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Abstract

The recent advances about the construction of a Trefftz Discontinuous Galerkin (TDG)
method to a class of Friedrichs systems coming from linear transport with relaxation
are presented in a comprehensive setting. Application to the 2D PN model are dis-
cussed, together with the derivation of new high order convergence estimates and new
numerical results for the P1 and P3 models. More numerical results in dimension 2
illustrate the theoretical properties.

1. Introduction

The Trefftz Discontinuous Galerkin (TDG) method will be comprehensively pre-
sented for a class of Friedrichs systems with relaxation which encompasses many phys-
ical problems coming from the approximation of transport.

The model problem considers both stationary and time dependent problems. Let ΩS

be a bounded polygonal/polyhedral Lipschitz space domain in Rd and consider a time
interval [0,T ], T > 0. We denote Ω = ΩS for stationary problems and Ω = ΩS × [0,T ]
for time dependent problems. Friedrichs systems [1] with linear relaxation write

∑d
i=0 Ai∂iu = −R(x)u, in Ω,

M−u = M−g, in ∂Ω,
(1)

the dependent variable is u ∈ Rm, x = (x1, ..., xd) ∈ Rd is the space variable and t is
the time variable. The coefficients σa and σs in (12) are contained in the relaxation
matrix R. Recalling that the problem can be stationary or time dependent one may
write u(t, x) or just u(x) depending on the situation. The matrices Ai,R(x) ∈ Rm×m are
symmetric and we assume R(x) ∈ Rm×m is a non negative matrix, i.e. (R(x)v, v) ≥ 0 for
all v ∈ Rm, x ∈ Rd. We use the notation ∂0 = ∂t, ∂i = ∂xi for i = 1, ..., d and we will take
A0 = εIm even if it is possible to consider more general non negative matrices for A0.
The outward normal unit vector is n(t, x) = (nt, nx1 , ..., nxd ) for x ∈ ∂Ω and of course
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for stationary problems nt = 0 for all x ∈ ∂Ω. We set M(n) = A0nt +
∑d

i=1 Ainxi , on ∂Ω.
Since M is symmetric one has the standard decomposition M(n) = M+(n) + M−(n)
where M+ is a non negative matrix and M− is a non positive matrix. We use the
matrix M− to write the boundary conditions with g ∈ L2(∂Ω). Finally we assume
the problem (1) admits a unique solution. This family of problems is considered in
[2, 3, 4, 5, 6, 7, 8], but without relaxation since they do not model any kind of diffusion.
In our case which stems for the transport of particles or energy with interaction with
the matter in 2D configuration, we set d = 2 and adopt the convention coming from [9]
that the matrices A1 and A2 have the block structure

A1 = c
(

0 A
AT 0

)
∈ Rm×m, A2 = c

(
0 B

BT 0

)
∈ Rm×m, (2)

where A, B ∈ Rme×mo are constant rectangular matrices (me + mo = m). The coefficient
c > 0 is a constant non dimensional wave velocity. For the purposes of mathematical
manipulation, the first matrix is A0 = εIm ∈ Rm×m where Im ∈ Rm×m is the identity
matrix and 0 < ε ≤ 1 indicates a possible rescaling of the time variable. With respect
to [4, 2, 8], the originality of our methods is in the non zero relaxation matrix. A
natural structure [10] which models relaxation mechanisms is R + Rt ≥ 0. In our work,
we follow closely the convention proposed in [9] by taking a piecewise constant matrix

R =

(
R1 0
0 R2

)
∈ Rm×m, (3)

where R1 and R2 are both diagonal matrices R1 := diag(εσa, σt, ..., σt) ∈ Rme×me , R2 :=
σtImo ∈ Rmo×mo , with Imo the identity matrix of Rmo×mo . For transfer models [11, 12, 13,
14, 9] the absorption coefficient is σa ≥ 0 and the scattering coefficientis σs ≥ 0. The
weighted sum of the scattering and absorption coefficients will be denoted as

σt := σεt := εσa +
σs

ε
, σa, σs ∈ R+. (4)

The matrix R = R(x) will be assumed piecewise constant, because the coefficients
σa(x) and σs(x) are piecewise constant. The physics which is behind these notations is
described in more details in Section 3.

Given a linear system of partial differential equations, TDG method are discontinu-
ous Galerkin type schemes that use solutions to the model as basis functions. The name
comes from the seminal 1926 paper of E. Trefftz which has been recently translated in
English [15]. Trefftz method has been widely used and studied for time harmonic wave
propagation problems [16, 17, 18, 19] see also the review [20] and reference therein,
and more recently for time formulation of propagation equations [2, 3, 4, 5, 6, 7, 8].
The TDG method allows to incorporate some information about the solution to the
model in the basis functions and, in good cases, require fewer degrees of freedom than
standard schemes. TDG method have their pros and cons.
Pros: a) Incorporate a priori knowledge in the basis functions which are therefore well
adapted to multiscale problems; b) Often need less degrees of freedom to reach a given
accuracy. A typical example for the 2D version of the P1 model (3.4) in the dominant
absorption regime σa > 0 (with c = ε = 1) is illustrated in the table below, where we
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compare the number p of basis functions needed to achieve a given fractional order.
The first line is for our TDG method. One gets pTDG = 2(order + 1) which is a rephras-
ing of the result of Theorem 6.4 with N = 1. The second line is the optimal number of
basis function for a general DG method pDG = 3

2 (order + 1
2 )(order + 3

2 ).

order 1/2 3/2 5/2 7/2 9/2
pTDG 3 5 7 9 11
pDG 3 9 18 30 45

In particular the number of basis functions is the same to get order = 1/2. One
always gets pTDG ≤ pDG; c) Is easy to incorporate in DG codes since one only needs to
change the basis functions.
Cons: d) May suffer ill-conditioning due to poor linear independence of the basis
functions [17, 21]. For wave problems, some remedies exist in the literature [18]; e)
The practical calculation of the basis functions adds to the computational burden. If one
can calculate the basis functions analytically, the computational burden is moderate. If
it is not the case, the computational burden is heavier: several options could be consider
such as computing numerically the basis functions or relying on the general procedure
[22, 23, 24].

In this work we intend to give a review of recent advances of the TDG method for
our model problem (1-4), starting from the preliminary works [25, 26, 27]. Assuming
that the coefficient σ and σs are piecewise constant, we will construct families of TDG
basis functions adapted to the numerical approximation of the model problem. For first
order PDE the adjoint equations may differ from the direct equations for R , 0 which
our case, and therefore one can construct two kinds of TDG basis functions: using
adjoint solutions or using direct solutions. It turns out that using adjoint solutions
is not an efficient method and we will therefore focus on TDG method with direct
solutions. Note this issue does not show with the already mentioned works [2, 3, 4,
5, 6, 7, 8] because they is no relaxation in their case. Another possibility might be to
adopt a Petrov-Galerkin approach choosing test functions as adjoint solutions and trial
functions as direct solutions [28, 29]. We have noticed serious stability issues with this
method for time dependent problem.

