r)|Rn,1(r)|2∫

d3r |Rn,1(r)|2
≡ Oj Λ(at)

so ,

with Oj equal to 1 for j = 3/2 and to −2 for j = 1/2.

All this shows that the spin-orbit interaction, H
(at)
so , in-

duces a splitting between the (2× 3)-fold atomic p states

into (4+2) eigenstates having an energy difference 3Λ
(at)
so .

Since Λ
(at)
so is positive, the four j = 3/2 states have an en-

ergy increase equal to Λ
(at)
so , while the other two j = 1/2

states have an energy decrease equal to −2Λ
(at)
so , making

the average energy unchanged by the spin-orbit interac-
tion.
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B. Pedestrian approach

• The fact that V(r) depends only on r readily leads to
r×p, that is, L, and ultimately J. However, for electrons
in a periodic lattice, V(r) is periodic, V(r) = V(r+a); so,
we must find a procedure to derive spin-orbit eigenstates
that does not use the orbital angular momentum L as in
Eq. (14). To this end, we introduce the two vectors

W(r) =
−→
∇V(r) , ~L(r) = W(r)× p . (23)

The spin-orbit interaction given in Eq. (1) then reads

Hso = λso ~L · S = λso

(L+1S−1 + L−1S+1

2
+ LzSz

)
,

(24)
with L±1 = Lx ± iLy, and similarly for S±1.

As S±1 |η/2〉 = (~/2)
(
1 ∓ η

)
|−η/2〉 while Sz |η/2〉 =

(η~/2) |η/2〉, the spin part of Hso leads to

Hso |η/2〉 = λso
~
2

(
ηLz |η/2〉+ Lη |−η/2〉

)
. (25)

This evidences a key point of the derivation: the orbital
operator associated with a spin flip is Lη.
• Next, we turn to the orbital part. The wave functions

of the ~L |λ〉 states for 〈r|λ〉 defined in Eq. (20), appear
as

〈r| Lx |x〉 =
~
i

(
Wy

∂

∂z
−Wz

∂

∂y

)
〈r|x〉 (26)

=
~
i

xyz

r
f ′
[
Wy

y
− Wz

z

]
,

where f(r) = i
√

3/4π Rn,1(r)/r and f ′ = df(r)/dr. In
the same way,

〈r| Ly |x〉 =
~
i

(
fWz +

x2z

r
f ′
[
Wz

z
− Wx

x

])
, (27a)

〈r| Lz |x〉 =
~
i

(
−fWy +

x2y

r
f ′
[
Wx

x
− Wy

y

])
.(27b)

• For a spherical potential, V(r) = V(at)(r), the com-
ponents of W(r) are such that

W
(at)
x

x
=
W

(at)
y

y
=
W

(at)
z

z
=

1

r

dV(at)(r)

dr
=
λso(r)

λso
. (28)

This makes all f ′ factors in 〈r| L(at)
λ′ |λ〉 equal to zero.

So, we are left with 〈r| L(at)
x |x〉 = 0, and 〈r| L(at)

y |x〉
and 〈r| L(at)

z |x〉 respectively proportional to fW
(at)
z and

fW
(at)
y ; the other terms are obtained from cyclic permu-

tations.
Next, we note that fW

(at)
z = 〈r|z〉λso(r)/λso, but we

cannot readily conclude that L(at)
y acting on |x〉 gives |z〉

because λso(r) depends on r. Actually, what we need to

do is diagonalize the spin-orbit interaction H
(at)
so in the

degenerate subspace |λ〉 ⊗ |η/2〉. In this subspace,

(
~L(at) |λ〉

)
proj

=
∑

λ′=(x,y,z)

|λ′〉 〈λ′|
〈λ′|λ′〉

~L(at) |λ〉 . (29)

Using Eq. (28), we find that 〈λ′| L(at)
λ′′ |λ〉 is equal

to zero when any two of (λ, λ′, λ′′) are the same, like

〈λ| L(at)
λ′′ |λ〉 = 0. The non-zero terms follow by cyclic

permutations from

〈z| L(at)
y |x〉 ≡ ~

i
W(at) , (30)

where W(at) reads, using Eqs. (22) and (28),

W(at) =
1

4π

∫
d3r |Rn,1(r)|2 λso(r)

λso
=

2

~2
Λ
(at)
so

λso
〈λ|λ〉 .

(31)
This leads, for the (|±1〉 , |0〉) states defined in Eq. (19),
to

〈0| L(at)
z |0〉 = 〈η′| L(at)

z |0〉 = 〈η′| L(at)
±1 |η〉 = 0,

〈η′| L(at)
z |η〉 = ~W(at) η

′ + η

2
, (32)

〈η′| L(at)
η |0〉 = ~W(at) 1 + η′η√

2
,

which yield, with the help of Eq. (29),

0 =
(
L(at)
z |0〉

)
proj

,

2

~
Λ
(at)
so

λso

1− η′η√
2
|0〉=

(
L(at)
η′ |η〉

)
proj

, (33)

2

~
√

2
Λ
(at)
so

λso
|η〉 =

(
L(at)
η |0〉

)
proj

=
√

2η
(
L(at)
z |η〉

)
proj

.

Using Eq. (25), we end with H
(at)
so acting in the degener-

ate |λ〉 ⊗ |η/2〉 subspace as

H(at)
so |η′〉 ⊗

∣∣∣η
2

〉
= Λ(at)

so

(
ηη′ |η′〉 ⊗

∣∣∣η
2

〉
(34)

+
1− ηη′√

2
|0〉 ⊗

∣∣∣−η
2

〉)
,

H(at)
so |0〉 ⊗

∣∣∣η
2

〉
=
√

2Λ(at)
so |η〉 ⊗

∣∣∣−η
2

〉
. (35)

Equation (34) taken for η = η′ readily shows that the

|η〉 ⊗ |η/2〉 states for η = ±1 are eigenstates of H
(at)
so

with eigenvalue Λ
(at)
so , in agreement with Eq. (22). This

equation also shows that the other four eigenstates are
linear combinations of |η〉⊗|−η/2〉 and |0〉⊗|η/2〉, namely

|Ψ〉 = A |0〉 ⊗
∣∣∣η
2

〉
+B |η〉 ⊗

∣∣∣−η
2

〉
. (36)

By noting that

H(at)
so |Ψ〉 = Λ(at)

so

{
A
√

2 |η〉 ⊗
∣∣∣−η

2

〉
(37)

+B
(
− |η〉 ⊗

∣∣∣−η
2

〉
+
√

2 |0〉 ⊗
∣∣∣η
2

〉 )}
,
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we see that |Ψ〉 is eigenstate of H
(at)
so with the eigenvalue

γΛ
(at)
so , provided that γB = −B + A

√
2 and γA = B

√
2.

