
HAL Id: hal-02367566
https://hal.sorbonne-universite.fr/hal-02367566

Submitted on 18 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Mechanized Theory of Program Refinement
Boubacar Demba Sall, Frédéric Peschanski, Emmanuel Chailloux

To cite this version:
Boubacar Demba Sall, Frédéric Peschanski, Emmanuel Chailloux. A Mechanized Theory of Program
Refinement. ICFEM 2019 - 21st International Conference on Formal Engineering Methods, Nov 2019,
Shenzhen, China. pp.305-321, �10.1007/978-3-030-32409-4_19�. �hal-02367566�

https://hal.sorbonne-universite.fr/hal-02367566
https://hal.archives-ouvertes.fr


A Mechanized Theory of Program Refinement

Boubacar Demba Sall, Frédéric Peschanski, and Emmanuel Chailloux

Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6
F-75005 Paris, France

{boubacar.sall, frederic.peschanski, emmanuel.chailloux}@lip6.fr

Abstract. We present a mechanized theory of program refinement that
allows for the stepwise development of imperative programs in the Coq
proof assistant. We formalize a design language with support for grad-
ual refinement and a calculus which enforces correctness-by-construction.
A notion of program design captures the hierarchy of refinement steps
resulting from a development. The underlying theory follows the predica-
tive programming paradigm where programs and specifications are both
easily expressed as predicates, which fit naturally in the dependent type
theory of the proof assistant.

Keywords: Stepwise refinement · Program verification · Predicative
programming · Correctness by construction · Type theory · Proof as-
sistant · Coq

1 Introduction

Program development by stepwise refinement [8,23,25] is inherently an interac-
tive activity alternating programming steps and proof steps feeding back on each
other. It therefore makes sense to perform refinement steps within an interactive
proof assistant whose very purpose is to help in specification, proof composi-
tion and mechanical proof verification. This however requires that a theory of
program refinement be embedded in the formalism of the proof assistant (p.a.).
Most theories of refinement fall in two groups. The theories (e.g. [9,19]) in the
first group are based upon the calculus of relations, and represent programs as
well as specifications uniformly as set-theoretic relations on program states. In
the second group, the theories (e.g. [20,3]) are underpinned by Hoare logic or
the wp-calculus1. The view there is that programs relate sets of program states
represented in logic as predicates, while specifications are pairs of predicates.
In this paper, we investigate the predicative programming [10,22] approach to
refinement which can be viewed as an expression of the relational point of view
in predicative terms rather than in set theory. This investigation lead to the
development of a mechanized theory of stepwise refinement towards imperative
programs (similar to those studied in [20]) in the realm of the Coq p.a. [24]. We
have the following contributions.

1 calculus of weakest preconditions



2 B. D. Sall and F. Peschanski and E. Chailloux

Firstly, we formalize in type theory a language of stepwise program design,
and a calculus which enforces correctness by construction. The language is an
extension of a simple imperative language with assignment, sequence, if state-
ments and iteration. The extension is to allow the expression of an hierarchy
of refinement steps, each step associating a specification to an implementation.
The calculus stems from a synthesis of ideas from predicative and relational
theories of refinement. On the one hand, the relational point of view unifies the
usual assertions (e.g. precondition, post-condition, invariant) under a single and
more general notion of specification, hence simplifying the formulation of the
theory. On the other hand, the predicative point of view makes it easier to write
specifications and handle proof obligations (p.o.s).

Secondly, we uncover necessary and sufficient conditions for a while statement
to refine a given specification. In particular, the loop body must be given an
adequate relational specification. The advantage is that theses specifications are
more flexible than invariants.

Finally, we have mechanized the aforementioned calculus as well as the un-
derlying theory in the Coq p.a. so that the declaration of a refinement step
automatically triggers the generation of p.o.s (in the language of the p.a.) to
ensure the correctness of the refinement. All the artifacts presented in the pa-
per (definitions and theorem statements), as well as all the proofs, have been
formalized in about 4000 lines of Coq script and made available in a companion
repository2. This framework thus permits certified imperative program design
by gradual refinement, and demonstrates that, in terms of mechanized semantics
in type theory, the relational point of view is a viable alternative to Hoare-logic
style semantics. Moreover, the Coq p.a. provides a full blown functional lan-
guage to write specifications with the benefit of type checking, type inference
and parametric polymorphism for free.

The outline of the paper is as follows. In Section 2 we give an overview
of program development by stepwise refinement in our proposed framework. In
Section 3 we introduce the language of program designs, we describe the rules
of the calculus, and we formulate the corresponding correctness theorem. In
Section 4 we formalize the semantics of our language, we define the refinement
relation based on this semantics, and we justify the design rules introduced in
Section 3. In Section 5 we turn our attention to making the framework more
practical by applying some automatic simplifications to the p.o.s. A discussion
of related work and the conclusion follow.