This paper is organized as follows: in Section 2 we present the TDG method for
Friedrichs systems. Section B is devoted to the numerical analysis the method, in
particular a quasi-optimality result and the well-balanced property of the scheme. In
Section 3, the Friedrichs system with relaxation is physically motivated as the angular
discretization of a kinetic equation: in the literature it is called the PN model and its
main properties are given; these properties are directly connected to invariance princi-
ples common to many different models. In Section 4, we determine Trefftz families of
exponential exponential and polynomial solutions to our model problem. Next, in Sec-
tion 5, the stationary solutions (polynomials and exponentials) are explicitly calculated
for the P1 and P3 models. In section 6 we give a new approximation result showing that
with sufficiently exponentials or polynomial solutions we can approach any stationnary
2D solutions of the PN at any order. Thus combining it with the quasi-optimality result
we obtain a new high order convergence result. In the final Section 7 we provide nu-
merical examples. First a new numerical example with boundary layers is provided for
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the P3 model in Section 7: in terms of accuracy, it shows an important improvement
with respect to more standard DG methods. The second test problem illustrates the ad-
vantage of the method for a test problem in a diffusion regime. For the last numerical
result TDG is compared with standard DG using also time dependent solutions.

2. Presentation of the method

All the vector are noted in bold. For v(x) ∈ Rm we use the simplified notation
v ∈ L2(Ω) instead of v ∈ L2(Ω)m. Moreover we may write v = (v1, ..., vm)T where T

denotes the transpose and denote v2 = vT v to facilitate the distinction with other types
of norms or semi-norms.

2.1. Mesh notation and generic discontinuous Galerkin formulation

t

x

tn

tn+1

Ωk

ΩS

Figure 1: Illustration of the partition Th for a time dependent problem.

The partition or mesh of the space domain Ω = ΩS ⊂ Rd is denoted as Th. It
is made of polyhedral non overlapping subdomains ΩS ,r, that is Th = ∪rΩS ,r. For a
space time problem we split the time interval into smaller time intervals (tn, tn+1) with
0 = t0 < t1 < ... < tN = T . Making an abuse of notation, the mesh of the space time
domain Ω = ΩS × [0,T ] ⊂ Rd+1 is still denoted as Th = ∪r,nΩS ,r × (tn, tn+1). So Th

denotes either a purely spatial mesh for stationary models or a space-time mesh for
time dependent models. Moreover the cells or subdomains will be referred to with the
same notation, that is Ωk = ΩS ,r or Ωk = ΩS ,r × (tn, tn+1). The context makes these
notations non ambiguous. The broken Sobolev space is

H1(Th) := {v ∈ L2(Ω), v|Ωk ∈ H1(Ωk) ∀Ωk ∈ Th}.

We assume u ∈ H1(Th). We may rewrite (1) under the form Lu = 0 and consider also
the adjoint operator

L(x) =
∑

i

Ai∂i + R(x), L∗(x) = −
∑

i

Ai∂i + R(x).
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All matrices are constant (do not depend either on the time variable or on the space vari-
ables). Multiplying (1) by v ∈ H1(Th) and integrating on Ω gives

∑
k

∫
Ωk

vT
k L(x)uk = 0,

where vk = v|Ωk , uk = u|Ωk . Integrating by parts one gets∑
k

∫
Ωk

(
L∗vk

)T uk +
∑

k

∫
∂Ωk

vT
k Mk(x)uk = 0,

where ∂Ωk is the contour of the element Ωk with an outward unit normal nk(x) =

(nt, nx1 , ..., nxd )T , M(x) = A0nt +
∑

i Aini and Mk(x) = M(nk). Since Mk is symmetric it
can decomposed under the form Mk(x) = M+

k (x) + M−k (x) where M+
k is a non negative

matrix, M−k is a non positive matrix and the matrices annihilate each other M+
k M−k =

M−k M+
k = 0. It is sufficient for this task to compute the eigenvectors Mr = λr, ‖r‖ = 1,

and to set M± =
∑
±λ>0 r⊗ r. Denoting Σk j the edge oriented from Ωk to Ω j when k , j

and Σkk the edges belonging to Ωk ∩ ∂Ω (for simplicity we use the same notation even
if there is more than one edge in Ωk ∩ ∂Ω), one can write∑

k

∫
Ωk

(
L∗(x)vk

)T uk+
∑

k

∑
j<k

∫
Σk j

(vT M(x)u)k+(vT M(x)u) j+
∑

k

∫
Σkk

vT
k M+

k (x)uk = −
∑

k

∫
Σkk

vT
k M−k (x)g.

(5)
For u satisfying the equation (1), the normal flux is continuous on Σk j Mk(x)uk(x) =

Mk(x)u j(x) = −M j(x)u j(x) for x ∈ Σk j. This vectorial identity can be projected along
the positive and negative eigenvectors of Mk = −M j. One gets similar continuity
relations. So, denoting Mk j = Mk|Σk j = −M j|Σ jk = −M jk on Σk j, one can write also

Mkuk = Mk ju j = M+
k juk + M−k juk = M+

k juk + M−k ju j

because the projection of Mkuk = Mk ju j along the eigenvectors yields the continuity
rT

k juk = rT
k ju j for λ , 0. It yields the identity (vT M(x)u)k + (vT M(x)u) j = (vk −

v j)T (M+
k juk + M−k ju j). So (5) can be recast as

∑
k

∫
Ωk

(
L∗(x)vk

)T uk+
∑

k

∑
j<k

∫
Σk j

(vk−v j)T (M+
k j(x)uk+M−k j(x)u j)+

∑
k

∫
Σkk

vT
k M+

k (x)uk = −
∑

k

∫
Σkk

vT
k M−k (x)g.

(6)
We define the bilinear form aDG : H1(Th) × H1(Th) → R and the linear form l :
H1(Th)→ R as

aDG(u, v) =
∑

k

∫
Ωk

(L∗(x)vk)T uk +
∑

k

∑
j<k

∫
Σk j

(vk − v j)T (M+
k j(x)uk + M−k j(x)u j)

+
∑

k

∫
Σkk

vT
k M+

k (x)uk, u, v ∈ H1(Th),

l(v) = −
∑

k

∫
Σkk

vT
k M−k (x)g, v ∈ H1(Th).

(7)

One can rewrite (6) as aDG(u, v) = l(v), ∀v ∈ H1(Th). We can now define the classic
discontinuous Galerkin method for Friedrichs systems with polynomial basis functions
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[10, 3]. Define Pd
q the space of polynomials of d variables, of total degree at most q

and the broken polynomial space

Pd
q(Th) := {v ∈ L2(Ω), v|Ωk ∈ Pd

q ∀Ωk ∈ Th} ⊂ H1(Th).

Definition 2.1. Assume Pm(Th) is a finite subspace of H1(Th), for example Pm(Th) =

Pd
q(Th). The standard upwind discontinuous Galerkin method for Friedrichs systems is

formulated as follows find uh ∈ Pm(Th) such that
aDG(uh, vh) = l(vh), ∀vh ∈ Pm(Th).

