R. Dahiya, E-Skin: From humanoids to humans, Proc. IEEE, vol.107, pp.247-252, 2019.

J. Kim, T. N. Ng, and W. S. Kim, Highly sensitive tactile sensors integrated with organic transistors, Appl. Phys. Lett, vol.101, issue.10, 2012.

S. Khan, S. Tinku, L. Lorenzelli, and R. D. Dahiya, Flexible tactile sensors using screen-printed P(VDF-TrFE) and MWCNT/PDMS composites, IEEE Sensors J, vol.15, issue.6, pp.3146-3155, 2015.

X. Chen, Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs, J. Mater. Chem. C, vol.3, issue.45, pp.11806-11814, 2015.

L. Pan, An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film, Nature Commun, vol.5, p.3002, 2014.

G. Zhu, Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification, Nano Lett, vol.14, issue.6, pp.3208-3213, 2014.

S. Yun, Polymer-waveguide-based flexible tactile sensor array for dynamic response, Adv. Mater, vol.26, issue.26, pp.4474-4480, 2014.

N. Yogeswaran, Piezoelectric graphene field effect transistor pressure sensors for tactile sensing, Appl. Phys. Lett, vol.113, issue.1, 2018.

R. S. Dahiya, G. Metta, M. Valle, and G. Sandini, Tactile sensing-from humans to humanoids, IEEE Trans. Robot, vol.26, issue.1, pp.1-20, 2010.

Y. Zang, F. Zhang, C. Di, and D. Zhu, Advances of flexible pressure sensors toward artificial intelligence and health care applications, Mater. Horizons, vol.2, issue.2, pp.140-156, 2015.

M. L. Hammock, A. Chortos, B. C. .-k.-tee, J. B. , .. Tok et al., 25th anniversary article: The evolution of electronic skin (E-Skin): A brief history, design considerations, and recent progress, Adv. Mater, vol.25, issue.42, pp.5997-6038, 2013.

S. Standring, Gray's Anatomy e-Book: The Anatomical Basis of Clinical Practice, 2015.

R. S. Dahiya, G. Metta, M. Valle, A. Adami, and L. Lorenzelli, Piezoelectric oxide semiconductor field effect transistor touch sensing devices, Appl. Phys. Lett, vol.95, issue.3, 2009.

C. G. Núñez, W. T. Navaraj, E. O. Polat, and R. Dahiya, Energy-autonomous, flexible, and transparent tactile skin, Adv. Funct. Mater, vol.27, 2017.

B. C. -k.-tee, C. Wang, R. Allen, and Z. Bao, An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications, Nature Nanotechnol, vol.7, pp.825-832, 2012.

S. Bauer, Flexible electronics: Sophisticated skin, Nature Mater, vol.12, pp.871-872, 2013.

J. J. Boland, Flexible electronics: Within touch of artificial skin, Nature Mater, vol.9, pp.790-792, 2010.

R. S. Dahiya and M. Gori, Probing with and into fingerprints, J. Neurophysiol, vol.104, issue.1, pp.1-3, 2010.

S. Raspopovic, Restoring natural sensory feedback in real-time bidirectional hand prostheses, Sci. Transl. Med, vol.6, issue.222, pp.219-222, 2014.

R. S. Dahiya, P. Mittendorfer, M. Valle, G. Cheng, and V. J. Lumelsky, Directions toward effective utilization of tactile skin: A review, IEEE Sensors J, vol.13, issue.11, pp.4121-4138, 2013.

R. Dahiya, C. Oddo, A. Mazzoni, and H. Jörntell, Biomimetic tactile sensing, pp.69-91, 2015.

C. Pang, A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres, Nature Mater, vol.11, pp.795-801, 2012.

S. Finger, Origins of Neuroscience: A History of Explorations Into Brain Function, 2001.

Z. Stojiljkovic and J. Clot, Integrated behavior of artificial skin, IEEE Trans. Biomed. Eng, issue.4, pp.396-399, 1977.

V. J. Lumelsky, M. S. Shur, and S. Wagner, Sensitive skin, IEEE Sensors J, vol.1, issue.1, pp.41-51, 2001.

S. J. Lederman and R. L. Klatzky, Haptic perception: A tutorial, Attention, Perception, Psychophys, vol.71, issue.7, pp.1439-1459, 2009.