2 An overview of stepwise program design

To give an overview of our framework as experienced by the user, we use a
classical example: the (integer) square root computation. We begin by declaring
the following abstract definition of the square root computation:

Program Definition Sqrt := 〈r′2 ≤ x < (r′ + 1)2〉x.
2 https://github.com/bsall/AMToPR-ICFEM-2019

https://github.com/bsall/AMToPR-ICFEM-2019


A Mechanized Theory of Program Refinement 3

With the Definition keyword we have named our computation Sqrt, and declared
its high level specification. The role of the Program keyword will be clarified
shortly, it has to do with the handling of p.o.s. Most specifications we will write
are akin to before-after predicates which describe the relation between the initial
state and the final state of a program. We use the usual convention that variables
are primed to mean their value after execution, and unprimed to mean their
value before execution. The specification3 of the square root computation reads
as follows: from the initial value of variable x we aim to compute its square root
and make the result available as the final value of r (denoted r′). Additionally,
the value of x is required to remain unchanged. Our objective is to elaborate,
incrementally, a program to fulfill this specification. Once we have decided on a
more precise implementation, we open braces to write this implementation. In
our example, this first refinement step leads to the following situation:

(1) Program Definition Sqrt := 〈 r′2 ≤ x < (r′ + 1)2 〉x {
r := 0;
h := x+ 1;
〈 r2 ≤ r′2 ≤ x < h′2 ≤ h2 ∧ r′ + 1 = h′ 〉x

}.

Our initial specification has developed into a specified block [11] whose header
is the initial specification. The body of the block introduces a new variable h
so that [r..h] delimits the search space. The last statement specifies the search
strategy we intend to implement, i.e. narrow the search space around x (first
conjunct), up to the point where the initial specification is fulfilled (second con-
junct). The notations being used to design the square root computation (e.g.
〈...〉 {...}, ;) are syntactic sugar for invoking specific constructions rules defined
in Section 3.2. These rules ensure the correctness of our design with respect to
the semantics defined in Section 4. In particular the rules stipulate that to con-
struct the specified block above, one must provide a proof that the body of the
block refines (in the sense of Section 4.2) the header of the block. Thanks to the
Program keyword we can mimic the construction of a specified block and let the
p.a. save the p.o. corresponding to the missing proof for later. This p.o. is to be
discharged separately so that our design is not cluttered with the details of the
proofs. At this point, even though the p.a. has performed some type checking
automatically, the Sqrt definition is not yet complete: for example it cannot be
referred to in other definitions. To complete the definition, we must provide the
missing proof by writing a proof script which is generally of the following form:

Next Obligation. t1. ... ti. nia. ... tj . ... tk. Qed.

The Next Obligation command is to fetch and display the next p.o. among those
left to be discharged. The following sequence of ti commands invoke built-in
proof tools called tactics, for example the nia tactic used to deal with non linear
arithmetic is very helpful in our case. Finally, the Qed command instructs the p.a.
to check our proof for validity. By repeating the process we have just described

3 The notation 〈S〉x1,...,xn is a shorthand for 〈S ∧ x′1 = x1 ∧ · · · ∧ x′n = xn〉.



4 B. D. Sall and F. Peschanski and E. Chailloux

to make specifications more and more precise, we ultimately obtain the design
of Listing 1.1 below after three more refinement steps (labeled (2), (3) and (4)).

(1) Program Definition Sqrt := 〈 r′2 ≤ x < (r′ + 1)2 〉x {
r := 0;
h := x+ 1;

(2) 〈 r2 ≤ r′2 ≤ x < h′2 ≤ h2 ∧ r′ + 1 = h′ 〉x {
while r + 1 6= h do

(3) 〈 r2 ≤ r′2 ≤ x < h′2 ≤ h2 ∧ (r < r′ ∨ h > h′) 〉x {
(4) 〈 r < m′ < h 〉x,r,h {

m := r + (h− r)/2
};
if m2 ≤ x then r := m else h := m end
}

done
}}.

Listing 1.1. The square root program design with refinement steps (1) to (4)

The second refinement step has consisted in deciding to implement the search
strategy as a loop. The body of the loop required two more refinement steps
(numbered (3) and (4)). An important remark is that all the successive steps are
visible in the final design: one can imagine collapsing specified blocks showing
only the associated specifications, or instead expanding blocks to dig into the
implementation details. Once all p.o.s are discharged we have built an object
carrying programming instructions, the design decisions (refinement steps) that
lead to those instructions, and the proofs of correctness of all refinements. We
call this object a program design. Keeping all refinement steps around is impor-
tant because the corresponding design decisions tend to be lost as time passes,
rendering program evolution ever more harder. Thanks to the proofs carried by
the program design, our framework is able to assemble a global certificate of
design correctness. To assemble such a certificate we write the following script:

Definition sqrt proof := CbC.soundness Sqrt.

In other words, the sqrt proof term results from applying the soundness theorem
of our design rules (the Cbc.soundness term) to the Sqrt design. This term is a
proof that can be independently checked for validity. The soundness theorem of
the design rules is formulated in Section 3. We refer the reader to the companion
repository for a detailed example4 of how the refinement process is carried out
for the square root computation.

3 The calculus of program designs

In this section we formally present the calculus of program designs. We begin
with the language of program designs. Then, we formulate the construction rules
of the calculus whose purpose is to enforce correctness-by-construction.