Non-zero (A,B) values, solution of these two linear ho-
mogeneous equations, impose γ2 +γ−2 = 0, which gives
γ = (1,−2) and A = (B

√
2,−B/

√
2). It is easy to check

that the corresponding four |Ψ〉 states are |j = 1/2, η/2〉
and |j = 3/2, η/2〉 given in Eq. (18), with the spin-orbit
shifts given in Eq. (22).

Obviously, this approach is not as smart as the one
that uses angular momentum operators J and L. How-
ever, since J has no meaning for electrons in a periodic
lattice, an approach that does not rely on J and L is
mandatory. Let us now see what this second approach
gives for the spin-orbit eigenstates of semiconductor crys-
tals with cubic symmetry.

IV. SPIN-ORBIT SPLITTING FOR
SEMICONDUCTOR CRYSTALS

The first problem is to understand the consequences
of having the brackets in Eqs. (26) and (27) different
from zero, as for potentials without spherical symmetry.
The second problem is to understand the consequences of
the valence state parity because atomic p states are odd,
while for zinc-blende structures, the three-fold valence
orbital states do not have a defined parity since these
structures do not possess inversion symmetry2,6,14,15.

A. Periodic potential

To derive the effect of the spin-orbit interaction given
in Eq. (1) for a periodic crystal, we fundamentally follow
the procedure used in Sec.III B, that is, we write the spin-

orbit interaction Hso = λso ~L(r) · S as in Eq. (24) with
~L(r) defined in Eq. (23), and we handle the periodicity
of the potential through its expansion

V(r) =
∑
Q

VQeiQ·r (38)

on reciprocal lattice vectors Q that are such that eiQ·a =
1, i.e., Q vectors quantized in 2π/|a|, in order to fulfill
V(r) = V(r + a). This gives

W(r) =
−→
∇V(r) = i

∑
Q

QVQeiQ·r . (39)

B. Valence and conduction states

• The s atomic levels are non-degenerate, with an even
wave function ψn00(r), while the p atomic levels are three-
fold, with an odd wave function reading as ψn,1,λ(r) for
λ = (x, y, z), or any linear combination, (x, y, z) being
arbitrary orthogonal axes due to the spherical symmetry
of the problem.

In a crystal, there are two types of non-degenerate
states improperly called s: one type is even as s atomic
levels, the other type is odd. Similarly, there are two
types of degenerate states improperly called p; they both
are three-fold but one type is odd like p atomic levels,
while the other type is even. Due to the lack of defined
parity, the semiconductor conduction and valence bands
are linear combinations of these even and odd states.
• Electrons in a periodic crystal are characterized by a

momentum k and a band index n. Their wave functions
read

〈r|n; k〉 =
eik·r

L3/2
un;k(r) (40)

for a sample volume L3. This wave function contains
a eik·r/L3/2 part with momentum k quantized in 2π/L,
that just corresponds to a plane wave in free space, and
a un;k(r) part that has the lattice periodicity, un;k(r) =
un;k(r + a).

We look for the shift of the band extrema induced
by the spin-orbit interaction. In a GaAs-like direct gap
semiconductor16,17, these extrema are located at k = 0,
called Γ point. To handle the un;k=0(r) periodicity, we
do as for V(r), that is, we expand it on the reciprocal
lattice vectors, eiK·a = 1. Equation (40) then gives

〈r|n; k = 0〉 =
1

L3/2

∑
K

Un;KeiK·r . (41)

• Next, we note that the valence states (n = v) are
characterized by an additional three-fold index λ that
can still be labeled as (x, y, z), but (x, y, z) are now the
three axes of the cubic crystal at hand.

(i) Odd valence states are such that 〈r|λ, v; 0〉 =
−〈−r|λ, v; 0〉. In the reciprocal space, this implies
Uλ,v;K = −Uλ,v;−K that can be written as

Uλ,v;K = KλGo(K) , (42)

where K = |K|.
(ii) Even valence states are such that 〈r|λ, v; 0〉 =
〈−r|λ, v; 0〉. This implies Uλ,v;K = Uλ,v;−K that can be
written as

Uλ,v;K =
KxKyKz

Kλ
Ge(K) . (43)

C. ~L(r) in the degenerate subspace

To get the spin-orbit interaction acting on the three-
fold degenerate states |λ, v; 0〉, we first have to calculate

the matrix elements of ~L(r), defined in Eq. (23), in this
subspace.

By noting that

〈r|p |λ, v; 0〉 =
~
i

−→
∇〈r|λ, v; 0〉 =

~
L3/2

∑
K

KUλ,v;K eiK·r ,

(44)
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we readily get, for W(r) given in Eq. (39),

〈r| ~L(r) |λ, v; 0〉 = 〈r|W(r)× p |λ, v; 0〉 (45)

=
i~
L3/2

∑
Q,K

(
Q×K

)
VQ Uλ,v;K ei(K+Q)·r .

Next, as in Eq. (29), we look for ~L(r) acting in the
degenerate subspace |λ, v; 0〉, namely

~L(r) |λ, v; 0〉proj =
∑

λ′=(x,y,z)

|λ′, v; 0〉 〈λ′, v; 0|
〈λ′, v; 0|λ′, v; 0〉

~L(r) |λ, v; 0〉 .