(8)

2.2. Trefftz Discontinuous Galerkin formulation

A TDG method takes basis functions which are solutions to (1) in each cell

V(Th) = {v ∈ H1(Th), Lvk = 0 ∀Ωk ∈ Th} ⊂ H1(Th).

The space V(Th) is a genuine subspace of H1(Th) except in the case L = 0. Starting
from the bilinear form aDG, the volume term can be written as

∫
Ωk

(
L∗(x)vk

)T uk =

2
∫

Ωk
vT

k R(x)uk for all u, v ∈ V(Th). One can therefore define another bilinear form
aT : V(Th) × V(Th)→ R as

aT (u, v) =
∑

k

2
∫

Ωk

vT
k R(x)uk +

∑
k

∑
j<k

∫
Σk j

(vk − v j)T (M+
k j(x)uk + M−k j(x)u j)

+
∑

k

∫
Σkk

vT
k M+

k (x)uk, u, v ∈ V(Th).
(9)

Thanks to an integration by part for functions v ∈ V(Th) which are piecewise homoge-
neous solutions of the equation, one gets an equivalent formulation of the bilinear form
aT (·, ·)

aT (u, v) = −
∑

k

∑
j<k

∫
Σk j

(M−k j(x)vk+M+
k j(x)v j)T (uk−u j)−

∑
k

∫
Σkk

vT
k M−k (x)uk, u, v ∈ V(Th).

(10)
The relaxation term R completely disappeared in the formulation (10). It might seem a
paradox at first sight but it is not because, for a Trefftz method, some information about
R is encoded in the basis functions. Since there is no volume term in the formulation
(10) compared to (9) it may be easier to implement. The related bilinear form l :
V(Th)→ R is the same as in (7), that is l(v) = −

∑
k

∫
Σkk

vT
k M−k (x)g for all v ∈ V(Th).

Definition 2.2. Assume Vm(Th) is a finite subspace of V(Th). The upwind Trefftz dis-
continuous Galerkin method for the model problem (1) is formulated as followsfind uh ∈ Vm(Th) such that

aT (uh, vh) = l(vh), ∀vh ∈ Vm(Th).
(11)
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In case of a time dependent problem, even if the classic upwind discontinuous
Galerkin formulation (8) and the upwind Trefftz discontinuous Galerkin formulation
(11) are posed on the whole space-time domain Ω, they still can be decoupled time
step after time step. It comes from the fact that the matrix A0 is definite positive and
therefore M−(n) = 0 if n = (1, 0, ..., 0). With natural notations with respect to the time
step n, we fine the time slice bilinear form an

T : V(Th) × V(Th)→ R and the time slice
linear form ln : V(Th)→ R as

an
T (u, v) = −

∑
k

∑
j<k

∫
Σkn jn

(M−kn jn vn
k + M+

kn jn vn
j )

T (un
k − un

j ) −
∑

k

∫
∂ΩS∩∂Ωkn

(vn
k)T M−kn un

k −
∑

k

∫
Σknkn−1

(vn
k)T M−knkn−1 un

k ,

ln(v) = −
∑

k

∫
∂ΩS∩∂Ωkn

(vn
k)T gS −

∑
k

∫
Σknkn−1

(vn
k)T M−knkn−1 un−1

k .

The convention is Σk1k0 = ∂Ωk1 ∩ (∂Ω × {0}) and ΣkN+1kN = ∂ΩkN ∩ (∂Ω × {T }). The
space-time formulation (11) is equivalent to the series of space-only problemsfind un

h ∈ Vm(Th), n = 1, ...,N, such that
an

T (un
h, v

n
h) = ln(vn

h), ∀vn
h ∈ Vm(Th).

3. Construction of A1, A2 and R for the PN model

In this section, we construct the matrices A1, A2 and R in dimension d = 2 from the
basic principles attached to the transport equation of photons, neutrons or other types
of particles in dimension d = 3

∂tI(t, x,Ω) + cΩ · ∇I(t, x,Ω) = −σa(x)I(t, x,Ω) + σs(x) (|I| − I(t, x,Ω)) , (12)

where I is the distribution function, t the time variable, x ∈ Rd the space variable, Ω
the direction and |I| = 1

4π

∫
S 2 I(t, x,Ω′)dΩ′ is the mean of I. Once again absorption and

scattering coefficient are σa(x) ≥ 0 and σs(x) ≥ 0. We take ε = 1 for simplicity. We
adopt the common strategy which is to construct the PN model [11, 9] in the form of
Friedrichs system with relaxation.

3.1. 3D configuration
Let ψ ∈ [0, 2π) and φ ∈ [0, π) be the polar and azimutal angles on the sphere, so that

in Cartesian coordinate with usual notationsΩ := (Ω1,Ω2,Ω3)T = (sin φ cosψ, sin φ sinψ, cos φ)T ∈

R3. To be consistent with the standard notation of the spherical harmonics, the upper-
case letter Yk,l is used to denoted the real spherical harmonics. We make a slight abuse
of notation by denoting indifferently

Yk,l(Ω) := Yk,l(ψ, φ) : R2 → R, |l| ≤ k ≤ N, k, l ∈ N.

The construction and properties of the spherical harmonics are detailed in Appendix A.
We recall that the transport equation reads

∂tI(t, x,Ω) + cΩ · ∇I(t, x,Ω) = −
(
σa(x) + σs(x)

)
I(t, x,Ω) + σs(x) < I > (t, x), (13)
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where I is the radiative intensity average in frequency, t the time variable, x the space
variable, Ω the direction and we use the notation < · > (t, x) := 1

4π

∫
S 2 dΩ where

S 2 is the unit sphere in R3. We introduce some notations and adopt the presentation
from [30] but with the spherical harmonics vector arranged as in [9]. In the following,
we denote m3D the number of unknown, m3D

e the number of even moments (which
correspond to k even) and m3D

o the number of odd moments (which correspond to k
odd) for the three dimensional PN model. That is

m3D := m3D
e + m3D

o = (N + 1)2, m3D
e :=

1
2

N(N + 1), m3D
o :=

1
2

(N + 1)(N + 2).