4 https://github.com/bsall/AMToPR-ICFEM-2019/tree/master/src/examples/

https://github.com/bsall/AMToPR-ICFEM-2019/tree/master/src/examples/


A Mechanized Theory of Program Refinement 5

Statement S ::=
effect f (with the state transformer f : T → T )
| 〈R〉 (specification statement with R : T → T → Prop)
| S1 ; S2 (sequence)
| if C then S1 else S2 endif (if statement with condition C : T → Prop5)
| S1 { S2 } (specified block with S1 block free)
| while C do S done (iteration with condition C : T → Prop)

Fig. 1. The design language w.r.t. the type T of program states

3.1 The language of program designs

To design programs in the way described previously, we need a language with
support for gradual refinement. Moreover, adhering to the correctness by con-
struction [18] paradigm, our objective is to impose further restrictions so that
only correct program designs can be constructed. The syntax of the core lan-
guage we study is given in Figure 1. It is a very classical imperative language,
close in spirit to the language studied in [21], but embedded in the Coq p.a. Since
Coq is underpinned by a dependent type theory, type checking, type inference
and parametric polymorphism are for free. In the p.a., the syntax is encoded as
an inductive type implicitly parameterized by the type T of program states.

The statements of the language. Sequential composition as well as the statements
related to the if and while keywords are self-explanatory. The effect statement re-
flects the notion of state transformation as a syntactic constructor. This provides
a nice generalization of various kinds of effects. For example the skip instruction
is defined as effect (λ s ⇒ s). Assignment statements are also derivable. For
example, the assignment v := v+w for v and w variables of type Nat translates
to effect (λ (v, w) ⇒ (v + w,w)) where T is Nat× Nat.

The 〈R〉 construct is a specification statement [20]. It can be thought of as
standing for a “program fragment yet to be implemented”, or alternatively as
a procedure call to a program specified by R. The notation 〈...〉 is from [17].
The encoding in Coq of before-after predicates is straightforward. For example
λ (i i′ : nat)⇒ i′ > i specifies a program that increases variable i. More generally,
〈R〉 designates a program P such that : (1) when started in state s the set of
possible outputs of P is { s′ | R s s′ }, and (2) P terminates on input s exactly
when (∃ s′ · R s s′) is true (i.e. the set of possible outputs is not empty). Non
deterministic behavior is reflected by a number of possible outputs greater than
one. Following [22], we equate abnormal termination in an error state with non
termination, therefore abort ≡ 〈 λ (s s′ : T )⇒ False 〉.

The specified block S1 { S2 } represents a pair of statements resulting from
the refinement of S1 by S2 as explained in Section 2. This is the feature enabling
gradual refinement. S1 is called the abstraction of the block and S2 is called
the concretization. We assume that the abstraction S1 does not itself contain
specified blocks, we say that it is block free. Note that programming constructs

5 Prop is the built-in type of logical propositions in the Coq p.a.



6 B. D. Sall and F. Peschanski and E. Chailloux

ϕ(effect f)
def
= (effect f) { (effect f) }

ϕ(〈R〉) def
= 〈R〉 { 〈R〉 }

ϕ(S1;S2)
def
= ϕa(S1) ; ϕa(S2) { ϕc(S1) ; ϕc(S2) }

ϕ(if C then S1 else S2 endif)
def
= if C then ϕa(S1) else ϕa(S2) endif {

if C then ϕc(S1) else ϕc(S2) endif
}

ϕ(S1 { S2 })
def
= S1 { ϕc(S2) }

ϕ(while C do S done)
def
= if C then 〈 λ s s′ ⇒ [[ϕa(S)]] s s′ ∧ ¬C s′ 〉 endif {

while C do ϕc(S) done
}

Fig. 2. The design projection function ϕ

are welcome in the abstraction of specified blocks. For example, the abstraction
of a block can be of the if-then-else form. During program design, when we write
S1 { S2 }, we record a design decision which communicates an abstract intent
(S1), and some (hopefully more concrete and correct) means of realizing it (S2).

The ϕ projection function. We now define the projection function ϕ, which will
be used in the formulation of the rules and properties of the calculus. The defini-
tion is given in Figure 2 above. From a statement S, ϕ computes an abstraction
ϕa(S), and a (generally distinct) concretization ϕc(S), such that both statements
are block free. We write ϕ(S) = ϕa(S) { ϕc(S) } to match the syntax of the
language. For example, if we consider the program design of Listing 1.1, the cor-
responding abstraction is the outermost specification 〈 r′2 ≤ x < (r′+1)2 〉x, and
the concretization is the statement resulting from the intermediate specifications
(lines in blue labeled (1) up to (4)) being ignored.

ϕ is defined so that the effect and 〈R〉 statements are respectively their own
abstraction. Concerning sequential composition and the if-the-else construct, ϕ
simply extracts the (abstraction,concretization) pairs from the inner statements
and combines them in parallel.

In the case of the specified block the corresponding abstraction is just S1 by
definition, and the concretization is the one of the body of the block.

The abstraction of a loop is constructed from the abstraction of its body,
which therefore must be specified with care. We come back to this in Section 4.3.
The [[·]] operator refers to the interpretation of statements as binary relations on
program states. This interpretation is detailed in Section 4.1. To give an example,
[[i := i+ 1]] denotes the predicate i′ = i+ 1 (encoded as (λ i i′ ⇒ i′ = i+ 1) in
the p.a.).