H. Culbertson, S. B. Schorr, and A. M. Okamura, Haptics: The present and future of artificial touch sensation, Annu. Rev. Control, Robot., Auton. Syst, vol.1, pp.385-409, 2018.

P. Mittendorfer, E. Yoshida, and G. Cheng, Realizing whole-body tactile interactions with a self-organizing, multi-modal artificial skin on a humanoid robot, Adv. Robot, vol.29, issue.1, pp.51-67, 2015.

W. Dang, L. Manjakkal, W. T. Navaraj, L. Lorenzelli, V. Vinciguerra et al., Stretchable wireless system for sweat pH monitoring, Biosensors Bioelectron, vol.107, pp.192-202, 2018.

D. Kim, Epidermal electronics, Science, vol.333, issue.6044, pp.838-843, 2011.

L. Manjakkal, W. Dang, N. Yogeswaran, and R. Dahiya, Textile-based potentiometric electrochemical pH sensor for wearable applications, Biosensors, vol.9, issue.1, p.14, 2019.

Z. Halata and B. L. Munger, Identification of the Ruffini corpuscle in human hairy skin, Cell Tissue Res, vol.219, issue.2, pp.437-440, 1981.

C. M. Reinisch and E. Tschachler, The touch dome in human skin is supplied by different types of nerve fibers, Ann. Neurol, vol.58, issue.1, pp.88-95, 2005.

Y. Kabata, M. Orime, R. Abe, and T. Ushiki, The morphology, size and density of the touch dome in human hairy skin by scanning electron microscopy, Microscopy, vol.68, issue.3, pp.207-215, 2019.

R. S. Johansson and A. B. Vallbo, Tactile sensibility in the human hand: Relative and absolute densities of four types of mechanoreceptive units in glabrous skin, J. Physiol, vol.286, issue.1, pp.283-300, 1979.

W. T. Navaraj and R. Dahiya, Fingerprint-enhanced capacitive-piezoelectric flexible sensing skin to discriminate static and dynamic tactile stimuli, Adv. Intell. Syst

G. Min, L. Manjakkal, D. M. Mulvihill, and R. S. Dahiya, Triboelectric nanogenerator with enhanced performance via an optimized low permittivity substrate, IEEE Sensors J

M. Shi, Self-powered analogue smart skin, ACS Nano, vol.10, issue.4, pp.4083-4091, 2016.

S. C. Mannsfeld, Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers, Nature Mater, vol.9, pp.859-864, 2010.

G. Schwartz, Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring, Nature Commun, vol.4, p.1859, 2013.

N. Yogeswaran, New materials and advances in making electronic skin for interactive robots, Adv. Robot, vol.29, issue.21, pp.1359-1373, 2015.

X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan et al., Recent progress in electronic skin, Adv. Sci, vol.2, issue.10, pp.1500169-1500170, 2015.

A. Chortos and Z. Bao, Skin-inspired electronic devices, Mater. Today, vol.17, issue.7, pp.321-331, 2014.

M. I. Tiwana, S. J. Redmond, and N. H. Lovell, A review of tactile sensing technologies with applications in biomedical engineering, Sens. Actuators A, Phys, vol.179, pp.17-31, 2012.

E. B. Goldstein and J. Brockmole, Sensation and Perception, 2016.

M. Boniol, J. Verriest, R. Pedeux, and J. Doré, Proportion of skin surface area of children and young adults from 2 to 18 years old, J. Investigative Dermatol, vol.128, issue.2, pp.461-464, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00173091

F. Mancini, Whole-body mapping of spatial acuity for pain and touch, Ann. Neurol, vol.75, issue.6, pp.917-924, 2014.

W. T. Navaraj, Nanowire FET based neural element for robotic tactile sensing skin, Frontiers Neurosci, vol.11, p.501, 2017.