(46)
The above matrix element follows from Eq. (45) as

〈λ′, v; 0| ~L(r) |λ, v; 0〉 = i~
∑
Q

∑
K′K

(
Q×K

)
VQ

×U∗λ′,v;K′Uλ,v;K
∫

d3r

L3
ei(K+Q−K′)·r (47)

= i~
∑
K′,K

VK′−KU∗λ′,v;K′Uλ,v;K (K′−K)×K ,

with (K′ −K)×K reducing to K′×K.
To go further, we note that the electrostatic potential

of an electron in a cubic crystal with (x, y, z) axes, fulfills

VQx,Qy,Qz = VQx,Qz,Qy = · · · = V−Qx,Qy,Qz = · · · (48)

which corresponds in real space to V(x, y, z) =
V(x, z, y) = · · · = V(−x, y, z) = · · · . We then find that,
like for atoms, all the matrix elements in Eq. (47) are
equal to zero except

〈z, v; 0| Ly(r) |x, v; 0〉

= i~
∑
K′K

VK′−KU∗z,v;K′(K′×K)yUx,v;K

≡ i~ W , (49)

and similar terms obtained from cyclic permutations.

D. On the state parity

Equation (49) holds for even and odd states. To show
it, let us consider 〈λ′, v; 0| Lx(r) |λ, v; 0〉 for three-fold
states having an odd parity, that is, for Uλ,v;K given in
Eq. (42). This matrix element then appears as

〈λ′, v; 0| Lx(r) |λ, v; 0〉 = i~
∑
K′,K

G∗o(K
′)Go(K) (50)

×K ′λ′KλVK′−K(K ′yKz −K ′zKy) .

When λ′ = λ, the above quantity is equal to zero for
VQx,Qy,Qz

= VQx,−Qy,Qz
(or VQx,Qy,Qz

= VQx,Qy,−Qz
),

as seen by changing Ky into −Ky and K ′y into −K ′y.
When λ′ = x 6= λ, it also is equal to zero for VQx,Qy,Qz

=
V−Qx,Qy,Qz

, as seen by changing Kx into −Kx and K ′x
into −K ′x.

The same argument holds for three-fold states having
even parity, that is, for Uλ,v;K given in Eq. (43). Note
that linear combinations of even and odd valence states
also give zero because the ~L(r) operator is an even oper-

ator, ~L(−r) = ~L(r).
The last step is to diagonalize the spin-orbit interaction

Hso for even or odd valence states. This diagonalization
follows exactly the same procedure as the one for atoms
in Sec.III B. Therefore, whatever their parity, the three-
fold orbital states (λ, v) with (±1/2) spin split into two
degenerate states and four degenerate states, these states
having exactly the same structure as the ones for atoms
given in Eq. (18).

V. DISCUSSION

A. Spin-orbit splitting from group theory

The group theory formalism and its tables of
characters18,19 commonly proposed to properly study the
spin-orbit coupling in semiconductor crystals6,20 are, to
our opinion, too cumbersome to deal with just three-fold
orbital states. Still, in more complicated structures, us-
ing group theory may remain the only convenient way to
tackle the problem. While this work purposely avoids us-
ing group theory, we nevertheless wish, for completeness,
to recall some key results within this language.

Orbital states belong to the so-called “simple group”.
The non-degenerate orbital state, which for atoms corre-
sponds to ` = 0, is called Γ1 in the case of semiconduc-
tor crystals, while the three-fold orbital state which for
atoms corresponds to ` = 1, is called Γ5.

Including the spin degrees of freedom transforms the
simple group into the “double group”. The Γ1 state of
the simple group gives rise to two states in the double
group, called Γ6, which for an atom would correspond to
the two j = 1/2 states (see Fig. 1). In the same way,
the three Γ5 states of the simple group, give rise to six
states in the double group, which are further split by the
spin-orbit interaction into four states called Γ8, which
correspond to the four j = 3/2 states of atoms, and into
two states called Γ7, which correspond to the two j = 1/2
states of atoms. Note that despite the fact that they
correspond to the same atomic quantum number j = 1/2,
the Γ6 and Γ7 states are fundamentally different because
they are made of orbital states that respectively are non-
degenerate and three-fold degenerate. Being eigenstates
of the spin-orbit interaction with different eigenvalues,
these states are orthogonal.

B. Physical understanding

The fact that the eigenstates of the spin-orbit interac-
tion for three-fold orbital states have the same structure
regardless of the state parity, odd or even, and the po-
tential symmetry, spherical or periodic, can be proven in
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simple group double group 

Γ1				«	l =	0	»	 Γ6				«	j =	1/2	»	

Γ5				«	l =	1	»	

Γ8				«	j =	3/2	»	

Γ7				«	j =	1/2	»	

FIG. 1: Relevant semiconductor states according to the group
theory irreducible representations and their denomination
within atomic notations.

a mathematically rigorous way. For a spherical potential
as in the case of atoms, the state symmetry is handled in
the real space, while for a periodic potential as in the case
of semiconductor crystals, it is handled in the reciprocal
space. Similarity in these dual spaces is largely due to the
fact that the spin-orbit eigenstates are derived for elec-
trons having two spin states only, |+1/2〉 and |−1/2〉, as
seen from Eq. (25). So, the spin can either stay the same
or flip. For spin states quantized along the z direction,
the orbital operator associated with spin conservation is
Lz, while the orbital operator associated with spin flip is
Lη = Lx + iηLy with η = ±1. In a bulk cubic crystal,
the physically relevant orbital states for Lz and Lη are

|0〉 = i |z〉 and |η〉 = (−iη |x〉 + |y〉)/
√

2, whatever the
degeneracy and symmetry of the electron states.