Actually we use ϕa(S) to reason about S while abstracting away from imple-
mentation details, and we compute ϕc(S) to get a block free statement which can
be translated into a programming language provided S is precise enough (i.e. no
specification statements among the leaves of the syntax tree). The calculus we



A Mechanized Theory of Program Refinement 7

Design (effect f) Design 〈R〉
Design S1 ∧ Design S2

Design S1;S2

Design S1 ∧ Design S2

Design (if C then S1 else S2 endif)

Design S2 ∧ ϕa(S2) v S1

Design (S1 { S2 })

Design S ∧ K;K v K, with K
def
= (if C then ϕa(S) endif)

∧ well founded (λ s s′ ⇒ C s′ ∧ ([[ϕa(S)]] s′ s) ∧ C s)

Design (while C do S done)

Fig. 3. The calculus of program designs

define in Section 3.2 allows to characterize those statements S such that ϕc(S)
is indeed a refinement of ϕa(S).

3.2 Enforcing correctness-by-construction

The usefulness of a program design rests upon the correctness of what this design
communicates. In order to enforce design correctness, we restrict our language by
imposing strict construction rules. We say that a program design S is correct if
and only if the predicate Design S can be derived from the rules of Figure 3. The
two basic instructions effect and 〈R〉 are, unsurprisingly, the axioms of the proof
system. All the statements involved in the other compound instructions must
already be correct designs. The rule for specified blocks involves the refinement
relation v. This relation will be formally defined in Section 4.2, but for now
we describe it as follows: we say that S2 v S1 if and only if every specification
satisfied by S1 is also satisfied by S2. In fact, when S1 and S2 are block free, our
formalization allows to derive formally this description of refinement in terms of
Hoare triples, i.e. we have established the following equivalence:

S2 v S1 ↔ ∀ P Q · {P} S1 {Q} → {P} S2 {Q}

The requirements for a block S1 { S2 } to be a correct design are as follows.
First, it must be the case that S2 is a correct design, and moreover that ϕa(S2)
refines S1. In the rule for specified blocks and while loops, we can abstract away
from implementation details and only consider ϕa(S) because we assume S to be
a correct program design. The rule for while loops is more intricate. The require-
ment that K;K refines K is to ensure that K is a correct over-approximation of
the loop’s behavior. The well-foundedness requirement ensures as it is usually
the case that the loop terminates on all inputs of interest. Ultimately, the central
theorem of our proposed framework is the following one.

Theorem 1 (Correctness of program designs).

(soundness) ∀ S · Design S → ϕc(S) v ϕa(S)
(completeness) ∀ S1 S2 · S2 v S1 → ∃ S · Design S ∧ ϕ(S) = S1 { S2 }



8 B. D. Sall and F. Peschanski and E. Chailloux

[[·]] : Statement→ Spec

[[effect f ]]
def
= λ s s′ ⇒ s′ = (f s)

[[〈R〉]] def
= R

[[S1;S2]]
def
= [[S1]]�[[S2]]

[[if C then S1 else S2 endif]]
def
= [[S1]]C C B [[S2]]

[[S1 { S2 }]]
def
= [[S2]]

[[while C do S done]]
def
= lfp6 (λ X ⇒ ([[S]]�X )C C B [[skip]])

Table 1. The predicative semantics of the design language

This theorem explains that whenever we are able to derive Design S for some
program design, the associated concretization refines the associated abstraction.
Clearly it is possible to have ϕc(S) v ϕa(S) while Design S is not derivable. For
example consider the following program design

S
def
= skip { 〈 λ s s′ ⇒ False 〉 { skip } }.

We have skip v skip, and yet Design S cannot be derived. So as one would
expect the design rules are not complete in the absolute sense. However they
are complete in the weaker sense that for any concretization S2 and abstraction
S1 such that S2 v S1, it is possible to come up with a correct design S whose
associated concretization and abstraction are respectively S2 and S1. When we
complete a design, the soundness part of Theorem 1 allows to construct a tangible
lambda term certifying that our design is indeed correct: this lambda term is
the certificate of correctness we alluded to in Section 2. The completeness part
of Theorem 1 reassures us that the design rules we restrict ourselves to use do
not themselves restrict the kind of programs that can be obtained by applying
these rules.

4 Predicative semantics and refinement relation

In this section we discuss the key properties justifying the design rules of our
calculus. First we present the predicative interpretation of statements and define
the refinement relation in terms of this interpretation. Then, we examine the
particular case of loops.

4.1 Predicative semantics

Except for loops and specified blocks, our interpretation of statements as pred-
icates corresponds to the predicative semantics of [22]. We denote by Spec the

6 least fixpoint



A Mechanized Theory of Program Refinement 9

type of specifications, i.e. the type of binary relations on the type T of program
states.

Spec
def
= T → T → Prop

The predicative interpretation of statements associates to each statement a spec-
ification of type Spec. This interpretation is inductively defined on the syntax of
statements as indicated in Table 1 above.

State transformation, specification statements and specified blocks. The specifi-
cation associated to (effect f) explains that the after state is the image by f of
the before state. The interpretation of 〈R〉 is just R since R is already a spec-
ification. For specified blocks, we choose the interpretation of the supposedly
better implementation among the statements composing the block.

Alternative. The if-then-else statement denotes the specification described in
Equation (1) below. Here, A and B are of type Spec and C has type T → Prop.