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi et al., A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications, Proc. Nat. Acad. Sci. USA, vol.101, issue.27, pp.9966-9970, 2004.

T. Someya, Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes, Proc. Nat. Acad. Sci. USA, vol.102, pp.12321-12325, 2005.

C. Wang, User-interactive electronic skin for instantaneous pressure visualization, Nature Mater, vol.12, p.899, 2013.

Q. Sun, W. Seung, B. J. Kim, S. Seo, S. Kim et al., Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors, Adv. Mater, vol.27, issue.22, pp.3411-3417, 2015.

V. Hayward, Is there a 'plenhaptic' function?, Philos. Trans. Roy. Soc. B, Biol. Sci, vol.366, issue.1581, pp.3115-3122, 2011.

H. Jöntell, F. Bengtsson, P. Geborek, A. Spanne, A. V. Terekhov et al., Segregation of tactile input features in neurons of the cuneate nucleus, Neuron, vol.83, issue.6, pp.1444-1452, 2014.

C. G. Núñez, L. Manjakkal, and R. Dahiya, Energy autonomous electronic skin, NPJ Flexible Electron, vol.3, issue.1, p.1, 2019.

L. Manjakkal, W. T. Navaraj, C. G. Núñez, and R. Dahiya, Graphene-graphite polyurethane composite based high-energy density flexible supercapacitors, Adv. Sci, vol.6, issue.7, p.1802251, 2019.

L. Manjakkal, C. G. Núñez, W. Dang, and R. Dahiya, Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes, Nano Energy, vol.51, pp.604-612, 2018.

A. Schmitz, P. Maiolino, M. Maggiali, L. Natale, G. Cannata et al., Methods and technologies for the implementation of large-scale robot tactile sensors, IEEE Trans. Robot, vol.27, issue.3, pp.389-400, 2011.

L. Li, H. Liu, H. Zhang, and W. Xue, Efficient wireless power transfer system integrating with metasurface for biological applications, IEEE Trans. Ind. Electron, vol.65, issue.4, pp.3230-3239, 2018.

J. Kim, J. Hwang, K. Song, N. Kim, J. C. Shin et al., Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives, Appl. Phys. Lett, vol.108, issue.25, pp.253101-253102, 2016.

S. Xu, Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems, Nature Commun, vol.4, 2013.

Y. Lee, Wearable textile battery rechargeable by solar energy, Nano Lett, vol.13, issue.11, pp.5753-5761, 2013.

L. Wang, Y. Zhang, J. Pan, and H. Peng, Stretchable lithium-air batteries for wearable electronics, J. Mater. Chem. A, vol.4, pp.13419-13424, 2016.

J. Luo, Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit, Nano Res, vol.8, issue.12, pp.3934-3943, 2015.

X. Pu, Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing, Sci. Adv, vol.3, issue.5, 2017.

Y. Yang, Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system, ACS Nano, vol.7, issue.10, pp.9213-9222, 2013.

A. Bandodkar, Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat, Energy Environ. Sci, vol.10, issue.7, pp.1581-1589, 2017.

S. Lee and C. Yang, An intelligent power monitoring and analysis system for distributed smart plugs sensor networks, Int. J. Distrib. Sensor Netw, vol.13, issue.7, pp.1-13, 2017.

R. Garduno-ramirez and M. Borunda, On the conception of intelligent power plants based on multiple agent systems, Proc. MICAI, pp.99-114, 2017.

A. C. Wong, D. Mcdonagh, O. Omeni, C. Nunn, M. Hernandez-silveira et al., Sensium: An ultra-low-power wireless body sensor network platform: Design & application challenges, Proc. Annu. Int. Conf. IEEE Eng

, Med. Biol. Soc, pp.6576-6579, 2009.

