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SUMMARY

The phosphoinositide phosphatase synaptojanin 1
(SYNJ1) is a key regulator of synaptic function. We
first testedwhetherSYNJ1 contributes to phenotypic
variations in familial Alzheimer’s disease (FAD) and
show that SYNJ1 polymorphisms are associated
with age of onset in both early- and late-onset human
FAD cohorts. We then interrogated whether SYNJ1
levels could directly affect memory. We show that
increased SYNJ1 levels in autopsy brains from adults
with Down syndrome (DS/AD) are inversely corre-
lated with synaptophysin levels, a direct readout of
synaptic integrity. We further report age-dependent
cognitive decline in a mouse model overexpressing
murine Synj1 to the levels observed in human spo-
radic AD, triggered through hippocampal hyperexcit-
ability and defects in the spatial reproducibility of
place fields. Taken together, our findings suggest
that SYNJ1 contributes to memory deficits in the
aging hippocampus in all forms of AD.
INTRODUCTION

Synaptic function is under the rigorous control of phosphoi-

nositide turnover, and phosphatidylinositol-4,5-bisphosphate
Ce
This is an open access article under the CC BY-N
(PtdIns[4,5]P2) is particularly important in this process (Di Paolo

et al., 2004). The PtdIns(4,5)P2 phosphatase synaptojanin 1

(Synj1) is a key regulator of synaptic vesicle endocytosis and

reavailability on the pre-synaptic side (Cremona et al., 1999;

Kim et al., 2002; Mani et al., 2007; McPherson et al., 1996; Ver-

streken et al., 2003), while on the post-synaptic side, it controls

the endocytosis of a-amino-3-hydroxy-5-methyl-4-isoxazole-

propionic acid (AMPA) receptors (Gong and De Camilli, 2008).

A body of literature supports the importance of SYNJ1 in

neurodegenerative disorders, including Alzheimer’s disease

(AD). Clinically, AD is presented with memory loss and spatial

disorientation. Neuropathology hallmarks of this disorder include

amyloid plaques, composed primarily of Ab peptides that result

from the sequential cleavage of the amyloid precursor protein

(APP), and neurofibrillary tangles of hyperphosphorylated Tau

(Querfurth and LaFerla, 2010). The three forms of AD—familial

AD (FAD), Down syndrome-related AD (DS/AD), and sporadic

AD (SAD)—share common clinical and neuropathology signa-

tures. Although early-onset FAD is caused by mutations in the

APP, PSEN1, or PSEN2 gene (Reitz et al., 2011) and DS/AD is

due to triplication of human chromosome 21 (Hsa21) (Antonara-

kis, 2017;Wiseman et al., 2015), themost potent genetic risk fac-

tor for SAD is the ε4 allele of the APOE gene (APOE4) (Lambert

et al., 2013; Strittmatter et al., 1993).

SYNJ1 was reported to be crucial for the enlargement of early

endosomes (Cossec et al., 2012), one of the earliest cellular phe-

notypes associated with AD, observed before amyloid accumu-

lation and cognitive decline (Cataldo et al., 2000). Enlarged
ll Reports 23, 2967–2975, June 5, 2018 ª 2018 The Authors. 2967
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Table 1. Association of SNPwithin SYNJ1Genewith Age at Onset andMemory Scores in a Cohort of Caribbean Hispanic Families with

the PSEN1-G206A Mutation

SNP Location (bp)

Age at Onseta Global Memoryb Long-Term Recallb Delayed Recallb

Beta p Value Beta p Value Beta p Value Beta p Value

21:34004976 34,004,976 �0.77 0.6602 5.90 0.0397c 6.81 0.0083c 1.04 0.0504

21:34006054:G:T 34,006,054 14.91 0.0094c 9.88 0.3092 5.71 0.5150 1.45 0.4203

21:34012999 34,012,999 0.22 0.8909 6.46 0.0137c 7.14 0.0024c 1.10 0.0230c

21:34019201 34,019,201 �16.14 0.0061c 7.06 0.5553 6.84 0.5278 3.00 0.1862

21:34041167 34,041,167 �10.23 0.0010c 2.94 0.6074 1.23 0.8125 �0.21 0.8402

rs200644223:34057206:

ACGGCCGGG:A

34,057,206–34,057,214 �0.98 0.7395 �15.13 0.0004c �11.55 0.0029c �2.14 0.0066c

21:34078985 34,078,985 22.46 0.0050c �0.09 0.9939 �4.05 0.7115 2.39 0.2821

See also Figure S2 and Tables S1 and S2 for additional information.
aCovariates included AD, sex, PSEN1-G206A, education, APOE4, and principal components (PC1, PC2, and PC3). Age at onset is defined as age at

onset for affected individuals and age at last examination for unaffected individuals (see text for details).
bCovariates included age at onset, sex, education, APOE4, and principal components (PC1, PC2, and PC3).
cp < 0.05.
endosomes are present in neurons of APOE4 carriers (Cataldo

et al., 2000) as well as in fibroblasts and lymphocytes from indi-

viduals with DS and SAD (Corlier et al., 2015; Cossec et al.,

2012). C99, the C-terminal APP fragment resulting from the ac-

tivity of b-secretase, has been reported to be required for early

endosomal enlargement (Jiang et al., 2010). Importantly though,

overexpressing APP alone is not sufficient to alter endosomal

size (Cataldo et al., 2003), and endosomal size is unaffected in

APP microduplications (Cossec et al., 2012). However, Synj1

overexpression alone is sufficient to produce enlarged endo-

somes in the brain of transgenic mice (Cossec et al., 2012),

and SYNJ1 trisomy results in increased endosomal size in cell

lines derived from individuals with partial or full trisomy of

Hsa21 (Cossec et al., 2012). In addition, SYNJ1 has also been

linked to amyloid toxicity. Oligomers of Ab peptides disrupt

PtdIns(4,5)P2 metabolism in cultured primary cortical neurons,

and genetically decreasing Synj1 levels protects from the inhib-

itory effect of Ab oligomers on hippocampal long-term potentia-

tion in brain slices (Berman et al., 2008).