Taking this key point into account, the remaining task
is to find the set of orthogonal combinations of spin and
orbital states, built on |0〉 and |±1〉 that fulfills Eq. (25),
whatever the symmetry of the potential felt by the elec-
tron. Within group theory, orbital and spin states are
mixed into the double group, which totally hides the state
and potential symmetries. Indeed, the orbital state |η〉
can be associated with the spin state |η/2〉 or |−η/2〉.
Thanks to Eq. (25), we readily see that if |η〉 is associ-
ated with |−η/2〉, another orbital state |0〉 has to enter
the eigenstate and this |0〉 state must have a |η/2〉 spin.
This is easily seen from the J eigenstates but the same
argument stays valid for a periodic potential with cubic
symmetry, that is, (x, y, z) playing the same role. The
proper combination of spin and orbital states just follows
from the spin-conserving and spin-flipping operators Lz
and Lη appearing in Eq. (25).

C. Two-dimensional materials

The proposed procedure can be extended to orbital
states having a degeneracy higher than three-fold, like
for materials, that have recently attracted a lot of in-
terest. In single-layer graphene21 and transition metal
dichalcogenides22, the d orbital states appear to play a
more important role in the spin-orbit splitting than the
p orbital states.

For single-layer graphene, the D3h crystal symmetry
at the K and K′ points allow the two higher d±1 orbital
states to enter into play in the π band21; so, the relevant
orbital states of the problem at the Dirac points are |0〉 =

i|z〉 and |d±1〉 = (∓i|xz〉+ |yz〉)/
√

2. The same equation
(25) leads us to see that if |dη〉 is associated with |−η/2〉,
the other spin state |η/2〉 that enters the eigenstate must
have an orbital state |d0〉, which is absent at the Dirac
points. As a result, the spin-orbit splitting comes from
the spin-conserving operator Lz between |dη〉, in addition
to small second-order contribution from the |0〉 state of
the π band and the |η〉 states of the σ band.

For transition metal dichalcogenides, the situation is
even more complex because all five d orbital states from
the metal atom and the p orbital states from the chalco-
gen atom play a role in the spin-orbit splitting. The
study of these complex materials is beyond the scope
of the present work. Yet, in view of its simplicity for
the p orbital states, we expect the present procedure to
be quite valuable to physically understand the spin-orbit
eigenstates of these complex structures.

D. Misleading notations

We would like to end this work by stressing that not
only it is physically incorrect to extend the spin-orbit pro-
cedure for atoms to periodic crystals but, far worse, la-
beling the spin-orbit eigenstates in the same way, (j, jz),
as if electrons in a crystal had an orbital momentum, is
quite misleading. In particular, this tends to mess up the
whole understanding of the exciton-photon interaction.

Indeed, what is commonly said is the following: va-
lence holes come from p valence states; they thus have
an orbital momentum ` = 1, which with their spin
s = 1/2, gives them a total momentum J = L + S with
jh = (3/2, 1/2). Conduction electrons are also said to be
in a s state, with an orbital momentum ` = 0; so, they
are only labeled by their spin sz = ±1/2. This would
give to the conduction electron-valence hole pairs a total
momentum Jeh = Se + Jh, with jeh = (2, 1, 0). It is
then claimed that the two excitons (+2,−2) made from
electron-hole pairs (jeh = 2, jehz = ±2) are dark because
they cannot be coupled to photons since photons have a
“spin” (±1, 0) which correspond to polarizations σ± and
π.

The correct understanding is quite different, even if in
the very end only two exciton states are not coupled to
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FIG. 2: (a) Absorption of a photon excites an electron from
the valence band v to the conduction band c while keeping
its electron spin sz. (b) In terms of electron and hole, the
absorption of a photon creates an electron-hole pair with zero
total spin.

photons, these excitons having the lowest energy for the
very same reason that they are dark.
• First, photons are known not to have spin in the

proper sense but a two-fold polarization associated with
a vector in the two-dimensional plane perpendicular to
the photon propagation axis eZ = Q/Q. This polariza-
tion vector is a linear combination of (eX , eY ), the one
associated with circular polarizations being

e±1 =
∓ieX + eY√

2
. (51)

In an electron-photon interaction, the photon does not
act on the electron spin but, via its polarization, it in-
duces a change in the electron orbital wave function. So,
the fact that the photon “spin” is never equal to 2, can-
not be linked to the fact that excitons, commonly labeled
as 2 or −2, are dark.
• Actually, it is just because the photon does not

change the electron spin that some exciton states are
dark, the fact that there are two dark states only being
a direct consequence of the spin-orbit interaction.

When going from the valence band to the conduction
band under a photon absorption, the electron conserves
its spin. As the hole spin is opposite to the spin of the
missing valence electron, the electron-hole pair coupled
to photon through its absorption, has a total spin equal
to zero (see Fig. 2).

In the absence of spin-orbit interaction, there are 3 ×
2 = 6 hole states, labeled by λ = (x, y, z) and sz = ±1/2
and the two electron states labeled by their spin only,
for a non-degenerate conduction band; so, they would be
six excitons with total spin equal to zero, namely λ =
(x, y, z) and sez = −shz = ±1/2.

We have shown that the spin-orbit interaction couples
the spin and orbital indices of the valence electron in
such a way that there are two states only with a well-
defined spin, namely |η〉 ⊗ |η/2〉, the other four valence
states being linear combinations of states with 1/2 and
−1/2 spins. The destruction of such valence electrons
|η〉 ⊗ |η/2〉 which are pure in spin, leads to hole states
also pure in spin. So, when combined with a conduction
electron having a η/2 spin, they form two dark excitons
with total spin 1 and two bright excitons with total spin
0.

FIG. 3: (a) Interband Coulomb interaction conserves the spin
s. (b) Electron-hole pairs having a zero total spin can couple
to photon.

As a result, the existence of two dark exciton states
only is due to the fact that: (i) the electron-photon in-
teraction conserves the spin, and (ii) two valence states
only stay pure of spin under the spin-orbit coupling.

• All this shows that inadequate notations tend to
lead to incorrect physical understanding. Even if done
for years, we suggest to stop labeling spin-orbit valence
states by (j, jz) as for atomic states, but by (ζ, ζz) and
call them valence spin-orbit indices. This would prevent
considering ζ as a naive angular momentum and adding
it to the conduction spin, to end with a “total angular
momentum of the exciton”, which is physically meaning-
less.