K. Agarwal, R. Jegadeesan, Y. Guo, and N. Thakor, Wireless power transfer strategies for implantable bioelectronics, IEEE Rev. Biomed. Eng, vol.10, pp.136-161, 2017.

G. Indiveri and R. Douglas, Neuromorphic vision sensors, Science, vol.288, issue.5469, pp.1189-1190, 2000.

E. Neftci, J. Binas, U. Rutishauser, E. Chicca, G. Indiveri et al., Synthesizing cognition in neuromorphic electronic systems, Proc. Nat. Acad. Sci. USA, vol.110, issue.37, pp.3468-3476, 2013.

S. Luo, J. Bimbo, R. Dahiya, and H. Liu, Robotic tactile perception of object properties: A review, Mechatronics, vol.48, pp.54-67, 2017.

J. Misra and I. Saha, Artificial neural networks in hardware: A survey of two decades of progress, Neurocomputing, vol.74, issue.1-3, pp.239-255, 2010.

S. Decherchi, P. Gastaldo, R. S. Dahiya, M. Valle, and R. Zunino, Tactile-data classification of contact materials using computational intelligence, IEEE Trans. Robot, vol.27, issue.3, pp.635-639, 2011.

C. M. Oddo, Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans, Elife, vol.5, 2016.

M. Rasouli, Y. Chen, A. Basu, S. L. Kukreja, and N. V. Thakor, An extreme learning machine-based neuromorphic tactile sensing system for texture recognition, IEEE Trans. Biomed. Circuits Syst, vol.12, issue.2, pp.313-325, 2018.

H. Liu, Y. Wu, F. Sun, and D. Guo, Recent progress on tactile object recognition, Int. J. Adv. Robot. Syst, vol.14, issue.4, pp.1-12, 2017.

R. Ananthanarayanan, S. K. Esser, H. D. Simon, and D. S. Modha, The cat is out of the bag: Cortical simulations with 10 9 neurons, 10 13 synapses, Proc. Conf. High Perform, 2009.

B. C. and -. Tee, A skin-inspired organic digital mechanoreceptor, Science, vol.350, issue.6258, pp.313-316, 2015.

A. Spanne, P. Geborek, F. Bengtsson, and H. Jörntell, Spike generation estimated from stationary spike trains in a variety of neurons in vivo, Frontiers Cellular Neurosci, vol.8, p.199, 2014.

K. Boahen, Neuromorphic microchips, Sci. Amer, vol.292, issue.5, pp.56-63, 2005.

W. W. Lee, A neuro-inspired artificial peripheral nervous system for scalable electronic skins, Sci. Robot, vol.4, issue.32, 2019.

F. Bengtsson, R. Brasselet, R. S. Johansson, A. Arleo, and H. Jörntell, Integration of sensory quanta in cuneate nucleus neurons in vivo, PLoS ONE, vol.8, issue.2, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01537855

T. Shibata and T. Ohmi, A functional MOS transistor featuring gate-level weighted sum and threshold operations, IEEE Trans. Electron Devices, vol.39, issue.6, pp.1444-1455, 1992.

W. Taube, Modelling of nanowire FETs based neural network for tactile pattern recognition in E-skin, Proc. IEEE Biomed. Circuits Syst. Conf. (BioCAS), pp.572-575, 2016.

H. Ishii, T. Shibata, H. Kosaka, and T. Ohmi, Hardware-backpropagation learning of neuron MOS neural networks, IEDM Tech. Dig, pp.435-438, 1992.

U. B. Rongala, Intracellular dynamics in cuneate nucleus neurons support self-stabilizing learning of generalizable tactile representations, Frontiers Cellular Neurosci, vol.12, p.210, 2018.

B. Widrow and M. E. Hoff, Adaptive switching circuits, 1960.

J. Grollier, D. Querlioz, and M. D. Stiles, Spintronic nanodevices for bioinspired computing, Proc. IEEE, vol.104, pp.2024-2039, 2016.

A. Sengupta, S. H. Choday, Y. Kim, and K. Roy, Spin orbit torque based electronic neuron, Appl. Phys. Lett, vol.106, issue.14, 2015.