A recent study reported that APOE4 carriers show increased

levels of SYNJ1 compared with non-carriers (Zhu et al., 2015).

SYNJ1 is encoded by SYNJ1, mapping to Hsa21 (Cremona

et al., 2000), and is increased in individuals with DS and DS/AD

(Arai et al., 2002; Martin et al., 2014). SYNJ1 levels are thus

elevated in individuals at high risk for developing SAD and

DS/AD, but very little is known on a potential role for synaptojanin

1 in FAD. To our knowledge, only indirect evidence in model sys-

tems has currently been published. Specifically, it has been

reported that PtdIns(4,5)P2 metabolism is disrupted in cells ex-

pressing FAD-mutant forms of presenilin 1 (Landman et al.,

2006), and earlier studies support that genetically decreasing

Synj1 levels rescues cognitive deficits in murine models of FAD

(McIntire et al., 2012; Zhu et al., 2013), although the mechanisms

involved are still controversial.

The present study addresses whether SYNJ1 is associated

with human FAD. It also explores whether elevated levels of

SYNJ1 directly affect cognition in an age-dependent manner.

Our work, combining human genetics, human autopsy brain
2968 Cell Reports 23, 2967–2975, June 5, 2018
samples, and behavior and in vivo electrophysiology studies in

a transgenic mouse model overexpressing murine Synj1,

Tg(Synj1) (Voronov et al., 2008), strongly supports that SYNJ1

plays a role in the function of place cells in the aging hippocam-

pus, with critical implications for memory deficits in all three

forms of AD and their possible treatment.

RESULTS

Variants of SYNJ1 Are Associated with Memory
Performance in FAD
Individuals with DS/AD (Martin et al., 2014) and APOE4 carriers

(Zhu et al., 2015) show increased levels of SYNJ1. We thus tar-

geted SYNJ1 as a candidate gene that may contribute to pheno-

typic variations in FAD. Specifically, we examined whether

SYNJ1 was associated with memory performance and age of

onset in early-onset FAD by testing a cohort of Caribbean His-

panic families with thePSEN1-G206Amutation (Table S1) (Athan

et al., 2001; Lee et al., 2015). Intriguingly, we observed a gene-

wise association of SYNJ1 with age of onset of AD (p = 0.0195)

and long-term recall performance (p = 0.0443) in this cohort

(Table S2). Our subsequent SNP analysis within SYNJ1, based

on whole-genome sequencing (WGS) data, yielded four SNPs

that were significantly associated with age of onset (p < 0.01;

Table 1). Furthermore, we observed three additional SNPs asso-

ciated with long-term recall scores and global memory scores

(p < 0.05; Table 1).

We then determined whether the observed effect was present

in late-onset FAD, a form of the disease defined by having multi-

ple family members affected with late-onset AD (Romas et al.,

2002; Zhao et al., 2013), by extending our study to the

EFIGA cohort (Lee et al., 2011; Romas et al., 2002) (Table S1).

Because the EFIGA dataset lacked WGS data, we analyzed the

candidate SYNJ1 region (bp 34,004,976�34,078,985) identified

from our early-onset FAD results, using seven tagSNPs that

were found to be significant from the genome-wide association

study (GWAS) dataset available for the EFIGA cohort (Figure S1

and Table S3). Our subsequent sliding-window haplotype



T
a
b
le

2
.
S
li
d
in
g
-W

in
d
o
w

H
a
p
lo
ty
p
e
A
n
a
ly
s
is

o
f
S
Y
N
J
1
G
e
n
e
in

L
a
te
-O

n
s
e
t
F
A
D

(E
F
IG

A
)

rs
1
1
7
0
2
7
7
4

rs
2
8
3
3
9
3
0

rs
2
8
3
3
9
3
1

rs
1
0
4
7
0
1
6
5

rs
1
7
6
9
4
5
4
6

rs
2
8
3
3
9
3
4

rs
2
8
3
3
9
3
5

H
a
p
lo
ty
p
e

M
o
d
e
l
1

p
V
a
lu
e
b

M
o
d
e
l
2

p
V
a
lu
e
c

H
1
/H

1
H
1
/�

�/
�

A
/G

(a
)

A
/G

A
/G

G
/A

A
/C

A
/G

G
/A

M
e
a
n

S
D

M
e
a
n

S
D

M
e
a
n

S
D

W
in
d
o
w
1

G
A
A

0
.1
1
4
5

0
.1
0
1
9

6
7
.9

1
0
.5

7
0
.7

9
.8

7
1
.2

9
.8

W
in
d
o
w
2

A
A
A

0
.2
0
7
2

0
.1
8
2
8

6
9
.8

1
0
.4

7
1
.1

9
.8

7
1
.2

9
.7

W
in
d
o
w
3

A
A
A

0
.0
7
0
9

0
.0
5
8
0

8
0
.0

1
.4

7
2
.4

1
0
.7

7
1
.0

9
.8

W
in
d
o
w
4

A
A
G

0
.0
7
0
9

0
.0
5
8
0

8
0
.0

1
.4

7
2
.4

1
0
.7

7
1
.0

9
.8

W
in
d
o
w
5

A
G
A

0
.0
4
1
8
d

0
.0
3
4
2
d

8
0
.0

1
.4

7
2
.5

1
0
.7

7
0
.7

9
.8

W
in
d
o
w
1

G
A
A
A

0
.1
1
8
4

0
.1
0
5
9

6
7
.9

1
0
.5

7
0
.7

9
.8

7
1
.2

9
.8

W
in
d
o
w
2

A
A
A
C

0
.3
4
1
0

0
.2
9
7
9

7
0
.4

1
0
.3

7
1
.0

9
.8

7
1
.2

9
.7

W
in
d
o
w
3

A
A
A
G

0
.0
7
1
4

0
.0
5
8
4

8
0
.0

1
.4

7
2
.4

1
0
.7

7
1
.0

9
.8

W
in
d
o
w
4

A
A
G
A

0
.0
3
2
3
d

0
.0
2
5
6
d

8
0
.0

1
.4

7
2
.4

1
0
.7

7
0
.7

9
.8

S
e
e
a
ls
o
F
ig
u
re

S
1
a
n
d
T
a
b
le
s
S
1
a
n
d
S
3
fo
r
a
d
d
it
io
n
a
l
in
fo
rm

a
ti
o
n
.