For any integer 0 ≤ k ≤ N we define yk(Ω) the vectorial function whose components
are the 2k + 1 real valued spherical harmonics of order k. Moreover we denote ye(Ω)
the vectorial function made of the so-called even moments

(
y2k(Ω)

)
0≤2k≤N and yo(Ω)

the vectorial function made of the so-called odd moments
(
y2k+1(Ω)

)
0≤2k+1≤N . That is

yk(Ω) :=
(
Yk,−k(Ω),Yk,−k+1(Ω), ...,Yk,k−1(Ω),Yk,k(Ω)

)T
∈ R2k+1,

ye(Ω) :=
(
yT

0 (Ω), yT
2 (Ω), ..., yT

N−1(Ω)
)T
∈ Rm3D

e , yo(Ω) :=
(
yT

1 (Ω), yT
3 (Ω), ..., yT

N(Ω)
)T
∈ Rm3D

o ,

Finally, we define y(Ω) the vectorial function made of ye(Ω), yo(Ω) and arranged as

follow y(Ω) =
(
yT

e (Ω), yT
o (Ω)

)T
∈ Rm3D

. We generalize this decomposition for any vec-

tor v ∈ Rm3D
. We set vk := (v−k

k , v−k+1
k , ..., vk−1

k , vk
k)T ∈ R2k+1, ve := (vT

0 , v
T
2 , ..., v

T
N−1)T ∈

Rm3D
e and vo := (vT

1 , v
T
3 , ..., v

T
N)TRm3D

o , and denote v as v = (vT
e , vT

o )T ∈ Rm3D
. The

decomposition of the intensity on the spherical harmonics basis writes I(t, x,Ω) =∑
k≥0

∑
|l|≤k Yk,l(Ω)ul

k(t, x). The truncation at order N defines the truncated series IN

IN(t, x,Ω) := yT (Ω)u(t, x) =

N∑
k=0

yT
k (Ω)uk(t, x) =

N∑
k=0

∑
|l|≤k

Yk,l(Ω)ul
k(t, x),

where the unknown of the PN model is u ∈ Rm3D
. With the approximation I = IN the

equation (13) reads

yT (Ω)∂tu(t, x)+c
3∑

i=1

ΩiyT (Ω)∂xi u(t, x) =
(
−
(
σa+σs

)
yT (Ω)u(t, x)+σs < yT (Ω) >

)
u(t, x).

Multiplying by y(Ω) and integrating over the sphere gives

< y(Ω)yT (Ω) > ∂tu(t, x) + c
3∑

i=1

< Ωiy(Ω)yT (Ω) > ∂xi u(t, x) =(
−

(
σa + σs

)
< y(Ω)yT (Ω) > +σs < y(Ω) >< yT (Ω) >

)
u(t, x).

From the orthogonal properties of the spherical harmonics one has < y(Ω)yT (Ω) >=

Im3D and < y(Ω) >< yT (Ω) >= e1eT
1 with e1 = (1, 0, ..., 0)T ∈ Rm3D

. Therefore one gets
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the system ∂tu +
∑3

i=1Ai∂xi u = −Ru, where u ∈ Rm3D
and A1,A2,A3,R ∈ Rm3D×m3D

.
The matrices

Ai = c < Ωiy(Ω)yT (Ω) >

can be computed using the recursion relations (36) to expand Ωiy(Ω) in terms of spher-
ical harmonics. As pointed in [9] the matrices A1, A2 and A3 have a block structure

A1 =

(
0 A

AT 0

)
, A2 =

(
0 B

BT 0

)
, A3 =

(
0 C

CT 0

)
where A, B, C ∈ Rm3D

e ×m3D
o are

rectangular matrices. It is visible that block structure is a direct consequence of a de-
coupling between even moments and odd moments. The relaxation matrix is diagonal
R = diag(σa, σa + σs, ..., σa + σs). One obtains a system (1) in dimension 3.

3.2. 3D rotational invariance
They are some inherent technicalities attached to the description of rotational in-

variance principles, however it reveals extremely valuable for implementation. This is
why we take the time to describe them.

The matrix representations of the rotation operators in the basis of spherical har-
monics, known as D-Wigner matrices [31, 32, 33], is U(α, β, γ) ∈ Rm3D×m3D

, where α,
β and γ denotes rotation around the axes Oz, Oy and Oz respectively. It is a block matrix

U(α, β, γ) = diag
(
∆0(α, β, γ),∆2(α, β, γ), ...∆me (α, β, γ),∆1(α, β, γ), ...,∆mo (α, β, γ)

)
where the matrices ∆k reads [33] ∆k(α, β, γ) =Wk(α)Dk(β)Wk(γ) ∈ R2k+1×2k+1. Here
Dk ∈ R2k+1×2k+1 is a (reduced) d-Wigner matrix and the matrix Wk has non-zero
elements only on its diagonal and anti-diagonal

Wk(α) =



cos kα sin kα
. . . 0 . .

.

cos 2α sin 2α
cosα sinα0 1 0
− sinα cosα

− sin 2α cos 2α

. .
. 0 . . .

− sin kα cos kα



∈ R2k+1×2k+1.

To simplify the matrixU we may consider a rotation θ in the plan xy only and denote

Uθ := U(0, 0, θ) ∈ Rm3D×m3D
. (14)

Using the expression of the block rotations, the structure of the matrix Uθ can be
written as

Uθ = diag
(
W0(θ),W2(θ), ...Wme (θ),W1(θ), ...,Wmo (θ)

)
.

The matrix U represents the orthogonal transformations on y(Ω). That is for an or-
thogonal matrix Q ∈ R3×3 one has y(QΩ) = U(α, β, γ)y(Ω) where α, β and γ are the
angles of the rotation associated with the matrix Q in R3.
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3.3. 2D configuration
We briefly recall the invariance principles which can be found in the references

[30, 9, 33].
a) In practice, the PN model is rarely applied for even values of N (see for example [30,
Section 2] for a discussion on the benefits of considering N odd). So we will consider
only the case N = 2n + 1 odd in the following.
b) Provided σa and σs are invariant with respect to z, then the system is invariant by
translation with respect to z. It corresponds to ∂z = 0 (equivalent to setting A3 = 0)
and it has the consequence that the dimension is lowered from d = 3 to d = 2.
c) We assume that the solution has a mirror symmetry with respect to the plan xy. It
is interpreted as pure reflective conditions at the top and bottom boundaries of the 3D
domain, as illustrated Figure 2. This is equivalent to say that the function u is an even
function of cos φ. Inspection of the spherical harmonics (34-35) shows that they are
odd with respect to cos φ if and only if k + l odd, see [9]. Thus one can remove the

x

y

z

Ω1 = (sin φ cosψ, sin φ sinψ, cos φ)T

Ω2 = (sin φ cosψ, sin φ sinψ,− cos φ)T

ψ

φ

Figure 2: Mirror symmetry. If u is an even function of cos φ then u(t, x,Ω1) = u(t, x,Ω2).

unknowns ul
k such that k + l is odd (because it vanishes). This simplifies the matrices

A1, A2 and R by removing row and lines such that k + l is odd. One can check that
the size of the remaining part is m3D

o = (N + 1)(N + 2)/2. This procedure defines the
matrices

A1 = c
(

0 A
AT 0

)
∈ Rm3D

o ×m3D
o , A2 = c

(
0 B

BT 0

)
∈ Rm3D

o ×m3D
o and R ∈ Rm3D

o ×m3D
o (15)

and one gets the PN model in two dimensions with m3D
o unknowns. These matrices

correspond to the ones (2-3) in the introduction and

m = m3D
o =

1
2

(N + 1)(N + 2).
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d) Finally, a PN model has to satisfy some rotational invariance principles. With the
previous assumptions this rotational invariance is expressed in the plan xy. The plan xz
may also be a possible choice [34, 35], however the rotation matrix associated with the
spherical harmonics is more difficult to calculate [31, 36, 33].