S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder et al., Nanoscale memristor device as synapse in neuromorphic systems, Nano Lett, vol.10, issue.4, pp.1297-1301, 2010.

K. Kotani, T. Shibata, M. Imai, and T. Ohmi, Clock-controlled neuron-MOS logic gates, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process, vol.45, issue.4, pp.518-522, 1998.

C. Mead and M. Ismail, Analog VLSI Implementation of Neural Systems, vol.80, 2012.

N. J. Cotton and B. M. Wilamowski, Compensation of sensors nonlinearity with neural networks, Proc. 24th IEEE Int. Conf. Adv. Inf, pp.1210-1217, 2010.

J. J. Yang, D. B. Strukov, and D. R. Stewart, Memristive devices for computing, Nature Nanotechnol, vol.8, issue.1, p.13, 2013.

S. Stathopoulos, A. Serb, A. Khiat, M. Ogorza?ek, and T. Prodromakis, A memristive switching uncertainty model, IEEE Trans. Electron Devices, vol.66, issue.7, pp.2946-2953, 2019.

G. C. Adam, A. Khiat, and T. Prodromakis, Challenges hindering memristive neuromorphic hardware from going mainstream, Nature Commun, vol.9, issue.5267, 2018.

R. Courtland, Can HPE's 'The machine' deliver?, IEEE Spectr, vol.53, issue.1, pp.34-35, 2016.

J. Hasler and H. Marr, Finding a roadmap to achieve large neuromorphic hardware systems, Frontiers Neurosci, vol.7, p.118, 2013.

J. Silva-martínez, S. Solís-bustos, J. Salcedo-suñer, R. Rojas-hernández, and M. Schellenberg, A CMOS hearing aid device, Analog Integr. Circuits Signal Process, vol.21, issue.2, pp.163-172, 1999.

F. Callias, F. H. Salchli, and D. Girard, A set of four ICs in CMOS technology for a programmable hearing aid, IEEE J. Solid-State Circuits, vol.24, issue.2, pp.301-312, 1989.

R. S. Dahiya, A. Adami, C. Collini, and L. Lorenzelli, POSFET tactile sensing arrays using CMOS technology, Sens. Actuators A, Phys, vol.202, pp.226-232, 2013.

R. S. Dahiya, G. Metta, M. Valle, A. Adami, and L. Lorenzelli, Piezoelectric oxide semiconductor field effect transistor touch sensing devices, Appl. Phys. Lett, vol.95, issue.3, 2009.

S. Gupta, D. Shakthivel, L. Lorenzelli, and R. Dahiya, Temperature compensated tactile sensing using MOSFET with P(VDF-TrFE)/BaTiO 3 capacitor as extended gate, IEEE Sensors J, vol.19, issue.2, pp.435-442, 2019.

A. E. Gamal, Trends in CMOS image sensor technology and design, IEDM Tech. Dig, pp.805-808, 2002.

W. T. Navaraj, S. Gupta, L. Lorenzelli, and R. Dahiya, Wafer scale transfer of ultrathin silicon chips on flexible substrates for high performance bendable systems, Adv. Electron. Mater, vol.4, issue.4, 2018.

D. Shahrjerdi and S. W. Bedell, Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic, Nano Lett, vol.13, pp.315-320, 2013.

S. Gupta, W. T. Navaraj, L. Lorenzelli, and R. Dahiya, Ultra-thin chips for high-performance flexible electronics, NPJ Flexible Electron, vol.2, issue.1, 2018.

R. Dahiya, W. T. Navaraj, S. Khan, and E. O. Polat, Developing electronic skin with the sense of touch, Inf. Display, vol.31, issue.4, pp.6-10, 2015.

F. Liu, W. T. Navaraj, N. Yogeswaran, D. H. Gregory, and R. Dahiya, van der Waals contact engineering of graphene field-effect transistors for large-area flexible electronics, ACS Nano, vol.13, issue.3, pp.3257-3268, 2019.