AC C BB
def
= λ (s s′ : T )⇒ C s ∧ (A s s′) ∨ ¬(C s) ∧ (B s s′) (1)

The notation used is borrowed from [15], and expresses a selection between two
specifications depending on C, i.e. either C is true (C) of the input state and
A is selected, or C is false (B) of the input state and B is selected. Note that
conditions C of the if and while statements send states to Prop rather than to bool.
The choice of Prop for the type Spec makes writing specifications easier because
unlike bool, Prop is closed under universal and existential quantification. Once
Prop is chosen for specifications, it makes sense for the sake of uniformity, to
also choose Prop for conditions. For example, choosing bool for conditions would
require reflecting bool in Prop to write Equation (1) above. As a consequence of
choosing Prop, the decidability of the conditions is not enforced by typing. How-
ever, the predicative semantics of the if-then-else and while statements implicitly
address this decidability issue since whenever such statements are defined on a
state s, it follows that (C s ∨ ¬C s) is true.

Sequence. For sequential composition, we need a notion of composition for speci-
fications. We define below the angelic and demonic composition of specifications.

Definition 1 (Sequential composition of specifications). Let S1 and S2

be of type Spec. The angelic and demonic composition operators are respectively
defined as follows:

S1 � S2
def
= λ s s′ ⇒ ∃ sx · S1 s sx ∧ S2 sx s

′

S1 � S2
def
= λ s s′ ⇒ (S1 � S2) s s′ ∧ ∀ sx · S1 s sx → ∃ s′ · S2 sx s

′

Angelic composition is just relational composition. Demonic composition is re-
lational composition further restricted to account for the fact that the interpre-
tation of 〈S1〉;〈S2〉 is defined only on those states s such that S2 is defined for



10 B. D. Sall and F. Peschanski and E. Chailloux

all possible outputs of S1 on s. As an illustration of the difference between the
two operators, consider the following example:

{(1, 2), (1, 3)}� {(2, 4)} = {(1, 4)}, but {(1, 2), (1, 3)}�{(2, 4)} = {}

We see that angelic composition does not properly capture the possibility of
failure because the input 1 should not be present in the domain of the compo-
sition since it may cause an error if the output is 3. Therefore, as in [9], we use
demonic composition [5,4] to formalize the sequential composition of specifica-
tions. Consequently, the specification associated to the sequential composition
of statements is the demonic composition of their interpretations. The � no-
tation for demonic composition is from [9]. For angelic composition, we use a
similar notation rather than (;) to prevent confusion with sequential composition
of statements.

Iteration. The while statement is interpreted as a least fixpoint (lfp for short)
of a function from specifications to specifications. An encoding of the lfp in
type theory is given below. It says that a pair (s, s′) ∈ lfp(F ) iff (s, s′) is in all
specifications X such that (F X ⊆ X).

lfp (F : Spec→ Spec)
def
= λ s s′ ⇒ ∀ X · (∀ s s′ · F X s s′ → X s s′)→ X s s′

Demonic composition is right-monotonic w.r.t. inclusion of specifications. As a
consequence, the function (λ X ⇒ ([[S]]�X )C C B [[skip]]) is monotonic. Hence,
by the Knaster-Tarski fixpoint theorem, its least fixpoint is defined since the
binary predicates ordered by implication (i.e. relations ordered by inclusion)
form a complete lattice. We have formalized enough fixpoint theory to prove
that lfp indeed represents the least fixpoint. An interesting by-product of this
least fixpoint definition of the while statement is the existence of the following
well-founded relation associated to each while statement:

≺C
P

def
= λ s s′ ⇒ C s′ ∧ [[P ]] s′ s ∧ (∃ s′′ · [[while C do P done]] s′ s′′)

This relation has been used to proceed by well-founded induction in proving
many intermediate results and some of the subsequent theorems.

4.2 The refinement relation

The refinement relation occupies unsurprisingly a central place in our develop-
ment. Intuitively, it corresponds to a kind of translation of the classical relational
interpretation (as found in e.g. [23]) in predicative terms.

Definition 2 (Predicative refinement). We say that S2 refines S1 if and
only if whenever S1 terminates on some state s, S2 terminates on s and all
observable behaviors of S2 on s are observable behaviors of S1 on s:

S2 v S1
def
= ∀ s · (∃ s′ · [[S1]] s s′) → (∀ s′ · [[S2]] s s′ → [[S1]] s s′)

∧ (∃ s′ · [[S2]] s s′)



A Mechanized Theory of Program Refinement 11

This definition reflects the fact that reducing non-determinism or enlarging the
domain of a statement moves it down the refinement ordering. The correctness
of the design rules relies on important properties of the refinement relation, some
of which are stated in the following Lemma.

Lemma 1 (Properties of refinement). Let P and Q designate statements,
and let C designate a condition. The following properties hold:
1. P v P 2. P v Q → Q v R → P v R

3. P1 v Q1 → P2 v Q2 → if C then P1 else P2 endif

v if C then Q1 else Q2 endif

4. P1 v Q1 → P2 v Q2 → P1;P2 v Q1;Q2

5. P v Q → while C do P done v while C do Q done

Essentially, this lemma states that the refinement relation is a preorder, and that
the control structures of our language are monotonic w.r.t. refinement. Property
(2) justifies the design rule for specified blocks, whereas properties (3) and (4)
justify the design rules for the if statement and sequential composition. Note that
these properties of refinement need never be explicitly used to discharge proof
obligations. Indeed, the properties are seamlessly applied during the composition
of program designs. For example, the nesting of specified blocks implicitly invokes
the transitivity of refinement. Actually, the composition of program designs feels
like programming, but also consists in constructing (behind the scenes) the main
frame of the proof of correctness.