• Finally, Coulomb interaction conserves spin, just as
electron-photon interaction does. So, the electron-hole
pairs that suffer interband Coulomb interaction have a
total spin equal to zero, just like the pairs that are cou-
pled to photons (see Fig. 3). This (repulsive) Coulomb
interaction pushes the energy of bright excitons above
the one of dark excitons. So, the excitons that have the
lowest energy, are dark for the very same reason that
they are not coupled to photons.

VI. CONCLUSION

This work considers a very fundamental aspect of semi-
conductor crystals that is either ignored when treating
the valence band as a true p state, or not physically un-
derstood when using group theory.

We present a direct procedure—easy to follow by any-
one with no background on group theory—to derive the
spin-orbit energy shifts of three-fold orbital states in cu-
bic semiconductor crystals, whatever the parity of these
states. We show that the state degeneracy matters, but
not the state parity, even or odd, nor the potential sym-
metry, spherical or periodic.

We show that the spin-orbit eigenstates have the same
structure for semiconductor crystals and atoms with
same orbital degeneracy, and we physically explain why
this has to be so. Nevertheless, we urge to stop calling
these valence states through (j, jz) indices like atoms,
and mostly to stop relating these indices to “total angu-
lar momentum” because L and J only have a meaning
for problem with spherical symmetry.
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The simplicity of the approach we here propose to spin-
orbit interaction should appear as quite valuable in the
case of complex materials having valence electrons with
degeneracy higher than three-fold, as many materials of
today major interest. We leave these studies to future
works.
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Appendix A: Spin-orbit interaction

The spin-orbit interaction is most often described in
the context of atomic physics. This is why it is com-
monly identified with the L · S interaction. To get the
whole story straight is quite complicated, in particular
the derivation of the 1/2 factor which enters the pref-
actor of the coupling. The derivation we here present
is a combination of what can be found in various text-
books, in particular Baym11, Tomonaga9, and Landau-
Lifschitz10, with the aim to make the presentation as
simple as possible, a particular attention being paid on
choosing transparent notations.

1. Magnetic moments

We consider an electron with mass m0 and charge e =
−|e|.
• The electron angular momentum reads as

r× p = L = ~~̀ , (A1)

where p = (~/i)
−→
∇ is the electron kinetic momentum,

and |`| is an integer, the ~̀ projection `z on the z axis
taking any integer values between (|`|,−|`|). The elec-
tron magnetic moment associated with its orbital angular
momentum is

ML =
e

2m0c
L ≡ µB ~̀ , (A2)

where µB = |e|~/2m0c is called Bohr magneton. Its value
is 9.274× 10−21 erg/Gauss.
• The electron also has a magnetic moment associated
with its spin S = (~/2)~σ where the components of the ~σ
vector are the Pauli matrices (σx, σy, σz). It reads

MS = ge
e

2m0c
S , (A3)

the Landé factor for electron being ge = 2.
• So, the total magnetic moment of an electron with or-
bital angular momentum L and spin S is given by

M = ML + MS =
e

2m0c

(
L + geS

)
. (A4)

• On the other hand, in an external magnetic field Hext,
that is, a field which has nothing to do with the charge
and velocity of the particle at hand, this particle has a
magnetic energy associated with the magnetic moment
M equal to

Emag = −M ·Hext . (A5)

2. Magnetic field

• Let us consider an electron moving with a velocity
v = p/m0 in an electrostatic potential Φext(r) due to an
external electric field Eext(r). Its Hamiltonian reads

H0 =
p2

2m0
+ eΦext(r) . (A6)

We put this electron in a strong external magnetic field
Hext. (We will see later on why this field has to be strong
for the following to be true). The vector potential asso-
ciated with Hext = rot Aext reads, in the Coulomb
gauge, as

Aext =
1

2
Hext × r , (A7)

which indeed fulfills divAext = 0. If we neglect spin, the
electron Hamiltonian would be

1

2m0

(
p− e

c
Aext

)2
+ eΦext . (A8)

The spin magnetic moment brings an additional energy
which, according to Eq. (A5), reads

−MS ·Hext = −ge
e

2m0c
S ·Hext . (A9)

So, with this spin contribution, the electron Hamiltonian
appears as

H =
1

2m0

(
p− e

c
Aext

)2−ge e

2m0c
S·Hext+eΦext . (A10)

By noting that Aext · p = p ·Aext, as fulfilled by Aext

given in Eq. (A7), we can rewrite the term linear in Aext

as

− e

m0c
Aext · p =

−e
2m0c

(Hext × r) · p

=
−e

2m0c
(r× p) ·Hext . (A11)

The Hamiltonian H given in Eq. (A10) then appears at
first order in Hext as

H = H0 −
e

2m0c

(
L + geS

)
·Hext . (A12)

The second term is just the magnetic energy given in
Eq. (A5) associated with the electron magnetic moment
given in Eq. (A4).
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• The above Hamiltonian is valid when the external
field Hext is large compared to the internal field felt by
the moving electron. This internal field follows from the
fact that, due to the Lorentz transformation, the electro-
magnetic fields (E,H) become (E′,H′) in a frame moving
at a constant velocity v. The link between (E,H) and
(E′,H′) reads

H′‖ = H‖ , E′‖ = E‖ ,

H′⊥ =
H⊥−v

c ×E√
1− v2/c2

, E′⊥ =
E⊥+v

c ×H√
1− v2/c2

.
(A13)

So, the field components (H‖,E‖) parallel to v do not
change under the Lorentz transformation, but the field
components (H⊥,E⊥) perpendicular to v do. These
equations are commonly referred to as Biot-Savart law.
Consequently, using Eqs. (A3, A13), an electron with ve-
locity v feels an additional magnetic energy given by

−ge
e

2m0c
S ·

(
−v
c ×Eext√
1− v2/c2

)
' −ge

e

2m0c
S · Eext × v

c
.