a
A
m
in
o
r
a
lle
le

is
p
re
s
e
n
te
d
fi
rs
t.

b
C
o
v
a
ri
a
te
s
fo
r
m
o
d
e
l
1
:
A
lz
h
e
im

e
r’
s
d
is
e
a
s
e
,
s
e
x
,
e
d
u
c
a
ti
o
n
,
A
P
O
E
4
,
p
ri
n
c
ip
a
l
c
o
m
p
o
n
e
n
ts

(P
C
s
),
a
n
d
g
e
n
e
ti
c
re
la
ti
o
n
s
h
ip

m
a
tr
ix

(G
R
M
).

c
C
o
v
a
ri
a
te
s
fo
r
m
o
d
e
l
2
:
s
im

ila
r
to

m
o
d
e
l
1
b
u
t
e
x
c
lu
d
e
s
A
P
O
E
4
.

d
p
<
0
.0
5
.

analysis indicated that window 5 in a 3-mer analysis (bp

34,020,786–34,027,774) and window 4 in a 4-mer approach (bp

34,020,653–34,027,774) were the primary candidates for

harboring the variant(s) that contribute to age of onset of AD

(Table 2). Furthermore, we observed that carriers of the minor

haplotype (AGA or AAGA) were protected against AD, as their

age of onset was delayed by 8–10 years on average (Table 2).

The effect ofAPOE4 on age at onsetwas not significant. Our find-

ings in human cohorts thus support an association ofSYNJ1with

both early-onset and late-onset FAD.

To determine whether the candidate SNPs we identified in

early-onset FAD may affect SYNJ1 expression in the brain, we

examined the expression quantitative trait loci (eQTL) data in

the GTEx Portal, restricting our analysis to the tissues in the fron-

tal cortex. In the frontal cortex, we found that, on the basis of 129

tissue samples, rs2833943 located at 34,041,650 bp and

rs66528773 located at 34,080,468 bp were differentially ex-

pressed (p = 0.00788771 for each). Their m values, representing

the likelihood of functional relevance, were 0.978 and 0.995,

respectively. Interestingly, the set of AD associated SNPs that

were identified from early-onset FAD (Table 1) was in linkage

disequilibrium with the eQTL identified in the frontal cortex tis-

sues in the GTEx dataset (Figure S2), suggesting that the identi-

fied SNPs (or adjacent SNPs) are likely to influence SYNJ1

expression.

Elevated SYNJ1 Levels Are Associated with Synaptic
Deficits in DS/AD
In light of earlier reports that SYNJ1 levels are elevated in individ-

uals at high risk for developing SAD (Zhu et al., 2015) and DS/AD

(Martin et al., 2014), our results in human FAD cohorts strongly

suggested that SYNJ1 may play a role in all three forms of AD.

This motivated us to investigate whether elevated SYNJ1 affects

cognition in an age-dependent manner, an AD hallmark. We hy-

pothesized that a large increase in SYNJ1 levels, such as the one

observed in populations at high risk for developing DS/AD

(+155% compared with age-matched disomic controls) (Martin

et al., 2014), could influence synaptic integrity. To test this hy-

pothesis, we used data previously collected on post-mortem

brain samples of individuals with DS at different ages (Martin

et al., 2014). We focused on the age range of 40–52 years,

when most individuals with DS develop AD. For each individual,

we plotted the levels of SYNJ1 against the levels of synaptophy-

sin, a pre-synaptic protein that we used as a direct measure of

synaptic integrity (Figure 1). Indeed, synaptophysin levels have

been extensively and consistently found to be decreased in indi-

viduals with AD and DS/AD (e.g., (Downes et al., 2008; Masliah

et al., 1989, 1991; Reddy et al., 2005; Terry et al., 1991).

We found that levels of SYNJ1 were inversely correlated

(p = 0.0151, R2 = 0.2862) with levels of synaptophysin; that is,

the higher the levels of SYNJ1, the more synaptic integrity was

compromised. In contrast, no such correlation (p = 0.1784,

R2 = 0.2790) was observed in younger individuals with DS (age

range 1–39 years), whose SYNJ1 levels are only mildly higher

(+36%) than those of disomic controls (Figure S3). Our results

thus strongly suggest that elevated levels of SYNJ1 observed

in populations at high risk for developing AD could directly affect

synaptic structure, function, or both.
Cell Reports 23, 2967–2975, June 5, 2018 2969



Figure 1. Elevated SYNJ1 Levels Are Associated with Synaptic

Deficits in DS/AD

Western blot analysis of SYNJ1 and synaptophysin in human post-mortem

brain samples from the mid-frontal cortex (BA46) of individuals with DS, aged

40–52 years (Martin et al., 2014) (n = 20). The line represents the linear

regression (R2 = 0.29, p = 0.015). See also Figure S3 for additional information.
Elevated Synj1 Levels Drive Age-Dependent
Hippocampal Cognitive Deficits
To dissect the effect of elevated levels of synaptojanin 1 on

cognition, we used a transgenic mouse model overexpressing

murine Synj1, Tg(Synj1) (Voronov et al., 2008). We observed

76% more Synj1 in the brain of transgenic mice than in litter-

mate controls (wild-type [WT]) (Figure 2A). This closely recapit-

ulates the overexpression levels (+73%) described in APOE4

carriers with early AD (clinical dementia rating [CDR] 0.5–1)

(Zhu et al., 2015) but is milder than the overexpression levels

in individuals with DS/AD (+155% compared with age-matched

disomic controls) (Martin et al., 2014). Indeed, we found that

levels of pre-synaptic (synaptophysin) and post-synaptic (PSD

95) proteins were not altered in the hippocampi of 19-month-

old transgenic versus WT animals (Figure S4A), suggesting no

gross synaptic loss, even in older animals. Tg(Synj1) mice

thus appeared as a good model system to dissect the effect

of elevated levels of Synj1 on synaptic dysfunction and cogni-

tive deficits.