Y. Diao, Flow-enhanced solution printing of all-polymer solar cells, Nature Commun, vol.6, issue.7955, 2015.

X. Gu, Roll-to-roll printed large-area all-polymer solar cells with 5% efficiency based on a low crystallinity conjugated polymer blend, Adv. Energy Mater, vol.7, issue.14, 2017.

N. Matsuhisa, Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes, Nature Mater, vol.16, pp.834-840, 2017.

K. Fukuda and T. Someya, Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology, Adv. Mater, vol.29, issue.25, 2017.

M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, Inkjet printing-process and its applications, Adv. Mater, vol.22, issue.6, pp.673-685, 2010.

S. Khan, L. Lorenzelli, and R. S. Dahiya, Technologies for printing sensors and electronics over large flexible substrates: A review, IEEE Sensors J, vol.15, issue.6, pp.3164-3185, 2015.

C. Jiang, H. W. Choi, X. Cheng, H. Ma, D. Hasko et al., Printed subthreshold organic transistors operating at high gain and ultralow power, Science, vol.363, issue.6428, pp.719-723, 2019.

Y. Liu, M. Pharr, and G. A. Salvatore, Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring, ACS Nano, vol.11, issue.10, pp.9614-9635, 2017.

D. Chen and Q. Pei, Electronic muscles and skins: A review of soft sensors and actuators, Chem. Rev, vol.117, issue.17, pp.11239-11268, 2017.

C. G. Núñez, F. Liu, S. Xu, and R. Dahiya, Integration Techniques for

H. J. Fan, P. Werner, and M. Zacharias, Semiconductor nanowires: From self-organization to patterned growth, Small, vol.2, issue.6, pp.700-717, 2006.

R. Zhang, Y. Lifshitz, and S. Lee, Oxide-assisted growth of semiconducting nanowires, Adv. Mater, vol.15, issue.8, pp.635-640, 2003.

D. Shakthivel, W. T. Navaraj, S. Champet, D. H. Gregory, and R. S. Dahiya, Propagation of amorphous oxide nanowires via the VLS mechanism: Growth kinetics, Nanoscale Adv, vol.1, pp.3568-3578, 2019.

D. Shakthivel, M. Ahmad, M. R. Alenezi, R. Dahiya, and S. R. Silva, 1D Semiconducting Nanostructures for Flexible and Large-Area Electronics: Growth Mechanisms and Suitability, 2019.

J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan et al., Ge/Si nanowire heterostructures as high-performance field-effect transistors, Nature, vol.441, pp.489-493, 2006.

Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, and C. M. Lieber, Diameter-controlled synthesis of single-crystal silicon nanowires, Appl. Phys. Lett, vol.78, issue.15, pp.2214-2216, 2001.

P. Xie, Y. Hu, Y. Fang, J. Huang, and C. M. Lieber, Diameter-dependent dopant location in silicon and germanium nanowires, Proc. Nat. Acad. Sci. USA, vol.106, issue.36, pp.15254-15258, 2009.

W. I. Park, G. Zheng, X. Jiang, B. Tian, and C. M. Lieber, Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties, Nano Lett, vol.8, issue.9, pp.3004-3009, 2008.

H. Geaney, E. Mullane, and K. M. Ryan, Solution phase synthesis of silicon and germanium nanowires, J. Mater. Chem. C, vol.1, issue.33, pp.4996-5007, 2013.

M. M. Mirza, Determining the electronic performance limitations in top-down-fabricated Si nanowires with mean widths down to 4 nm, Nano Lett, vol.14, issue.11, pp.6056-6060, 2014.

C. G. Núñez, W. T. Navaraj, F. Liu, D. Shakthivel, and R. Dahiya, Large-area self-assembly of silica microspheres/nanospheres by temperature-assisted dip-coating, ACS Appl

, Mater. Interfaces, vol.10, issue.3, pp.3058-3068, 2018.