(A14)
• Actually, this is not fully correct because the electron

in an electrostatic field E′ feels a force eE′ that produces
an acceleration; so, the electron velocity changes. As a re-
sult, the Lorentz transformation (A13), valid for a frame
moving at constant velocity, cannot correctly give the
internal magnetic field felt by the accelerating electron.
As first shown by Thomas8 and confirmed by Dirac23,
the changing velocity has the effect of changing ge into
(ge−1) in Eq. (A14). Therefore, the spin contribution to
the energy of a spin-S electron having a velocity v in an
external magnetic field Hext and electrostatic field Eext,
ultimately reads as

−S ·
[
ge

e

2m0c
Hext + (ge − 1)

e

2m0c

Eext × v

c

]
. (A15)

3. Pauli and Dirac equations

• The Dirac equation for an electron in an external
magnetic field Hext = rot Aext reduces, up to terms in
1/c, to the Pauli equation24, namely

i~
∂ϕ

∂t
=(

m0c
2+

1

2m0

(
p− e

c
Aext

)2
+eΦext−

e~
2m0c

~σ ·Hext

)
ϕ .

(A16)

By writing the spin term as

− e

m0c

~
2
~σ ·Hext = −ge

2

e~
m0c

S ·Hext , (A17)

we readily see that the electron Landé factor, ge = 2,
implicitly appears in this equation.

• If we go one step further and write the Dirac
equation10 up to terms in 1/c2, we find

i~
∂Ψ

∂t
=

[
m0c

2 +
1

2m0

(
p− e

c
Aext

)2 − p4

8m3
0c

2

]
Ψ

−
[
e~

2m0c
~σ ·Hext +

e~
4m2

0c
2
~σ ·Eext × p

]
Ψ

+

[
eΦext +

~2e
8m2

0c
2

∆Φext

]
Ψ , (A18)

with ∆ being the Laplace operator.
(i) The first bracket follows from the 1/c expansion of

c
√
m2

0c
2 + p2 ' m0c

2 +
p2

2m0
− p4

8m3
0c

2
. (A19)

(ii) The second bracket of Eq. (A18) corresponds to
the spin contribution. The part coming from the electro-
static field Eext can be rewritten as

− e

2m0c

~~σ
2
·
Eext × p

m0

c
= −(ge − 1)

e

2m0c
S · Eext × v

c
,

(A20)
since ge − 1 = 1. This 1/c2 term leads to the spin-
orbit interaction, absent in the Pauli equation given in
Eq. (A16). So, the total spin contribution to the Dirac
equation up to 1/c2 terms reads as

−ge
e

2m0c
S ·

(
Hext +

Eext × v

c

)
+

e

2m0c
S · Eext × v

c
.

(A21)
The first term corresponds to the fields seen in a
frame having a constant velocity v, which are Lorentz-
transformed from the (Hext,Eext) fields of the laboratory
frame. The second term corresponds to the Thomas’ cor-
rection due to the electron acceleration induced by the
electrostatic force eEext. This force leads to effectively
replacing ge with (ge − 1) but in the S · (Eext × v) term
only.

(iii) The second term in the last bracket of Eq. (A18)
differs from zero when local charges are present, as can
be seen from the Ohm’s law, divΦext(r) = −4πρext(r)
where ρext(r) is the charge density.

4. Thomas’ understanding

The Dirac equation definitely gives the correct spin-
orbit interaction, including its numerical prefactor. How-
ever, it is hard from it to physically catch why the Landé
factor ge is changed to (ge − 1) in one part only of the
magnetic energy.

The derivation of the change from ge to (ge − 1) pro-
posed by Thomas has the great advantage to trace its
physics to the fact that the electron velocity is not con-
stant, due to the presence of the electrostatic field Eext

and the force this field induces on the electron. Thomas’
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result is identical to the one obtained from the Dirac
equation taken up to terms in 1/c2. Actually, his result
pushed Pauli to admit that relativistic quantum theory
is not the only way to handle the spin properly.

Thomas’ derivation can be divided into four steps:
(1) First, we introduce a frame F that we call laboratory
frame, a frame F′ moving with a velocity v along x, and
another frame F′′ moving with a velocity (v + u), with u
along y.

The coordinates (x, y, z, t) in the F frame and
(x′, y′, z′, t′) in the F′ frame are related by a Lorentz
transformation, namely

x′ =
x− vt√
1− v2/c2

, y′ = y, z′ = z, t′ =
t− v

c2x√
1− v2/c2

.

(A22)
As the F′′ frame has a u velocity with respect to the F′

frame, the coordinates (x′′, y′′, z′′, t′′) in the F′′ frame and
(x′, y′, z′, t′) in the F′ frame are also related by a Lorentz
transformation. So, (x′′, y′′, z′′, t′′) in the F′′ frame read
in terms of (x, y, z, t) in the F frame as

x′′ = x′ =
x− vt√
1− v2/c2

,

y′′ =
y′ − ut′√
1− u2/c2

=
y
√

1− v2/c2 + uv
c2 x− ut√

(1− u2/c2)(1− v2/c2)
,

z′′ = z′ = z

t′′ =
t′ − u

c2 y
′√

1− u2/c2
=
t− v

c2x−
u
c2

√
1− v2/c2 y√

(1− u2/c2)(1− v2/c2)

(A23)

(2) We now consider the O′′ origin of the F′′ frame.
Its coordinates in the F′′ frame are by construction 0 =
x′′

O′′ = y′′
O′′ = z′′

O′′ whatever t′′
O′′ . Equation (A23) gives

its coordinates (x
O′′ , yO′′ , zO′′ ) in the F frame through

0 = x
O′′ − vtO′′

0 = y
O′′

√
1− v2/c2 +

uv

c2
x

O′′ − utO′′

0 = z
O′′

(A24)

which leads to

x
O′′ = vt

O′′

y
O′′ =

ut
O′′ − uv

c2 xO′′√
1− v2/c2

= ut
O′′

√
1− v2/c2

z
O′′ = 0

(A25)

So, the components of the velocity v
O′′ of the F′′ frame

origin, O′′, are in the F frame not equal to (v, u, 0) but

to (v, u
√

1− v2/c2, 0) (see Fig. 4a).