We focused on two hippocampus-dependent behavior tasks,

as this region is critically affected in AD (Stoub et al., 2006), and

investigated whether the performance of transgenic Tg(Synj1)

mice in these tasks declined with age. We first used the radial

arm water maze (RAWM) paradigm to probe working memory.

At 9 months, Tg(Synj1) and WT mice performed similarly in the

RAWM test (Figure 2B). In contrast, at 19 months, Tg(Synj1)

mice showed a significantly higher number of errors in the

RAWM compared with WT mice (Figure 2B). Although WT mice

experienced cognitive decline with age, age-dependent cogni-

tive deficits were significantly more pronounced in Tg(Synj1)

than in WT littermates (188% of normal aging; Figure 2C).

Although 19-month-old Tg(Synj1) swam slightly slower than
2970 Cell Reports 23, 2967–2975, June 5, 2018
age-matchedWTmice, their ability to reach a visible platform re-

mained unchanged (Figure S4B), ruling out any visual or motiva-

tional impairment.

To assess whether other forms of learning were impaired in

transgenic mice, we used a fear conditioning (FC) paradigm.

Whereas contextual fear learning depends on both hippocam-

pus and amygdala, cued testing only depends on the amygdala.

No difference in contextual or cued freezing behavior was

observed between Tg(Synj1) and WT mice at 9 months (Fig-

ure 2D). However, at 19 months, Tg(Synj1) mice showed a

specific decrease in freezing in contextual but not in cued condi-

tioning compared with WT mice, suggesting hippocampal but

not amygdala impairment (Figure 2E). Taken together, our

behavior results strongly suggest that increased levels of Synj1

drive age-dependent cognitive deficits in the hippocampus.

Elevated Synj1 Levels Trigger Hippocampal Place Cell
Dysfunction
We then pursued the functional basis underlying hippocampal

cognitive deficits in older Tg(Synj1) animals. Specifically, we

investigated whether increased Synj1 levels could alter hippo-

campal synaptic function using in vivo electrophysiological re-

cordings in the hippocampus (Figure S5A). Although the firing

of hippocampal inhibitory neuronswas not affected (Figure S5B),

the average and peak firing rates of hippocampal excitatory

neurons were significantly increased in Tg(Synj1) mice (+57%

and +67% increases compared with WT, respectively; Fig-

ure 3A). Because these recorded excitatory neurons were place

cells (Hussaini et al., 2011) (Figure 3B), we asked whether place

field properties were altered in transgenic animals. The average

and peak field firing rates were increased in Tg(Synj1) mice

compared with WT (Figure 3C). The mean place field size was

comparable between transgenic animals and controls (Fig-

ure 3D). However, place field size distribution was broader in

Tg(Synj1) mice, highlighting a higher size variability in transgenic

animals (Figure 3D). Information content and spatial coherence

were comparable between transgenic and control mice (Figures

3Eand 3F). More important, the stability of place fields after 18–

24 hr was decreased by more than 3-fold in Tg(Synj1) mice (Fig-

ure 3G), suggesting a memory retention deficit.

Overall, our findings indicate that elevated levels of Synj1

trigger acute hyperexcitability as well as dramatic defects in

the spatial reproducibility of place fields in the hippocampus of

older Tg(Synj1) animals. Our data from mouse model systems

strongly argue that the elevated levels of SYNJ1 observed in

DS/AD and SAD could be the cause of the age-dependent

long-term memory defects observed in AD patients.

DISCUSSION

The present study addressed whether the elevated levels of

SYNJ1 observed in populations at high risk to develop AD could

be a common feature underlying age-dependent cognitive defi-

cits. This study is supported by earlier reports in AD mouse

models that described an important role for synaptojanin 1 in

mechanisms of neuronal toxicity (Berman et al., 2008; Cossec

et al., 2012) and human data that showed elevated levels of

SYNJ1 in APOE4 carriers (Zhu et al., 2015) and in individuals



Figure 2. Overexpression of Synj1 Drives

Hippocampal-Dependent Cognitive Deficits

in an Age-Dependent Manner

(A) Western blot analysis of Synj1 in 19-month-old

WT and Tg(Synj1) mice (n = 4). Tubulin was used as

an equal loading marker. Synj1 protein levels were

76% higher in Tg(Synj1) (1.76 ± 0.11) than in WT

(1.00 ± 0.05) mice. ***p < 0.001 in unpaired Stu-

dent’s t test.

(B) Performance of WT and Tg(Synj1) mice at 9

(n = 8 WT and 7 Tg[Synj1] mice) and 19 (n = 9 mice

for both genotypes) months in the radial arm water

maze (RAWM). Mice were administered 30 trials

over a 2-day period, and the number of errors was

averaged over three trials. Two-way ANOVA re-

vealed an interaction between genotype and trial

block at 19 months but not at 9 months. ns,

p > 0.05, and **p < 0.01 for the overall effect of

genotype in two-way ANOVA. In trial 6, ***p < 0.001

for the effect of genotype in two-way ANOVA with

Bonferroni post-test.

(C) Age-dependent modification of RAWM perfor-

mance of WT and Tg(Synj1) mice. Age-dependent

cognitive deficits were more severe in Tg(Synj1)

mice (188 ± 25%, n = 9) than in WT mice (100 ±

20%, n = 9). *p < 0.05 in unpaired Student’s t test.

(D and E) Freezing response in the contextual and

cued FC paradigm in (D) 9-month-old WT (n = 10)

and Tg(Synj1) (n = 9) mice and in (E) 19-month-old

WT (n = 11) and Tg(Synj1) (n = 7) mice. *p < 0.05 in

unpaired Student’s t test.

Data are represented as mean ± SEM. See also

Figure S4 for additional information.
with DS/AD (Martin et al., 2014) and answers two previously un-

addressed questions. Specifically, this work addresses whether

SYNJ1 is associated with human FAD as well as whether

elevated levels of Synj1 directly affect cognition in an age-

dependent manner.