After reduction to the plan xy, the rotation matrixUθ becomes Uθ ∈ Rm3D
o ×m3D

o with
the natural properties UθUµ = Uθ+µ and (Uθ)T = U−θ.

3.4. First example: the P1 model
For the P1 model, one takes m = 3, me = 1, mo = 2. The matrices A1, A2, R and Uθ

are

A1 =
c
√

3

0 1 0
1 0 0
0 0 0

 , A2 =
c
√

3

0 0 1
0 0 0
1 0 0

 , R =

σa 0 0
0 σt 0
0 0 σt

 , Uθ =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 .
The submatrices are A =

(
1
√

3
, 0

)
and B =

(
0, 1
√

3

)
.

3.5. Second example: the P3 model
For the P3 model one takes m = 10, me = 4, mo = 6. The submatrices read [9]

A =



0 1
√

3
0 0 0 0

1
√

5
0

√
3
14 − 1

√
70

0 0

0 − 1
√

15
0 0

√
6

35 0

0 1
√

5
0 0 − 1

√
70

√
3

14


, B =



1
√

3
0 0 0 0 0

0 1
√

5
0 0 − 1

√
70
−

√
3

14

− 1
√

15
0 0

√
6

35 0 0

− 1
√

5
0

√
3

14
1
√

70
0 0


,

R1 =


σa 0 0 0
0 σt 0 0
0 0 σt 0
0 0 0 σt

 , R2 = σtImo ,

where Imo is the identity matrix of Rmo×mo . The matrices A1 and A2 are assembled by
a symmetrization of A and B (2). The rotation matrix is constructed in [26][chapter

4]: its structure is Uθ =

(
V2(θ) 0

0 V3(θ)

)
where V2(θ) =

(
W0(θ) 0

0 W2(θ)

)
, V3(θ) =(

W1(θ) 0
0 W3(θ)

)
and finally Wp(θ) is the matrix of rotation for the spherical harmon-

ics of order p = 1, 2, 3, 4. These matrices are W0(θ) = 1, W1(θ) =

(
cos θ sin θ
− sin θ cos θ

)
,

W2(θ) =

 cos 2θ 0 sin 2θ
0 1 0

− sin 2θ 0 cos 2θ

 and W3(θ) =


cos 3θ 0 0 sin 2θ

0 cos θ sin θ 0
0 − sin θ cos θ 0

− sin 3θ 0 0 cos 3θ

 .
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3.6. 2D rotational invariance
Rotational invariance is related from the the construction of Uθ at the end of Section

3.3 and has important implications for the numerical implementation. It can be checked
directly on the PN model. One introduces the change of frame

(x′, y′) = (x cos θ−y sin θ, x sin θ+y cos θ)⇐⇒ (x, y) = (x′ cos θ+y′ sin θ,−x′ sin θ+y′ cos θ).

A possible formulation of the rotational invariance of the PN model is as follows: if
u(t, x, y) is solution in the reference frame (x, y), then the function U−θu(t, x′, y′) is
also solution in the same frame. The minus sign is for compatibility reasons with the
notations of [33] and [26, Section 4.1].

Proposition 3.1. Rotational invariance is equivalent to UθR = RUθ, UθA1 = (A1 cos θ + A2 sin θ) Uθ

and UθA2 = (−A1 sin θ + A2 cos θ) Uθ.

Proof. Set V(t, x′, y′) = U−θu(t, x cos θ− y sin θ, x sin θ+ y cos θ). Rotational invariance
states that V is solution of the same model for arbitrary values of θ.

The derivatives are

∂tV = U−θ∂tu, ∂xV = U−θ
(
cos θ∂xu + sin θ∂yu

)
, ∂yV = U−θ

(
− sin θ∂xu + cos θ∂yu

)
.

One has that ∂tu = −A1∂xu − A2∂yu − Ru, therefore

∂tV + A1∂xV + A2∂yV + RV = U−θ
(
−A1∂xu − A2∂yu − Ru

)
+A1U−θ

(
cos θ∂xu + sin θ∂yu

)
+ A2U−θ

(
− sin θ∂xu + cos θ∂yu

)
+ RU−θu

that is

0 = (RU−θ − U−θR) u+(A1U−θ cos θ − A2U−θ sin θ − U−θA1) ∂xu+(A1U−θ sin θ + A2U−θ cos θ − U−θA2) ∂yu.

Considering arbitrary independent values of u, ∂xu and ∂yu yields

0 = RU−θ−U−θR = A1U−θ cos θ−A2U−θ sin θ−U−θA1 = A1U−θ sin θ+A2U−θ cos θ−U−θA2.

Changing θ in −θ, one gets the claim.

3.7. Other properties
More properties which concern the matrix A (15) can be proved for a general PN

model. The full proofs can be found in [26, Section 4.1]. It is straightforward to verify
these properties for P1 model and the P3 model.

Proposition 3.2. The symmetric matrix AAT is invertible and all its eigenvalues are
strictly positive.

Proposition 3.3. The eigenvalues µi of(AAT )−1R1 are strictly positive when σa > 0
and non negative when σa = 0.

An important property will be the degeneracy of the lowest eigenvalue as σa → 0.

Proposition 3.4. Assume σs > 0. The lowest eigenvalue of (AAT )−1R1 is such that
µ1→0 as σa → 0, and it is the only one.

Finally, one can count the number of distinct couples of eigenvalue/eigenvector of
the matrix (AAT )−1R1 (something we will need for the proof of Theorem 4.1).

Proposition 3.5. The eigenvectors of (AAT )−1R1 ∈ Rme×me form a basis of Rme .

12



4. Construction of local exact solutions

In order to develop a TDG method, one needs to construct basis functions which are
exact solutions to the system. It is reasonable to assume that all matrices are piecewise
constants. We propose 3 different methods to construct stationary basis functions: the
first method construct exponential functions as solutions of a generalized eigenproblem
which comes from [37, 38, 39, 40]; the second one shows how the Birkhoff and Abu-
Shumays approach can be used to deduce polynomial solutions of a general PN model;
the third method is more specific to the time dependent case.

4.1. Exponential solutions

Plug the Ansatz u(x) = reλx, r , 0, in the stationary PN model. One gets the
spectral problem

λA1r = −Rr. (16)

Here λ is an eigenvalue of the matrix −R in the metric associated to the matrix A1. Both
matrices are real symmetric, however A1 is degenerated because in general it has posi-
tive, negative and vanishing eigenvalues. This is why it is a generalized eigenproblem.
Now if the pair (r, λ) is a solution of the generalized eigenproblem, then u(x) a one
dimensional solution of the stationary PN model and

v(x, y) = Uθu(x cos θ + y sin θ) (17)

is also a solution of the stationary PN model, which is linear independent from the first
one for θ not a multiple of 2π.

With the natural decomposition r = (wT ,χT )T with w ∈ Rme and χ ∈ Rmo , the
eigenproblem (16) rewrites as {

−R1w = −λAχ,
−σtχ = −λAT z.