4.3 The special case of loops

The predicative semantics of loops corresponds to the least fixpoint of a rather
complex function. Even though it is possible to prove refinements by applying
the least fixpoint axioms directly, it proves to be a rather impractical method.
Hence, we need another way to handle the while construct. In particular we
would like to be as uniform as possible and rely on the notion of specification
only. Note that Lemma 2 below provides an alternative characterization of loops
as if statements under some conditions.

Lemma 2 (Loop Summarization).
well founded (λ s s′ ⇒ C s′ ∧ [[P ]] s′ s ∧ C s)
→ (if C then P endif; if C then P endif) v if C then P endif

→ while C do P done ≡ if C then 〈 λ s s′ ⇒ [[P ]] s s′ ∧ ¬(C s′) 〉 endif

This summarization lemma is inspired by the relational approach described in [9],
and suggests the following design method for loops. First, one should start with
a loop body satisfying the conditions of Lemma 2. This first step consists in
finding an abstract specification of what the loop body is intended to achieve.
Then, one applies the summarization lemma and checks that the loop summary
refines the desired specification. Finally, the loop body may be further refined
with a more precise implementation. In this way, the lfp definition never appears



12 B. D. Sall and F. Peschanski and E. Chailloux

explicitly in refinement statements to prove. This method rests on the following
theorem, which builds on the previous Lemma to give necessary and sufficient
conditions for a while statement to refine a given specification.

Theorem 2 (Loop refinement rule).
while C do P done v R

↔ ∃ K L · P v L ∧ well founded (λ s s′ ⇒ C s′ ∧ [[L]] s′ s ∧ C s)
∧ K = if C then L endif ∧ K;K v K
∧ if C then 〈 λ s s′ ⇒ [[L]] s s′ ∧ ¬(C s′) 〉 endif v R

Combined with properties (2) and (5) of Lemma 1, this theorem justifies the
design rule for the while statement. Note that the second hypothesis of Lemma 2
implies that the relation (λ s s′ ⇒ C s∧ [[P ]] s s′) is transitive. This means that
in general the loop body must have a non deterministic specification for loop
summarization to apply. Hence, the ability to specify non deterministic behavior
is key even when the end goal is a deterministic program.

Note 1. The most common way of dealing with loops is through the use of invari-
ants and variants. In the case of the square root algorithm presented in section 2,
one can prove correctness in Hoare logic using (r2 ≤ x < h2) as invariant and
(h − r) as variant. If we consider that the intention of the programmer is to
have the loop body maintain the invariant and decrease the variant, then the
corresponding specification is the following:

〈 (r2 ≤ x < h2 ∧ r′2 ≤ x′ < h′2) ∧ (h− r > h′ − r′) 〉x

This specification states that the invariant is true at the beginning of execution
as well as at the end of execution, and also that the variant is lower at the end
than it was at the beginning. From the invariant and the variant, one can reason
to deduce that the objective is to shrink the search interval and make progress
by either increasing r or decreasing h. However, the intention to implement
this objective is not so well conveyed by the specification of the loop body
when it is written under the invariant-variant mindset. Because specifications are
more flexible, the programmer has the opportunity to convey his intentions in a
more intelligible way as we did in our example of section 2. In that alternative
specification of the loop body, one better sees the search interval closing up
towards x.

5 Refinement in a calculus of weakest prespecifications

In this section we turn our attention to the simplification of p.o.s. Consider the
typical situation where a specified block S1 { S2 } is introduced. As required by
the design rules, the p.a. should prompt us to prove the statement ϕa(S2) v S1.
However, the current definition of the refinement relation v is too primitive as
a means to compute such p.o.s. This is mostly due to demonic composition, i.e.
the � operator. For example, the statement P1;...;Pn v Q1;...;Qn yields, after
unfolding the v and � operators, a formula containing a profusion of existential



A Mechanized Theory of Program Refinement 13

quantifiers, and whose size is exponential in n. To avoid such a situation and
simplify p.o.s, we recast the definition of the refinement relation in a calculus
akin to the classical wp-calculus.

We begin by observing that in Definition 2 the right hand side (r.h.s.) of
the implication is (κ([[S2]], [[S1]]) s s), where κ is a relational operator called the
conjugate kernel in [7] and the the weakest prespecification in [16,14]. We now
translate this operator in a predicative form.

Definition 3 (The weakest prespecification). Let R1 and R2 be two speci-
fications. The weakest prespecification of R2 w.r.t. R1 is defined as follows:

κ(R2, R1)
def
= λ s s′ ⇒ (∀ s′′ ·R2 s

′ s′′ → R1 s s
′′) ∧ (∃ s′′ ·R2 s

′ s′′)

Consider K = κ(R2, R1)�R2. Then the output state s′ of κ(R2, R1) on some
input state s is such that R2 terminates on s′, and whatever R2 does to s′,
the overall resulting behavior of K is a behavior of R1. Specializing κ to the
statements of our language and simplifying the resulting expressions, leads to
the following specification transformer.