Our targeted gene approach extended the relevance of alter-

ations in SYNJ1 to FAD by showing that variants in SYNJ1 are

associated with age of onset and long-term memory deficits in

an early-onset FAD cohort of Caribbean Hispanic families with

the PSEN1-G206A founder mutation. We further showed that

variants in SYNJ1 are also associated with age of onset in the

EFIGA cohort of late-onset FAD. Our findings highlight the rele-

vance of studying the impact of SYNJ1 alterations on memory

performance for AD. We observed that in DS/AD brain samples,

higher SYNJ1 levels correlated with compromised synaptic

integrity. We then mimicked milder SYNJ1 overexpression

levels, as observed in SAD, in a previously described transgenic

mouse model (Voronov et al., 2008). Three- to 4-month-old mice

with a mixed FVB/C57BL/6 background showed no anxiety-

related behavior (Voronov et al., 2008). They also did not exhibit

deficits in theMorris watermaze paradigmbut performed slightly
Cell
worse than control animals in the reverse

platform test variation of this paradigm

(Voronov et al., 2008). For this study, the

BAC was backcrossed on the C57BL/6

background for eight generations, and
we focused on older, and thus more AD-relevant, animals. Our

RAWM and FC behavior studies showed that increased levels

of Synj1 triggered age-dependent cognitive deficits in the hippo-

campus of transgenic Tg(Synj1) mice. Our findings support that

increased levels of Synj1 did not impair learning per se in older

animals, as evident from the non-null slope in trials 1–5 and trials

6–10 in the RAWM, but caused a specific defect in long-term

memory retention. This is particularly well illustrated by the

very large number of errors in the first trial of day 2 (trial 6; Fig-

ure 2B) in the RAWM as well as by the reduced freezing behavior

after 24 hr in contextual conditioning (Figure 2E). Using in vivo re-

cordings, we showed that this defect is due to hippocampal hy-

perexcitability and, more specifically, to a dramatic alteration in

the spatial reproducibility of hippocampal place fields. Taken

together, our data strongly argue that the elevated levels of

SYNJ1 observed in populations at high risk to develop AD could

be sufficient to trigger age-dependent long-term memory reten-

tion impairment, a signature trait of the cognitive deficits

observed in AD patients.

A key finding of our study is that levels of synaptojanin 1 can

regulate the properties, specifically the spatial reproducibility,
Reports 23, 2967–2975, June 5, 2018 2971



Figure 3. Overexpression of Synj1 Results in Hippocampal Hyper-

excitability and Decreased Place Field Stability

(A) Left: average firing rate of hippocampal excitatory (pyramidal) neurons in

24-month-old Tg(Synj1) mice (3.2 ± 0.2 Hz, n = 72 neurons from six animals)

and controls (2.0 ± 0.2 Hz, n = 98 neurons from five animals). Right: peak firing

rate of pyramidal neurons in Tg(Synj1) mice (9.3 ± 0.7 Hz) and controls (5.6 ±

0.4 Hz). ***p < 0.001 in Mann Whitney test.

(B) Representative examples of firing rate maps showing place fields obtained

after WT and Tg(Synj1) mice explored a 50-cm-diameter cylindrical arena for

20min. The firing rate is represented by a heatmap ranging from blue (no firing)

to red (peak firing). White spaces indicate locations not visited by the animal.

(C) Left: average field firing rate in Tg(Synj1) mice (3.8 ± 0.3 Hz, n = 72 neurons)

and controls (2.2 ± 0.2 Hz, n = 98 neurons). Right: peak field firing rate in

Tg(Synj1) mice (9.2 ± 0.7 Hz) and controls (5.5 ± 0.4 Hz). ***p < 0.001 in Mann-

Whitney test.

(D) Size of place fields in Tg(Synj1) andWTmice. The average size (left) of place

fields was comparable (p > 0.05 in Mann-Whitney test) between Tg(Synj1)

(1,066 ± 58 cm2, n = 72 neurons) and WT (1,043 ± 24 cm2, n = 98 neurons)

mice, although the distribution (right) of place field sizes was significantly

different (***p < 0.001 in chi-square test).

(E) Comparable (p > 0.05, Mann-Whitney test) information content between

Tg(Synj1) (0.29 ± 0.05 bits/spike, n = 72) andWT (0.19 ± 0.03 bits/spike, n = 98)

neurons.

(F) Similar spatial coherence (p > 0.05, Mann-Whitney test) between Tg(Synj1)

(2.25 ± 0.03, n = 72) and WT (2.21 ± 0.02, n = 98) neurons.

(G) Place field stability at 18–24 hr was significantly decreased (*p < 0.05 in

unpaired Student’s t test) in Tg(Synj1) mice (0.05 ± 0.04, n = 20 neurons)

compared with controls (0.17 ± 0.03, n = 24 neurons).
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of hippocampal place fields. Indeed, although the unique role of

Synj1 in synaptic function has been very well described (Cre-

mona et al., 1999; Gong and De Camilli, 2008; Kim et al., 2002;

Mani et al., 2007; Verstreken et al., 2003), how it translates to hip-

pocampal spatial memory encoding remained unknown. This is

particularly important in light of the emerging role of SYNJ1 as

a crucial regulator in neurodegenerative diseases, including AD

and Parkinson’s disease. Remarkably, mutations in SYNJ1

have recently been reported to be associated with early-onset

progressive parkinsonism (Kirola et al., 2016; Krebs et al.,

2013; Olgiati et al., 2014; Quadri et al., 2013). These mutations

affect the role of synaptojanin 1 at the synapse and result in de-

fects in clathrin uncoating (Cao et al., 2017), in autophagosome

maturation (Vanhauwaert et al., 2017), or both.

Another central finding highlights the importance of SYNJ1 in

AD. Our results establish synaptojanin 1 as a key regulator of

age-related cognitive decline and support that modifications of

SYNJ1 levels could be a unifying feature of memory deficits

observed in the three types of AD (familial, sporadic, and DS/

AD). To our knowledge, the only other protein described to be

involved in all three forms of AD is APP. Indeed, APP can be

mutated in FAD, it maps to Hsa21, and variants in the APP

gene promoter region are a risk factor for SAD (Guyant-Maréchal

et al., 2007; Lv et al., 2008).