Using that σt > 0, elimination of χ yields R1w = λ2

σt
AAT w. In our context, Proposition

3.2 guarantees that AAT is non singular, so one gets the reduced eigenproblem

(AAT )−1R1w = µw, µ =
λ2

σt
.

This problem is solvable using Propositions 3.3-3.5.

Theorem 4.1. Let σt > 0 and w1, ...,wme ∈ Rme be the eigenvectors of the matrix

(AAT )−1R1 associated with the eigenvalues µ1, ..., µme . Note χi = −
√

µi
σt

AT wi ∈ Rmo

and zi = (wT
i ,χ

T
i )T ∈ Rm. Let d = (cos θ, sin θ)T ∈ R2 be the direction with angle θ

and Uθ be the rotation matrix (14). Then the exponential functions

vi(x) = Uθzie
1
c
√
σtµidT x, i = 1, ...,me, θ ∈ [0, 2π), (18)

are stationary solutions to the system.
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Proof. For θ = 0, the vectorial function vi is solution to (16). For θ , 0, the rotational
invariance (17) yields the claim.

Examples of exponential solutions are constructed in Section 5 for the P1 and the
P3 models. This method can be complemented with the study of the secular equation
[27] which gives sharp estimates for the eigenvalues and more information about the
eigenvectors.

Proposition 4.2. Take a finite number of directions dk = (cos θk, sin θk)T which are
different θk − θl < 2πZ for k , l, and if assume that σa > 0. Then the functions
(vi)k(x) = Uθk zie

1
c
√
σtµidk

T x are linearly independent.

Proof. The condition σa > 0 guarantees that µi > 0, refer to Proposition 3.3. Then the
scalar functions e

1
c
√
σtµidk

T x are all different and are also linearly independent.

4.2. Harmonic polynomial solutions with Birkhoff and Abu-Shumays work

If σa = 0, then µ1 = 0 by Proposition 3.4 so the exponential factor degenerates
(equal to 1). It results in linear dependent functions (v1)k (at least if the number of
directions is strictly greater than the size of the system m). This is a critical issue
in view of implementation because linearly dependent basis functions yield singular
matrices after discretization. The situation is the same as the one described in [18] for
plane wave basis of the Helmholtz equation when the frequency tends to zero: in the
cited reference, the authors show that convenient rescaling of the exponential functions
yield special polynomial functions. In our case, we construct polynomial solutions for
σa = 0 and σs > 0 with the Birkhoff and Abu-Shumays approach.

The series of all harmonic polynomials is generated as follows: firstly set q1(x, y) =

1, then consider the series for

q2k(x) =
1
k!
<((x − x0) + i(y − y0))k and q2k+1(x) =

1
k!
=((x − x0) + i(y − y0))k (19)

All these polynomials are harmonic, that is ∆qk = 0. Define the function I which
depends on a given harmonic polynomial q

I(x, y,Ω) :=
∞∑

k=0

(−1
σs

)k(
Ω · ∇

)k
q(x, y), l ≥ 0, (20)

where Ω := (sin φ cosψ, sin φ sinψ, cos φ)T ∈ R3 with ψ ∈ [0, 2π) and φ ∈ [0, π). The
series is finite and the function f is a polynomial with respect to x and y: its degree is
deg(q) which is the degree of the polynomial q. The terms of the series can be evaluated
with the following formula.

Lemma 4.3 (Proof in [27]). For k ≥ 1, one has
(
Ω · ∇

)k
q(x, y) =

(
sin φ

2

)k(
e−ikψ(∂x +

i∂y)k + eikψ(∂x − i∂y)k
)
q(x, y).

Proposition 4.4 ([39]). For σa = 0 and σs > 0, I(x, y,Ω) is solution to the stationary
transport equation (13).
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Proof. Formule (20) yields I + 1
σs
Ω ·∇I = q. But Lemma 4.3 also yields that < I >= q.

So Ω · ∇I = σs(< I > −I) which is the claim.

Following Hermeline [9, Appendix A], we redefine the vector y(ω) as the collection
of real valued orthonormal spherical harmonics Yk,l for k ≤ N and k + l even. One can
check that y(ω) ∈ Rm with m = 1

2 (N + 1)(N + 2). We denote ΠN the L2 orthogonal
projection onto the space of these particular spherical harmonics.

Theorem 4.5 (Proof in [27]). Take σa = 0, σs > 0. The function IN(x, y) =<
y(Ω)ΠN I(x, y,Ω) >∈ Rm is solution to the PN model and is a harmonic polynomial
with respect to x, y.

We refer to [26] for additional details. Examples of such solutions are constructed
in Section 5 for the P1 and the P3 models.

4.3. Time dependent solutions

We give some possible ways to get time dependent solutions to the PN model which
can be used as basis functions for the TDG method when considering space-time mesh.
Other time dependent solutions can be constructed starting from [40]. Once again, we
take ε = 1 for simplicity.

A general form is
v(t, x) = g(x)eαt, (21)

with α ∈ R is arbitrary and g is polynomial. One can inject this solution in the PN

model. One gets after removing the exponentials(
A1∂x + A2∂y + (R + αIm)

)
g(x) = 0,

where Im is the identity matrix of Rm×m. The function g(x) is very similar to the previ-
ous stationary solutions. The matrix R is just replaced by the matrix R̃ := R + αIm. If α
is an eigenvalue of the matrix −R, then R̃ is a non trivial kernel and g can be taken as a
constant-in-space vector (in the kernel of R̃).

Another second possibility is to start from a one dimensional solution under the
form v(t, x) = q(t, x)eλx, where q(t, x) ∈ Rm is polynomial vector in x ant t. A con-
crete example is given in [25, Proposition 4.2] for the case of the P1 model. Using
rotational invariance, one gets the family v(t, x) = Uθq(t, x cos θ+ y sin θ)eλ(x cos θ+y sin θ).
Another possibility is to look for more general two dimensional solutions under the
form v(t, x) = p(t, x, y)eλ(x cos θ+y sin θ), where p(t, x, y) ∈ Rm is polynomial vector in x, y
ant t.

4.4. Sources

For non homogeneous problems where there is a non zero source right hand side
f, it is valuable to add specific basis functions which are like P0 Finite volume basis
functions. We refer to Section 2-2.3 of Chapter 2 in [26] for a more detailed presenta-
tion. Instead of a general theory, it is sufficient to take an example. Consider the lattice
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geometry and the equation (33), then one may add the basis function v f = R−1f in the
central region where R is non singularv f (x) = e1, if x ∈ [3, 4]2,

v f (x) = 0, else.
(22)

Here e1 = (1, 0, . . . , 0) has only one non zero component.

5. Stationary solutions to the P1 and P3 models

In this section, we construct explicit stationary solutions to the P1 and P3 models.
For convenience, we reintroduce the scaling parameter ε ∈ (0, 1].

5.1. The P1 model

We recall that the matrices read A =
(

1
√

3
0
)
, B =

(
0 1

√
3

)
, R1 = εσa and R2 =(

σt 0
0 σt

)
. We are interested in the stationary solutions to the P1 model. We start with

the exponential solutions when σa > 0.