W. T. Navaraj, N. Yogeswaran, V. Vinciguerra, and R. Dahiya, Simulation study of junctionless silicon nanoribbon FET for high-performance printable electronics, Proc. Eur. Conf. Circuit Theory Design (ECCTD), pp.1-4, 2017.

M. M. Mirza, One dimensional transport in silicon nanowire junction-less field effect transistors, Sci. Rep, vol.7, issue.3004, 2017.

M. A. , Transfer printing by kinetic control of adhesion to an elastomeric stamp, Nature Mater, vol.5, pp.33-38, 2005.

A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, Transfer printing techniques for materials assembly and micro/nanodevice fabrication, Adv. Mater, vol.24, issue.39, pp.5284-5318, 2012.

T. Kim, Kinetically controlled, adhesiveless transfer printing using microstructured stamps, Appl. Phys. Lett, vol.94, issue.11, 2009.

R. S. Dahiya, A. Adami, C. Collini, and L. Lorenzelli, Fabrication of single crystal silicon micro-/nanostructures and transferring them to flexible substrates, Microelectron. Eng, vol.98, pp.502-507, 2012.

R. Dahiya, G. Gottardi, and N. Laidani, PDMS residues-free micro/macrostructures on flexible substrates, Microelectron. Eng, vol.136, pp.57-62, 2015.

H. C. Ko, A hemispherical electronic eye camera based on compressible silicon optoelectronics, Nature, vol.454, pp.748-753, 2008.

S. Khan, N. Yogeswaran, W. Taube, L. Lorenzelli, and R. Dahiya, Flexible FETs using ultrathin Si microwires embedded in solution processed dielectric and metal layers, J. Micromech. Microeng, vol.25, issue.12, 2015.

C. L. Pint, Dry contact transfer printing of aligned carbon nanotube patterns and characterization of their optical properties for diameter distribution and alignment, ACS Nano, vol.4, issue.2, pp.1131-1145, 2010.

W. S. Lee, S. Won, J. Park, J. Lee, and I. Park, Thermo-compressive transfer printing for facile alignment and robust device integration of nanowires, Nanoscale, vol.4, issue.11, pp.3444-3449, 2012.

J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, Synthesis, assembly and applications of semiconductor nanomembranes, Nature, vol.477, pp.45-53, 2011.

S. Park, Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays, Science, vol.325, pp.977-981, 2009.

X. Feng, M. A. Meitl, A. M. Bowen, Y. Huang, R. G. Nuzzo et al., Competing fracture in kinetically controlled transfer printing, Langmuir, vol.23, issue.25, pp.12555-12560, 2007.

A. J. Trindade, Nanoscale-accuracy transfer printing of ultra-thin AlInGaN light-emitting diodes onto mechanically flexible substrates, Appl. Phys. Lett, vol.103, issue.25, 2013.

Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, High performance silicon nanowire field effect transistors, Nano Lett, vol.3, issue.2, pp.149-152, 2003.

N. Singh, High-performance fully depleted silicon nanowire (diameter ? 5 nm) gate-all-around CMOS devices, IEEE Electron Device Lett, vol.27, issue.5, pp.383-386, 2006.

X. T. Zhou, J. Q. Hu, C. P. Li, D. D. Ma, C. S. Lee et al., Silicon nanowires as chemical sensors, Chem. Phys. Lett, vol.369, issue.2, pp.220-224, 2003.

G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays, Nature Biotechnol, vol.23, pp.1294-1301, 2005.

D. J. Lipomi, Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes, Nature Nanotechnol, vol.6, p.788, 2011.

E. Artukovic, M. Kaempgen, D. S. Hecht, S. Roth, and G. Grüner, Transparent and flexible carbon nanotube transistors, Nano Lett, vol.5, issue.4, pp.757-760, 2005.

H. Jang, Graphene-based flexible and stretchable electronics, Adv. Mater, vol.28, issue.22, pp.4184-4202, 2016.

M. Choi, Y. J. Park, B. K. Sharma, S. Bae, S. Y. Kim et al., Flexible active-matrix organic light-emitting diode display enabled by MoS 2 thin-film transistor, Sci. Adv, vol.4, issue.4, 2018.