Our findings thus strongly argue that developing specific

SYNJ1 inhibitors is an attractive therapeutic strategy for AD.

This is supported by earlier reports showing that genetically

decreasing Synj1 levels rescues cognitive deficits in murine

models of FAD (APP and PSEN1 mutations) (McIntire et al.,

2012; Zhu et al., 2013) and SAD (ApoE4 knockins) (Zhu et al.,

2015). If successful, this therapy would be protective against

both toxic effects of oligomeric Ab (Berman et al., 2008) and

cognitive decline linked to age and could be extended to all three

forms of AD. Importantly, SYNJ1 can serve as an ideal drug

target, as it is a brain-specific phosphatase. That is, its activity

can be targeted by small molecules without affecting its struc-

tural roles, with limited secondary effects on peripheral organs.

Our findings also provide disease-relevant functional readouts,

e.g., accuracy of hippocampal spatial encoding, to evaluate

the efficacy of these future drugs.

EXPERIMENTAL PROCEDURES

Genetics and Population

Early-Onset FAD

For the genetic study of early-onset FAD, all participating subjects were at

least 35 years of age. FAD patients, with the age at onset <65 years, met the

research criteria of the National Institute of Neurological and Communicative

Disorders and Stroke (NINCDS) and the AD and Related Disorders Association

(ADRDA) for probable or possible AD (McKhann et al., 1984). We studied 305

family members from 45 Caribbean Hispanic families that had at least one

G206A foundermutation in the PSEN1 gene (PSEN1-G206A), in which approx-

imately 50% of the family members were carriers of the PSEN1-G206A (Athan

et al., 2001; Lee et al., 2015).

To obtain WGS data on all family members while minimizing sequencing

costs, we first selected two to four highly informative family members from

each branch of the pedigree using the GIGI algorithm (Cheung et al., 2013)
Data are represented as mean ± SEM. See also Figure S5 for additional

information.



and performed WGS on the Illumina HiSeq 2500 platform. In addition, we also

performedGWASon all clinically evaluated family members in the pedigree. To

generate WGS data for all family members, we applied SHAPIT2 (Delaneau

et al., 2013) and IMPUTE2 (Howie et al., 2009) to impute sequence data into

GWAS in family members who were not sequenced. To ensure high-quality

imputation in this admixed cohort, we used in-house WGS data generated

from 608 Caribbean Hispanics from Puerto Rico and the Dominican Republic,

plus the 1000 Genomes data (n = 2,504) as a reference panel. Standard quality

control (QC) procedures were performed (Howie et al., 2012). To determine

whether genetic variants in SYNJ1 were associated with variation in age at

onset of AD and memory traits, specifically global memory, long-term recall

and delayed recall, we first performed a gene-wise analysis while taking into

account AD status, sex, PSEN1-G206A, level of education, APOE4, and prin-

cipal components 1–3, as implemented in FamSKAT (Chen et al., 2013) for

each trait. For the purpose of analysis, we followed the convention of survival

analysis and defined age at onset of AD as follows: if affected, age at onset was

used as the age at onset; if unaffected, age at last examination was used. To

determine whether certain variants within SYNJ1were significantly associated

with the traits, we performed a SNP-wise analysis for the variants in SYNJ1

while controlling for the same set of covariates as well as kinship coefficient

to take into account non-independence among family members. Linear mixed

modeling was performed using R (http://cran.r-project.org/web/packages/

kinship2/kinship2.pdf).

Replication in Late-Onset AD

To determine whether the observed genetic association between SYNJ1 and

early-onset FAD was present in late-onset AD as well, we examined the role of

SYNJ1 by evaluating the EFIGA cohort, which comprises both Caribbean His-

panic families with late-onset AD (Lee et al., 2011; Romas et al., 2002) and un-

related Caribbean Hispanics with SAD (Tosto et al., 2015) (see Table S1 for

their characteristics). Genotyping data were obtained using multiple batches

of SNP microarray platforms (see Table S3). We performed a sliding-window

haplotype analysis using the GMMAT algorithm (Chen et al., 2016), taking

three or four tagSNPs at a time. We then compared the mean age at onset

associated with the risk haplotype.

Recruitment, informed consent, and study procedures for the above two

studies were approved by the institutional review boards of the Columbia Uni-

versity Medical Center (AAA R5816 for the Genetic modifier study and AAA

PO477 for EFIGA).

Human Subjects, Autopsy Brain Tissue, and Western Blot

Characteristics of autopsy cases, as well as brain tissue preparation protocol

and western blotting procedures, were previously described in full detail (Mar-

tin et al., 2014).

Mouse Models

Two different mouse models were tested: (1) Tg(Synj1) mice and (2) their

C57BL/6 control littermates (WT). The Tg(Synj1) line was a kind gift from the

Antonarakis lab. It was generated on the FVB background using mouse BAC

RPCI-23 402J16, as described previously (Voronov et al., 2008). This BAC

also contains two additional complete genes, the mouse orthologs of

C21orf59 and C21orf66 (Voronov et al., 2008). The expression of C21orf59 is

enriched in the cerebellum (https://gtexportal.org/home/gene/C21ORF59).

The C21orf59 protein controls primary cilia motility and polarization (Austin-

Tse et al., 2013; Jaffe et al., 2016). The expression of C21orf66, also called

PAXBP1, is enriched in the cerebellum too (https://gtexportal.org/home/

gene/PAXBP1). PAXBP1 is an adaptor protein linking the transcription factors

PAX3 and PAX7 to the histone methylation machinery in muscle precursor

cells (Diao et al., 2012). A variant of PAXBP1 was recently linked to myopathic

hypotonia (Alharby et al., 2017). Contributing effects from these genes cannot

be excluded. For this study, the BAC was backcrossed on the C57BL/6 back-

ground for eight generations. Genotypes were assessed using PCR. All ani-

mals were hemizygous for the BAC transgene. All procedures were performed

following NIH guidelines in accordance with Institutional Animal Care and Use

Committee (IACUC) protocols. Tests were performed on 4–14 mice for each

genotype group. All experiments were performed blind with respect to the ge-

notype. Behavior experiments were performed on two age groups: 9 months

(range 8–11 months) and 19 months (range 18–22 months). Because of tech-
nical considerations, in vivo electrophysiology recordings were performed on a

larger age range (19–31 months), with an average age of 24 months at

recording. All experiments were performed on age-matched mice for each ge-

notype group. Separate tests were performed for males and females. Because

no sex-specific differences were found, results from both genders were

pooled.