Proposition 5.1. Take dk = (cos θk, sin θk)T ∈ R2. The following functions are solution
to the P1 model

vk =

( √
σt

−
√
εσadk

)
e

1
c

√
3εσaσtdT

k x, σt = εσa +
σs

ε
. (23)

Now, we describe all polynomial solutions when σa = 0.

Proposition 5.2. Assume σa = 0. The functions

vk =

( σs
ε

qk

− c
√

3
∇qk

)
(24)

are solutions to the P1 model.

The direct verification that harmonic polynomial of any order are solutions to P1
for σa = 0 is evident. However this is also a consequence of the general Theorem 4.5.

5.2. The P3 model

The calculations for the proofs can be verified from [27, 26]. First, we give the
stationary exponential solutions.
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Proposition 5.3. Take dk = (cos θk, sin θk)T ∈ R2. The following functions are solu-
tions to the P3 model

v1(x) =



0
−
√

30 cos 2θk

0
√

30 sin 2θk√
14 cos θk

−
√

14 sin θk√
15 cos 3θk

− cos θk

sin θk

−
√

15 sin 3θk



e
1
c

√
7
3σtdT

k x, v2(x) =



0
√

2 sin 2θk√
6

√
2 cos 2θk

0
0

−
√

3 sin 3θk

−
√

5 sin θk

−
√

5 cos θk

−
√

3 cos 3θk



e
1
c

√
7σtdT

k x,

v3(x) =
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k x,

withσt = εσa+
σs
ε

, κ =

√
605ε2σ2

a + 14εσaσt + 245σ2
t , υ± =

√
55εσa + 35σt ±

√
5κ,

τ± =
√

5εσa+35
√

5σt±5κ and ρ± = (υ±)2−110εσa. Forσa = 0, then v− = µ3 = 0 and
the exponential functions associated to the third family have a degeneracy (as expected
from Proposition 3.4).

Proposition 5.4. Take σa = 0. The polynomial functions below are solutions

v1(x) =
(
1, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
,

v2(x) =
(
σt x, 0, 0, 0, 0,− c

√
3
, 0, 0, 0, 0

)
,

v3(x) =
(
σty, 0, 0, 0,− c

√
3
, 0, 0, 0, 0, 0

)
,

v4(x) =
(
σ2

t xy, 2c2
√

15
, 0, 0,−σtc√

3
x,−σtc√

3
y, 0, 0, 0, 0, 0

)
,

v5(x) =
(

1
2σ

2
t (x2 − y2), 0, 0, 2c2

√
15
, σtc√

3
y,−σtc√

3
x, 0, 0, 0, 0, 0

)
.

(25)

6. High order convergence (stationary case)

The main results of this section are, on the one hand the Theorem 6.4 which estab-
lish the h-convergence of the TDG method applied to the PN model when σa > 0, and,
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on the other hand, the numerical tests of h-convergence which confirm the theoretical
analysis.

We consider a series of mesh T n
h , n ∈ N. For a polygonal cell Ωn

j ∈ T
n
h , we define

hn
j the size of its larger edge and ρn

j the radius of the larger inner circle include in Ω j.
The sequence of meshes verifies hn := max j hn

j→0 as n→ ∞. It is quasi-uniform, that

is there exists a constant C ∈ R+ such that max j,n
hn

j

ρn
j
≤ C. For the simplicity of the

the notations, the index n is removed in the following. The coefficients σa and σs are
bounded: there exists C ∈ R+ such that σa ≤ C and σs ≤ C. We also take ε = 1
and c = 1. The material below is organized in subsections which are, general bounds,
convergence bounds for σa > 0, convergence bounds for σa = 0 and finally numerical
tests.

6.1. General bounds
Proposition 6.1. Let u = (ue,uo) ∈ Wk+1,∞(Ω) be a local solution to the stationary PN

model. Let ω ⊂ Ω with h = diam(ω). Assume σa > 0 and σs > 0 and consider the
basis functions constructed in Proposition 4.2 for 2k + 1 different directions

0 ≤ θ1 < θ2 < · · · < θ2k < θ2k+1 < 2π.

It yields (2k + 1)me solutions v1, ..., v(2k+1)me ∈ Wk+1,∞(ω) decomposed as vi = (ve
i , v

o
i )

for 1 ≤ i ≤ (2k + 1)me.
Generically, with an additional hypothesis on the linear independance of the co-

efficients of the Taylor expansion of the ve
i , there exists a vector a = (ai)T ∈ R(2k+1)me

such that ∥∥∥∥ue −

(2k+1)me∑
i=1

aive
i

∥∥∥∥
L∞(ω)

≤ Chk+1‖ue‖Wk+2,∞(Ω), (26)

and ∥∥∥∥uo −

(2k+1)me∑
i=1

aivo
i

∥∥∥∥
L∞(Ω j)

≤ Chk‖ue‖Wk+2,∞(Ω j).

If σa = 0 and σs > 0, the same result holds after replacement of the 2k+1 degenerative
exponentials (see Proposition 3.4) by 2k + 1 harmonic polynomial solutions of degree
at most k obtained from Theorem 4.5 and Definition 19.

The additional hypothesis on the linear independence holds if one adds 2(N − 1)
directions. More precisely among the corresponding (2(k + N) − 1)me basis functions,
there exist (2k + 1)me basis functions which satisfy the hypothesis.

Sketch of the proof. It is based on the second order form of the PN model. For σt > 0
and u regular enough, one has the decomposition

(
A∂x + B∂y

)
uo(x) = −R1ue(x),(

AT∂x + BT∂y

)
ue(x) = −R2uo(x).

(27)

It is equivalent to saying that ue(x) is solution of the second order form of the PN model(
AAT∂xx + (ABT + BAT )∂xy + BBT∂yy

)
ue(x) = σtR1ue(x). (28)
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The functions ve
i satisfy the same equation. To obtain (26) it is sufficient to find a vector

a = (ai) such that the all terms of the Taylor expansion of
∑(2k+1)me

i=1 aive
i − ue vanish

up to total degree k + 1. Since this vectorial function is made of me scalar functions,
the number of Taylor coefficients that one must annihilate (by conveniently choosing
the ai’s) is equal to N# =

(k+1)(k+2)
2 me. However the equation (28) yields many linear

relations between the coefficients of the Taylor expansion of ue (and the same linear
relations for the coefficients of the Taylor expansion of ve

i ). A counting argument shows
that it yields N% =

(k−1)(k)
2 me linear relations.

Generically these linear relations are linear independent: this is not immediate to
prove, we refer to [26] for the PN system, to [17] for the Helmholtz equation and
to [41, 42] for a general theory with the Vekua operator. In the latter reference, it
is proved that, for the Helmholtz equation or the P1 system, the linear independence
of basis functions holds up except on a set of measure zero. Then, the claim (26) is
obtained with a total number of basis functions

Ntot = N# − N% = (2k + 1)me.

Considering R2 (27) is uniformly positive, a similar result is obtained for the approx-
imation of uo, but with a loss of one order of approximation. The last part of the
proposition is proved in [26], using Bézout theorem for system of multivariate polyno-
mials.