Definition 4 (The wpr transformer). We define, by induction on the syntax,
the function wpr of type Statement→ Spec→ Spec as follows:

wpr(effect f, R)
def
= λ s s′ ⇒ R s (f s′)

wpr(S1;S2, R)
def
= wpr(S1, wpr(S2, R))

wpr(if C then S1 else S2 endif, R)
def
= (wpr(S1, R)−1 C C B wpr(S2, R)−1)−1

wpr(while C do S done, R)
def
= lfp

(
λ X ⇒ (wpr(S, X )−1 C C BR−1)−1

)
wpr(S1 { S2 }, R)

def
= wpr(S2, R)

wpr(〈R2〉, R1)
def
= κ(R2, R1)

where R−1
def
= λ s s′ ⇒ R s′ s

In fact wpr(S,R) is equivalent to κ([[S]], R). Also, wpr is monotonic in its sec-
ond argument, therefore the least fixpoint in the definition of wpr for the while

statement is defined. The wpr transformer is encoded as a Coq fixpoint definition
by pattern matching on the first argument. The following theorem shows that
refinement can be defined in terms of wpr. The definition is a translation of the
relational definition in terms of κ from [7].

Theorem 3. ∀ S1 S2 · S2 v S1 ↔ ∀s · (∃s′ · [[S1]] s s′)→ wpr(S2, [[S1]]) s s

By using this wpr-based definition of refinement, we get simpler p.o.s for the same
reasons that wp computes simpler p.o.s. In some way we have dealt with the �
operator on the l.h.s. of v (i.e. S2 in Theorem 3). Indeed, wpr(P1;P2;...;Pn, R)
simplifies to a formula whose size is linear in n after unfolding definitions, and
wpr(effect f,R) simplifies to a formula with no additional quantifiers. Remains
the r.h.s. of v to consider (i.e. [[S1]] in Theorem 3). We observe that:

[[(effect f);R]] ≡ λ s s′ ⇒ R (f s) s′

[[(if C then S1 else S2 endif);R]] ≡ [[S1;R]]C C B [[S2;R]]
[[(S1;S2);R]] ≡ [[S1;(S2;R)]]



14 B. D. Sall and F. Peschanski and E. Chailloux

By recursively applying the equations above, [[S1]] may in some cases simplify to a
formula with no additional quantifiers. In our development these simplifications
are done automatically each time a p.o. is computed. Of course the size of p.o.s
may still become unmanageable. But, by refining in small steps, one also keeps
the size of p.o.s in check. It is the case that the wpr transformer is not of much
help when loops are involved, but thanks to Theorem 3 we can fall back on
Theorem 2 to avoid the difficulties related to using directly the least fixpoint
definition.

Note 2. One might wonder whether it would be possible to achieve the simplifica-
tion of p.o.s by using the wp-calculus. Indeed this is possible, based on the follow-
ing connection between wpr and wp from [16]: ∀ s ·wpr(S,R) s s↔ wp(S, (R s)) s.
However wpr is a more natural concept in some cases. For example consider the
situation where we must refine 〈R〉. If we know that Q is a step towards a so-
lution, we can compute a candidate P = wpr(Q,R) so that K = 〈P 〉;Q is a
potential solution. Then, if indeed K v R we hopefully have a smaller problem
to think about (namely finding an implementation for 〈P 〉). If unfortunately K
is not a solution then the problem cannot be solved in this way. This kind of
reasoning is not so natural to achieve with the concept of wp since the latter
computes a condition (as the name suggests), whereas the decomposition of R
into 〈P 〉;Q requires P to be a specification.

6 Related work

In this section we put our research work in the context of mainly three areas: the
notion of program design, the use of predicative and relational semantics and
the more specific comparison with related Coq developments.

On program designs. A similar notion of program development is proposed
in [21] to capture the refinement history. A development is defined as a “multi-
way branching tree” of refinement steps. In this language each specification
statement is given an identifier, and refinement steps reference the specifications
they refine by these identifiers. This is very much in the line of literate pro-
gramming [17] with the important difference that formal specifications replace
informal ones. Comparatively, our program designs are based on the notion of
specified blocks introduced in [11]. Since specified blocks can be nested they
naturally represent a tree of design decisions without the need for explicit iden-
tifiers: the abstract syntax tree provides enough structure to capture the relevant
information. This also means that unlike in [21] we have no need to structure a
specific database of program and specification fragments.

On the predicative and relational approaches. The semantics of our lan-
guage of program designs is close to the predicative interpretation of program-
ming constructs of [10,11,12], with important differences. Firstly, we follow [22]
by using demonic composition to represent sequential composition, and by equat-
ing non termination, termination in an error state, and relational undefinedness



A Mechanized Theory of Program Refinement 15

instead of using a time variable or a fictitious program state to distinguish be-
tween terminating and non-terminating behaviors as in [10,15,23]. Representing
non termination by undefinedness means however that we cannot for example,
specify a program choosing nondeterministically to either terminate or loop for-
ever on a given input. The second difference has to do with our refinement proof
rule for loops which is more in the line of [9] where the focus is on assigning
abstract specifications to loop bodies rather than on attaching outer specifica-
tions to loops as in [11]. A loop proof rule similar to ours follows from the results
presented in [9], but our rule has weaker requirements and is provably complete.