In the same way, the coordinates of the O origin of the
F frame are 0 = x

O
= y

O
= z

O
whatever t

O
. Equation

FIG. 4: Components of the O′′ velocity in the F frame (a)
and the O velocity in the frame F′′ (b).

(A23) gives them in the F′′ frame through

x′′
O

= − vtO√
1− v2/c2

= −vt′′
O

√
1− u2/c2 ,

y′′
O

= − ut
O√

(1− v2/c2)(1− u2/c2)
= −ut′′

O
,

z′′
O

= 0 ,

t′′
O

=
tO√

(1− v2/c2)(1− u2/c2)
.

(A26)

From these equations, we find that the components of the
velocity v′′

O
of the F frame origin, O, are in the F′′ frame

not equal to (−v,−u, 0) but to (−v
√

1− u2/c2,−u, 0)
(see Fig. 4b).

O’’
vtO’’	O

x

y

O’’
O

x’’

y’’

O’’ utO’’	

O
x

y

O’’

O

x’’

y’’

u = 0

v = 0

−!!!!! 	

FIG. 5: Motion of the (F, F′′) frames when uv = 0.

Before going further, let us discuss these results. The
two velocities v

O′′ and v′′
O

have the same modulus√
u2 + v2 − u2v2/c2. This value differs from the mod-

ulus of the velocity (u + v) of the F′′ frame with respect
to the F frame when uv 6= 0. Indeed, when u or v is
equal to zero, v′′

O
= −v

O′′ and the F and F′′ frames are
related by a bare translation, as seen from Fig. 5. By
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contrast, when uv 6= 0, the two frames are related by a
rotation around the z axis. To obtain this rotation, we
note that (x′′, y′′) obtained from (x, y) by a ϕ rotation
around z = z′′, are given by (see Fig. 6)

x′′ = x cosϕ+ y sinϕ ,

y′′ = y cosϕ− x sinϕ .
(A27)

z = z’’

y

x x’’

y’’
ϕ

ϕ

(a)

z 

y

x
ϕ

θ
S  (b)

FIG. 6: (a) The frame F′′ and (b) the frame F are related by
a rotation around the z axis when uv 6= 0.

When used for the v′′
O

velocity in the F′′ frame
and the v

O′′ velocity in the F frame, that is, for

(−v
√

1− u2/c2,−u) and (v, u
√

1− v2/c2) (see Fig. 4),
these two equations give, since −v′′

O
= v

O′′ for ϕ = 0,

−(−v
√

1−u2/c2) = v cosϕ+ u
√

1−v2/c2 sinϕ ,

−(−u) = u
√

1−v2/c2 cosϕ− v sinϕ .
(A28)

So, the rotation angle ϕ of the F′′ frame with respect to
the F frame is related to (u, v) through

cosϕ =
v2
√

1− u2/c2 + u2
√

1− v2/c2
u2 + v2 − u2v2/c2

, (A29)

sinϕ = uv

√
(1− v2/c2)(1− u2/c2)− 1

u2 + v2 − u2v2/c2
. (A30)

For uv = 0, the above equations give ϕ = 0, that is no
rotation, as expected.

(3) Next, we consider the origin O′′ of the F′′ frame
in the F frame. When t = 0, the O′′ point has a velocity
v along x. After a short time delay ∆t, its velocity is
(v + u), which corresponds to a velocity change ∆v = u
along y. The (x

O′′ , yO′′ , zO′′ ) coordinates of O′′ in the
F frame are then given, according to Eq. (A25) and as
illustrated in Fig. 4a, by

(v∆t ,∆v
√

1− v2/c2∆t , 0) (A31)

When compared to the velocity (v, 0, 0) in the F frame

for t = 0, the velocity (v,∆v
√

1− v2/c2, 0) after a time

delay ∆t corresponds to an acceleration

a =
√

1− v2/c2 ∆v

∆t
(A32)

along y. This acceleration brings a rotation angle ∆ϕ be-
tween the F and F′′ frames, which according to Eq. (A30)
for u = ∆v small, is given by

∆ϕ ' ∆v

v

(√
1− v2/c2 − 1

)
. (A33)

As a result, the O′′ origin of the F′′ frame rotates with
respect to the F frame, with an angular precession ve-
locity Ωacc along z, which for v/c � 1 reduces, due to
Eqs. (A32) and (A33), to

Ωacc =
∆ϕ

∆t
' 1

v

(√
1− v2/c2 − 1

)∆v

∆t

= −1

v

(
1√

1− v2/c2
− 1

)
a ' − va

2c2
. (A34)

The above derivation is done by considering a velocity
change ∆v = u orthogonal to v, i.e., an acceleration a
orthogonal to v. When ∆v is parallel to v, no rotation
occurs. This supports the fact that the angular preces-
sion velocity for arbitrary v and a has the following form

Ωacc ' −
v× a

2c2
. (A35)

The rotation reduces to zero when a = 0 or when a is
along v.

(4) The last step is to use the above results for
an electron moving in an external electromagnetic field
(Hext,Eext).
• First, we note that in a magnetic field H, a spin-
S electron with magnetic moment MS = ge

e
2mec

S (see

Eq. (A3)) rotates with an angular precession velocity

SΩH = −MSH . (A36)

This follows from the fact that the energy −M ·H of a
magnetic moment M in a magnetic field H gives rise to
an interaction term

WH = −ge
e

2m0c
S ·H ≡ ωHSz , (A37)

with ωH = −Hgee/2m0c for H taken along z. The WH

eigenstates are |±1/2〉 with eigenvalues ±~ωH/2. Thus,
the time evolution of a spin, which is along the (θ, ϕ)
direction when t = 0 (see Fig. 6b), reads as

|St〉 = e−iWHt/~
[
cos

θ

2
e−i

ϕ
2 |+〉+ sin

θ

2
ei

ϕ
2 |−〉

]
= cos

θ

2
e−i

ϕ+ωHt

2 |+〉+ sin
θ

2
ei

ϕ+ωHt

2 |−〉 .(A38)