Statistical Analysis

Statistical calculations were performed usingGraphPad Prism version 5.02. All

data are expressed asmean ±SEM. Inmost cases, when comparing two sam-

ples, two-tailed Student’s t test was performed. When variances were not

comparable, Welch’s correction was applied. When the distribution could

not be assumed to be Gaussian, we used a non-parametric Mann-Whitney

test. When more samples were compared and Bartlett’s test showed that var-

iances could be compared, we used one-way ANOVAwith Dunnett’s post-test

or two-way ANOVA with the Bonferroni post-test. If variances could not be

compared (p value in Bartlett’s test < 0.05), we used t tests. When more sam-

ples were compared and when the distribution could not be assumed to be

Gaussian, we used the Kruskal-Wallis test. The chi-square test was used to

compare distributions. Outliers, defined as values that were superior to

(mean + 3 SDs) or inferior to (mean � 3 SDs) were excluded.

DATA AND SOFTWARE AVAILABILITY

The authors declare that all the data supporting the findings of this study are

available within the article and its Supplemental Information files or are avail-

able from the corresponding author on request. The accession number for

the WGS data obtained from members of families with early onset PSEN1-

G206A mutation carriers reported in this paper is National Institute on Aging

Genetics of AD Data Storage Site (NIAGADS): NG00064.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and three tables and can be found with this article online at

https://doi.org/10.1016/j.celrep.2018.05.011.

ACKNOWLEDGMENTS

We would like to thank Agnieszka Staniszewski and Dr. Ottavio Arancio for

their expert help with behavior studies. We would like to thank Eric Doran

and Dr. Sarah B.Martin for their help with DS studies.Wewant to acknowledge

Valerie Savage, Alejandro J. Mercado-Capote, Adithi Jayaraman, and Ma-

sayuki Yanagiba for help with microdrive construction and spike sorting. We

also want to thank Nicoletta Barolini for her expert help with illustrations and

graphics. This work was supported by grants from Fundaç~ao para a Ciência

e Tecnologia (PD/BD/105915/2014 to A.M.M.), the Philippe Chatrier Founda-

tion (C.M.), the Lejeune Foundation (1149 to G.D.P.), the Alzheimer’s Associa-

tion (2015-NIRG-341570 to S.A.H.), ANR Investissements d’Avenir (ANR-10-

IAIHU-06 to M.-C.P.), and the NIH (R01AG050425 to S.A.H.; RO1HD064993

to E.H. and F.A.S.; and RO1HD065160, P50AG16573, and U01AG051412 to

I.T.L.). Data collection on Caribbean Hispanic families with at least one

G206A founder mutation in the PSEN1 gene was supported by the

BrightFocus Foundation (A2015633S) and NIH/National Institute on Aging

(NIA) (R56 AG051876-01A1) to J.H.L. Data collection for the EFIGA project

was supported by the Genetic Studies of Alzheimer’s Disease in Caribbean

Hispanics (EFIGA), funded by the NIH/NIA (5R37AG015473, RF1AG015473,

and R56AG051876). We acknowledge the EFIGA study participants and the

EFIGA research and support staff for their contributions to this study.

AUTHOR CONTRIBUTIONS

C.M. conceivedmost of the research. G.D.P. conceived a subset of behavioral

experiments. A.M.M., M.H., E.N., E.M., G.F., and C.M. performed experi-

ments. A.M.M., G.B., S.A.H., and C.M. analyzed experiments. R.C. analyzed

genetic data from human cohorts. E.H., F.A.S., and I.T.L. contributed key
Cell Reports 23, 2967–2975, June 5, 2018 2973

http://cran.r-project.org/web/packages/kinship2/kinship2.pdf
http://cran.r-project.org/web/packages/kinship2/kinship2.pdf
https://gtexportal.org/home/gene/C21ORF59
https://gtexportal.org/home/gene/PAXBP1
https://gtexportal.org/home/gene/PAXBP1
https://doi.org/10.1016/j.celrep.2018.05.011


data on individuals with DS. I.Z.J.-V. played a key role in the recruitment of mu-

tation carriers. S.E.A. contributed a key animal model. M.-C.P., J.H.L., S.A.H.,

and C.M. supervised the work. C.M., S.A.H., and J.H.L. wrote the manuscript,

and all authors critically discussed the data and edited the manuscript.

DECLARATION OF INTERESTS

G.D.P. is a full-time employee of Denali Therapeutics, Inc. All other authors

declare no competing interests.

Received: December 18, 2017

Revised: March 1, 2018

Accepted: May 2, 2018

Published: June 5, 2018

REFERENCES

Alharby, E., Albalawi, A.M., Nasir, A., Alhijji, S.A., Mahmood, A., Ramzan, K.,

Abdusamad, F., Aljohani, A., Abdelsalam, O., Eldardear, A., et al. (2017). A ho-

mozygous potentially pathogenic variant in the PAXBP1 gene in a large family

with global developmental delay and myopathic hypotonia. Clin. Genet. 92,

579–586.

Antonarakis, S.E. (2017). Down syndrome and the complexity of genome

dosage imbalance. Nat. Rev. Genet. 18, 147–163.

Arai, Y., Ijuin, T., Takenawa, T., Becker, L.E., and Takashima, S. (2002). Exces-

sive expression of synaptojanin in brains with Down syndrome. Brain Dev. 24,

67–72.