G. Lee, Flexible and transparent MoS 2 field-effect transistors on hexagonal boron nitride-graphene heterostructures, ACS Nano, vol.7, issue.9, pp.7931-7936, 2013.

A. L. Elías, Controlled synthesis and transfer of large-area WS 2 sheets: From single layer to few layers, ACS Nano, vol.7, issue.6, pp.5235-5242, 2013.

M. Leufgen, Organic thin-film transistors fabricated by microcontact printing, Appl. Phys. Lett, vol.84, issue.9, pp.1582-1584, 2004.

B. Guilhabert, Transfer printing of semiconductor nanowires with lasing emission for controllable nanophotonic device fabrication, ACS Nano, vol.10, issue.4, pp.3951-3958, 2016.

J. Yao, H. Yan, and C. M. Lieber, A nanoscale combing technique for the large-scale assembly of highly aligned nanowires, Nature Nanotechnol, vol.8, pp.329-335, 2013.

C. G. Núñez, Heterogeneous integration of contact-printed semiconductor nanowires for high-performance devices on large areas, Microsyst. Nanoeng, vol.4, issue.22, 2018.

Z. Fan, Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing, Nano Lett, vol.8, issue.1, pp.20-25, 2008.

R. Yerushalmi, Z. A. Jacobson, J. C. Ho, Z. Fan, and A. Javey, Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing, Appl. Phys. Lett, vol.91, issue.20, 2007.

Y. Chang, F. , and C. Hong, The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing, Nanotechnology, vol.20, issue.19, 2009.

K. Takei, Nanowire active-matrix circuitry for low-voltage macroscale artificial skin, Nature Mater, vol.9, pp.821-826, 2010.

S. P. Singh, P. Sonar, A. Sellinger, and A. Dodabalapur, Electrical characteristics of lateral heterostructure organic field-effect bipolar transistors, Appl. Phys. Lett, vol.94, issue.1, 2009.

H. Ota, Application of 3D printing for smart objects with embedded electronic sensors and systems, Adv. Mater. Technol, vol.1, 2016.

Y. Sun, W. M. Choi, H. Jiang, Y. Y. Huang, and J. A. Rogers, Controlled buckling of semiconductor nanoribbons for stretchable electronics, Nature Nanotechnol, vol.1, pp.201-207, 2006.

J. Kim, Stretchable silicon nanoribbon electronics for skin prosthesis, Nature Commun, vol.5, p.5747, 2014.

D. Kim, Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations, Proc. Nat. Acad. Sci. USA, vol.105, pp.18675-18680, 2008.

T. Sekitani, Y. Noguchi, T. Fukushima, T. Aida, and T. Someya, A rubberlike stretchable active matrix using elastic conductors, Science, vol.321, issue.5895, pp.1468-1472, 2008.

M. Kaltenbrunner, An ultra-lightweight design for imperceptible plastic electronics, Nature, vol.499, pp.458-463, 2013.

Q. Sun, Transparent, low-power pressure sensor matrix based on coplanar-gate graphene transistors, Adv. Mater, vol.26, issue.27, pp.4735-4740, 2014.

T. Takahashi, K. Takei, A. G. Gillies, R. S. Fearing, and A. Javey, Carbon nanotube active-matrix backplanes for conformal electronics and sensors, Nano Lett, vol.11, issue.12, pp.5408-5413, 2011.

L. Nela, J. Tang, Q. Cao, G. Tulevski, and S. Han, Large-area high-performance flexible pressure sensor with carbon nanotube active matrix for electronic skin, Nano Lett, vol.18, issue.3, pp.2054-2059, 2018.

W. Dang, V. Vinciguerra, L. Lorenzelli, and R. Dahiya, Printable stretchable interconnects, Flexible Printed Electron, vol.2, issue.1, 2017.