This shows that θ does not change with time while ϕ
rotates with a velocity ωH = −H(MS/S) around the z
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axis, parallel to H, in agreement with Eq. (A36).
• Next, we note that the spin-S particle located in a
frame that moves with a velocity v with respect to the
laboratory frame F in which the electromagnetic field is
(Hext,Eext), feels a magnetic field H′ ' Hext − v

c ×
Eext. This magnetic field induces an angular precession
velocity given, according to Eq. (A35), by

Ωext = −ge
e

2m0c

(
Hext +

Eext × v

c

)
. (A39)

• The electron also feels in the F′′ frame an electrostatic
force eE′ ' eEext which leads to an acceleration a given
by m0a = eEext. This acceleration brings an additional
angular precession velocity given by Eq. (A35). So, we
end with

Ω = Ωext + Ωacc (A40)

= −ge
e

2m0c
Hext −

e

2m0c

Eext × v

c
(ge − 1) .

• According to Eq. (A36), this angular velocity produces
an effective magnetic field Heff = −ΩS/MS , that is, a
magnetic energy

W = −MS ·Heff = S ·Ω (A41)

= − e

2m0c
S ·
[
geHext + (ge − 1)

Eext × v

c

]
,

in agreement with Eq. (A21).
The above derivation, which essentially follows

Thomas’ idea, has the great advantage to shed light on
the physical origin of the spin term appearing in the Dirac
equation.

Appendix B: Standard L · S derivation

1. Spherical harmonics

The spherical harmonics Y`,`z (θ, ϕ) for ` = 1 read, ac-
cording to Landau-Lifschitz13 phase factor, as

Y1,±1(θ, ϕ) = ∓i
√

3

8π
sin θe±iϕ = i

√
3

4π

∓x− iy√
2r

,(B1)

Y1,0(θ, ϕ) = i

√
3

4π
cos θ = i

√
3

4π

z

r
. (B2)

Compared to more common expressions, they contain
an additional phase factor i = eiπ/2 that insures
Y`,`z (θ, ϕ) = Y ∗`,−`z (θ, ϕ), as required from particle-
antiparticle symmetry. This particle symmetry is nec-
essary for the consistency of problems that deal with va-
lence holes, like semiconductor excitons.

2. Derivation of the |j, jz〉 eigenstates

By applying J− = L− + S− to∣∣∣∣j =
3

2
, jz =

3η

2

〉
= |` = 1, η〉 ⊗

∣∣∣η
2

〉
, (B3)

we find the other two j = 3/2 states as∣∣∣∣j =
3

2
, jz =

η

2

〉
=

√
1

3
|` = 1, η〉 ⊗

∣∣∣−η
2

〉
+

√
2

3
|` = 1, 0〉 ⊗

∣∣∣η
2

〉
. (B4)

The two j = 1/2 states made from the same states as
|j = 3/2, jz = η/2〉 but orthogonal to them, are given by∣∣∣∣j =

1

2
, jz =

η

2

〉
=

√
2

3
|` = 1, η〉 ⊗

∣∣∣−η
2

〉
−
√

1

3
|` = 1, 0〉 ⊗

∣∣∣η
2

〉
, (B5)

within a phase factor irrelevant for the problem at hand.

3. Orbital wave function |λ〉

The orbital wave functions |λ〉 with λ = (x, y, z) de-
fined in Eq. (20), can be written as

〈r|λ〉 = λ f(r) (B6)

with f(r) = i
√

3/4πRn,1(r)/r. The orthonormalization
of these λ states is fulfilled by f(r) such that

〈λ′|λ〉 =

∫
d3r λ′λ |f(r)|2 = δλ′λ

∫
d3r x2 |f(r)|2 .

(B7)
Replacing x2 by y2 or z2 and ultimately by r2/3 when
the three axes (x, y, z) play the same role as for cubic
symmetry, yields

〈λ′|λ〉 = δλ′λ

∫
r2dr|Rn,1(r)|2 = δλ′λ , (B8)

and similarly for the |n, 1, `z〉 states with `z = (0,±1).

4. Hso eigenstates

The expressions of the three-fold p orbital states in
terms of the |λ〉 states (see Eq. (19)), give the two-fold
Hso eigenstates |j = 1/2, η/2〉, given in Eq. (18c), as∣∣∣∣12 , η2

〉
=

√
2

3

−iη |x〉+ |y〉√
2

⊗
∣∣∣−η

2

〉
− i
√

1

3
|z〉 ⊗

∣∣∣η
2

〉
,

(B9)
from which we get〈

1

2
,
η

2

∣∣∣∣λso(r)L · S ∣∣∣∣12 , η2
〉

= −~2
∫

d3r λso(r) |〈r|1/2, η/2〉|2 . (B10)
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As the even part of |〈r|1/2, η/2〉|2 is equal to |f(r)|2(x2+
y2 + z2)/3, the above quantity reduces to

−~2

3

∫
d3r λso(r) r

2|f(r)|2 (B11)

= −~2
∫ ∞
0

r2dr λso(r)|Rn,1(r)|2 ≡ −2Λso .

In the same way, the four-fold Hso eigenstates associ-
ated with j = 3/2 read as∣∣∣∣32 , 3η

2

〉
=
−iη |x〉+ |y〉√

2
⊗
∣∣∣η
2

〉
, (B12)∣∣∣∣32 , η2

〉
=

1√
3

[
−iη |x〉+ |y〉√

2
⊗
∣∣∣−η

2

〉
+
√

2i |z〉 ⊗
∣∣∣η
2

〉]
.

(B13)

Their eigenvalue is given by
〈j = 3/2, jz|Hso |j = 3/2, jz〉 = Λso. Therefore, the
spin-orbit interaction Hso brings a 3Λso splitting be-
tween the (3 × 2) orbital states with ` = 1: four states
have an energy shift Λso and two states have an energy
shift −2Λso.
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