Athan, E.S., Williamson, J., Ciappa, A., Santana, V., Romas, S.N., Lee, J.H.,

Rondon, H., Lantigua, R.A., Medrano, M., Torres, M., et al. (2001). A founder

mutation in presenilin 1 causing early-onset Alzheimer disease in unrelated

Caribbean Hispanic families. JAMA 286, 2257–2263.

Austin-Tse, C., Halbritter, J., Zariwala, M.A., Gilberti, R.M., Gee, H.Y., Hellman,

N., Pathak, N., Liu, Y., Panizzi, J.R., Patel-King, R.S., et al. (2013). Zebrafish

ciliopathy screen plus human mutational analysis identifies C21orf59 and

CCDC65 defects as causing primary ciliary dyskinesia. Am. J. Hum. Genet.

93, 672–686.

Berman, D.E., Dall’Armi, C., Voronov, S.V., McIntire, L.B.J., Zhang, H., Moore,

A.Z., Staniszewski, A., Arancio, O., Kim, T.W., and Di Paolo, G. (2008). Oligo-

meric amyloid-beta peptide disrupts phosphatidylinositol-4,5-bisphosphate

metabolism. Nat. Neurosci. 11, 547–554.

Cao, M., Wu, Y., Ashrafi, G., McCartney, A.J., Wheeler, H., Bushong, E.A.,

Boassa, D., Ellisman, M.H., Ryan, T.A., and De Camilli, P. (2017). Parkinson

Sac domain mutation in synaptojanin 1 impairs clathrin uncoating at synapses

and triggers dystrophic changes in dopaminergic axons. Neuron 93, 882–

896.e5.

Cataldo, A.M., Peterhoff, C.M., Troncoso, J.C., Gomez-Isla, T., Hyman, B.T.,

and Nixon, R.A. (2000). Endocytic pathway abnormalities precede amyloid

beta deposition in sporadic Alzheimer’s disease and Down syndrome: differ-

ential effects of APOE genotype and presenilin mutations. Am. J. Pathol.

157, 277–286.

Cataldo, A.M., Petanceska, S., Peterhoff, C.M., Terio, N.B., Epstein, C.J.,

Villar, A., Carlson, E.J., Staufenbiel, M., and Nixon, R.A. (2003). App gene

dosage modulates endosomal abnormalities of Alzheimer’s disease in a

segmental trisomy 16 mouse model of down syndrome. J. Neurosci. 23,

6788–6792.

Chen, H., Meigs, J.B., and Dupuis, J. (2013). Sequence kernel association test

for quantitative traits in family samples. Genet. Epidemiol. 37, 196–204.

Chen, H., Wang, C., Conomos, M.P., Stilp, A.M., Li, Z., Sofer, T., Szpiro, A.A.,

Chen, W., Brehm, J.M., Celedón, J.C., et al. (2016). Control for population

structure and relatedness for binary traits in genetic association studies via lo-

gistic mixed models. Am. J. Hum. Genet. 98, 653–666.

Cheung, C.Y.K., Thompson, E.A., and Wijsman, E.M. (2013). GIGI: an

approach to effective imputation of dense genotypes on large pedigrees.

Am. J. Hum. Genet. 92, 504–516.
2974 Cell Reports 23, 2967–2975, June 5, 2018
Corlier, F., Rivals, I., Lagarde, J., Hamelin, L., Corne, H., Dauphinot, L., Ando,

K., Cossec, J.C., Fontaine, G., Dorothée, G., et al.; Clinical ImaBio3 Team

(2015). Modifications of the endosomal compartment in peripheral blood

mononuclear cells and fibroblasts from Alzheimer’s disease patients. Transl.

Psychiatry 5, e595.

Cossec, J.C., Lavaur, J., Berman, D.E., Rivals, I., Hoischen, A., Stora, S., Ri-

poll, C., Mircher, C., Grattau, Y., Olivomarin, J.C., et al. (2012). Trisomy for syn-

aptojanin1 in Down syndrome is functionally linked to the enlargement of early

endosomes. Hum. Mol. Genet. 21, 3156–3172.

Cremona, O., Di Paolo, G., Wenk, M.R., L€uthi, A., Kim, W.T., Takei, K., Daniell,

L., Nemoto, Y., Shears, S.B., Flavell, R.A., et al. (1999). Essential role of phos-

phoinositide metabolism in synaptic vesicle recycling. Cell 99, 179–188.

Cremona, O., Nimmakayalu, M., Haffner, C., Bray-Ward, P., Ward, D.C., and

De Camilli, P. (2000). Assignment of SYNJ1 to human chromosome 21q22.2

and Synj12 to the murine homologous region on chromosome 16C3-4 by

in situ hybridization. Cytogenet. Cell Genet. 88, 89–90.

Delaneau, O., Zagury, J.F., and Marchini, J. (2013). Improved whole-

chromosome phasing for disease and population genetic studies. Nat.

Methods 10, 5–6.

Di Paolo, G., Moskowitz, H.S., Gipson, K., Wenk, M.R., Voronov, S., Obayashi,

M., Flavell, R., Fitzsimonds, R.M., Ryan, T.A., and De Camilli, P. (2004).

Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in syn-

aptic vesicle trafficking. Nature 431, 415–422.

Diao, Y., Guo, X., Li, Y., Sun, K., Lu, L., Jiang, L., Fu, X., Zhu, H., Sun, H., Wang,

H., and Wu, Z. (2012). Pax3/7BP is a Pax7- and Pax3-binding protein that reg-

ulates the proliferation of muscle precursor cells by an epigenetic mechanism.

Cell Stem Cell 11, 231–241.

Downes, E.C., Robson, J., Grailly, E., Abdel-All, Z., Xuereb, J., Brayne, C.,

Holland, A., Honer, W.G., and Mukaetova-Ladinska, E.B. (2008). Loss of syn-

aptophysin and synaptosomal-associated protein 25-kDa (SNAP-25) in elderly

Down syndrome individuals. Neuropathol. Appl. Neurobiol. 34, 12–22.

Gong, L.W., and De Camilli, P. (2008). Regulation of postsynaptic AMPA re-

sponses by synaptojanin 1. Proc. Natl. Acad. Sci. U S A 105, 17561–17566.
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