On refinement in the Coq proof assistant. There are other works of mech-
anization of refinement theories in the Coq p.a., in particular [6] and [1], both
based on the refinement calculus [20]. The goal of the development presented
in [1] is to derive imperative programs by applying validated refinement rules in
proof mode. As a consequence the final program design entangles the intermedi-
ate refinement steps together with their proof of correctness. The mechanization
of the refinement calculus presented in [6] supports a quite expressive language
(with pattern matching and structural recursion), however the language does
not include features to structure the refinement steps. Our work also differs with
existing approaches in the way we treat loops. In [1] one must specify loop in-
variants while our formalization allows to specify loop bodies as input-output
relations, which is more general. In [6] one has to work with the fixpoint charac-
terization of loops while we use a more convenient rule. Moreover, we use weakest
prespecifications (wpr) instead of weakest preconditions (wp) to compute p.o.s.

7 Conclusion and future works

We have presented a formalized theory of stepwise refinement. The formaliza-
tion is the result of our study of both relational and predicative points of view
on stepwise refinement, which lead us to a calculus benefiting from some cross-
fertilization between the two points of view. We have mechanized this formaliza-
tion thus allowing for correct-by-construction imperative program design in the
Coq p.a., even though the scalability of our framework is yet to be improved by
extending our language with procedures and a notion of module.

One way to take this work further would be to extend this formalization to
data refinement [13], which allows for correct transformation of data represen-
tations. One immediate application is then the possibility to refine programs
to go from mathematical unbounded data structures (e.g. Peano integers) to
bounded data structures (e.g. machine integers), thus permitting a more faithful
translation into an actual programming language such as C, Ada or Caml.

Working directly with predicates instead of an embedding of the syntax would
greatly simplify matters as this would eliminate a level of indirection. Therefore
another way to pursue this work is to allow expressing imperative programs
directly with predicates hence fully realizing predicative programming. As this
would require manipulating Coq terms directly, we believe it can be done using
a tool such as Template Coq [2], or by developing a dedicated plugin.



16 B. D. Sall and F. Peschanski and E. Chailloux

References

1. Alpuim, J., Swierstra, W.: Embedding the refinement calculus in coq. Science of
Computer Programming 164, 37–48 (2018)

2. Anand, A., Boulier, S., Tabareau, N., Sozeau, M.: Typed template coq–certified
meta-programming in coq. In: CoqPL 2018-The Fourth International Workshop
on Coq for Programming Languages. pp. 1–2 (2018)

3. Back, R.J.: A calculus of refinements for program derivations. Acta Informatica
25(6), 593–624 (1988)

4. Backhouse, R., Van Der Woude, J.: Demonic operators and monotype factors.
Mathematical Structures in Computer Science 3(4), 417–433 (1993)

5. Berghammer, R., Zierer, H.: Relational algebraic semantics of deterministic and
nondeterministic programs. T.C.S. 43, 123–147 (1986)

6. Boulmé, S.: Intuitionistic refinement calculus. In: International Conference on
Typed Lambda Calculi and Applications. pp. 54–69. Springer (2007)

7. Desharnais, J., Jaoua, A., Mili, F., Boudriga, N., Mili, A.: A relational division
operator: the conjugate kernel. T.C.S. 114(2), 247–272 (1993)

8. Dijkstra, E.: Notes on structured programming. In: Structured Programming. Aca-
demic Press (1972)

9. Frappier, M., Mili, A., Desharnais, J.: A relational calculus for program construc-
tion by parts. Science of Computer Programming 26(1-3), 237–254 (1996)

10. Hehner, E.C.: Predicative programming part I. Communications of the ACM 27(2),
134–143 (1984)

11. Hehner, E.C.: Specified blocks. In: Verified Software: Theories, Tools, Experiments,
pp. 384–391. Springer (2008)

12. Hehner, E.C.: A practical theory of programming. Springer Science & Business
Media (2012)

13. Hoare, C.A.R.: Proof of correctness of data representations. In: Programming
Methodology, pp. 269–281. Springer (1978)

14. Hoare, C.A.R., He, J.: The weakest prespecification. Information Processing Letters
24(2), 127–132 (1987)

15. Hoare, C.A.R., Jifeng, H.: Unifying theories of programming, vol. 14. Prentice Hall
Englewood Cliffs (1998)

16. Josephs, M.B.: An introduction to the theory of specification and refinement. In:
IBM research Report RC 12993. IBM Thomas J. Watson Research Division (1987)

17. Knuth, D.E.: Literate programming. The Computer Journal 27(2), 97–111 (1984)
18. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Pro-

gramming. Springer Science & Business Media (2012)
19. Mili, A.: A relational approach to the design of deterministic programs. Acta In-

formatica 20(4), 315–328 (1983)
20. Morgan, C.: The refinement calculus. In: Program Design Calculi, pp. 3–52.

Springer (1993)
21. Morgan, C.: The refinement calculus, and literate development. In: Formal Pro-

gram Development, pp. 161–182. Springer (1993)
22. Sekerinski, E.: A calculus for predicative programming. In: International Confer-

ence on Mathematics of Program Construction. pp. 302–322. Springer (1992)
23. Spivey, J.M., Abrial, J.: The Z notation. Prentice Hall Hemel Hempstead (1992)
24. Team, T.C.D.: The coq proof assistant, version 8.8.0 (Apr 2018)
25. Wirth, N.: Program development by stepwise refinement. Communications of the

ACM 14(4), 221–227 (1971)


	A Mechanized Theory of Program Refinement