Let us denote the space of approximation Vh := ⊕
Ω j∈Th

Span
{
v1, ..., v(2k+1)me

}
1Ω j

where 1Ω j is the indicatrix function of the cell Ω j. The norms ‖ . . . ‖DG and ‖ . . . ‖DG∗

are defined in the appendix in (37).

Proposition 6.2. There exists vh ∈ Vh such that ‖u − vh‖DG∗ ≤ Chk−1/2‖u‖Wk+1,∞(Ω).

Proof. Combine (B.10) with Proposition 6.1.

Proposition 6.3. Let uh be the solution to the TDG method. One has ‖u − uh‖DG ≤

Chk−1/2‖u‖Wk+1,∞(Ω).

Proof. It comes from the quasi-optimality estimate of Proposition B.6 combined with
the previous bound.

6.2. Convergence estimates for σa > 0
Theorem 6.4 (Convergence of the TDG method for the PN model). Assume σa > 0
and the previous hypotheses. One has

‖u − uh‖L2(Ω) ≤ Chk−1/2‖u‖Wk+1,∞(Ω). (29)

Proof. Use (B.8) and Proposition 6.3.

This Theorem shows a remarkable property of the TDG method: the number of
additional basis functions to gain one order of convergence from k to k + 1 does not
depend on k. This is not the case for the standard DG method where the number of
additional basis functions increases with k. The table in the introduction summarizes
these findings.
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6.3. Convergence for σa = 0
In case the absorption coefficient is zero, then the matrix R becomes singular and

the previous proof is non more possible. In simple cases, it is possible to bypass this
technical obstruction. We refer to [25] for such an estimate for N = 1, that is for the P1
model. The rate of convergence is lessen by 1 with respect to the general case (29).

6.4. A numerical test of convergence
Here we display a test of convergence which confirms the theoretical results of

the Theorem 6.4 with a number of basis functions equal to (2k + 1)me with 2k + 1
equidistributed directions. This holds also for all numerical results in this paper.

Consider the stationary P1 model in two dimensions. Let x = (x, y)T ,Ω = [0, 1]2,
σa = 1/

√
3, σs = 1/

√
3. The exact solution we consider here is

uex(x) =
(

cos(y)e
√

3x,−(
√

3/2) cos(y)e
√

3x, 0.5 sin(y)e
√

3x
)T
.

Results obtained with 3, 5 and 7 basis functions are displayed on the left of Figure 3. As
stated in Theorem 6.4 for the particular case N = 1, one only needs two additional basis
functions to increase the order by a factor 1. Note however that the orders obtained here
are slightly better than those predicted in Theorem 6.4: with 3, 5 and 7 basis functions,
one gets respectively order 0.8, 1.5 and 2.5.

On the right of the Figure, we consider the stationary P3 model in two dimensions.
Let x = (x, y)T ,Ω = [0, 1]2, σa = 0.2, σs = 0.3. The exact solution we consider
is taken from the solution (18) and has for eigenvalue

√
7/
√

3 with a direction d =

(cos π/4, sin π/4)T which does not belong to our basis functions. Results obtained with
3, 5 and 7 directions (for a total of 12, 20 and 28 basis functions) are displayed on the
right of Figure 3. The maximal number of degrees of freedom is Ntot ≈ 122 × 282 =

112896, so the test is already expensive on CPU grounds. The order obtained are close
to those predicted by Theorem 6.4. Note however that the tests for the P3 model are
displayed on much coarser meshes than for the P1 model. This comes from the bad
condition number of the matrix which is a well known drawback of the TDG method
[17, 21, 26] and occurs when increasing the number of basis functions on fine meshes.
Since we do not want the condition number to interfere with the error study we choose
not to refine the meshes too much. Still, the bad conditioning of the matrix can probably
be seen on the last point of the curve representing 28 basis functions which is not
completely aligned with the other points. Using better preconditioner could solve this
issue.

7. Numerical results

Various h-convergence results (theoretical and numerical) are available in the lit-
erature for TDG methods for time harmonic equations [17, 8, 18], p-convergence is
analyzed in [19]. For the family of Friedrichs systems evaluated in this work, h-
convergence can be found in [2, 25, 26].

When the scaling parameter ε → 0, the model problem admits a diffusion limit
[9, 35]. General references which provide accurate numerical methods for the diffu-
sion limit are [43, 35, 38, 44] for asymptotic-preserving methods and [45, 46, 47, 48]
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Figure 3: Order depending on the number of basis functions with respect to the number of cells per unit
length (denoted as N). On the left P1 model and on the right P3 model. L2 error in logarithmic scale and
random meshes.

for well-balanced methods. In principle, Trefftz method may be very efficient in the
diffusion limit since the exact solutions in the cell have a perfect balance between the
transport terms (matrices A1 and A2) and the relaxation (matrix R). A simple proof that
the Trefftz scheme is indeed Asymptotic Diffusion Preserving can be found in [25].

The relaxation matrix R(x) can be discontinuous as well in applications. This is
typical of the physics of transfer at the interface between two different materials and of
neutron propagation: in the application illustrated at the end of this work, the unknown
u comes from an angular discretization of a populations of neutrons and relaxation
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coefficients model the interaction of neutrons with matter; the issue is that this matter
is different on both sides of an interface. Boundary layers may occur when σa, σs

vary significantly and that the transport equation tends to a diffusion limit when σs is
high. These two phenomena are challenging for numerical methods and the research
is active in the scientific community. The literature is scarce on numerical methods for
boundary layers. It has been highlighted in [25] that TDG method naturally leads to
schemes adapted to such problems.

7.1. A test problem with a boundary layer

In this test, taken from [25], a two dimensional test with discontinuous coefficients
is studied and we focus here on the results obtained with P3 model. The structure of the
numerical code is classical: assemble matrix and right hand side, invert matrix, display
results. It is described in [26]. The domain is Ω = [0, 1]2 and we define Ω1 (resp. Ω2)
as Ω1 = [0.35, 0.65]2 (resp. Ω2 = Ω \Ω1). We take ε = 1, c = 1 and

σa = 2 × 1Ω1 (x), σs = 2 × 1Ω2 (x) + 105 × 1Ω1 (x).

The absorption coefficient has compact support in Ω1 while the scattering coefficient is
discontinuous and takes a high value in Ω1. These coefficients involve a discontinuous
matrix R. Even if we consider random meshes, the interface between Ω1 and Ω2 is a
straight line. The geometry and parameters of this test are represented in Figure 4.

Ω1
σa = 2
σs = 105

Ω2
σa = 0
σs = 2

u = (1, 0, 0)T u = (0, 0, 0)T

Periodic

Periodic

In
te

rf
ac

e

Interface
Figure 4: On the left: Domain and boundary condition for the two dimensional boundary layers test. On the
right: representation of adaptive directions at the interface. In this example: the 3 equi-distributed directions
(30) in each cell except at the interface where the directions are locally adapted into (31).

For the directions, we may consider the following 3-equidistributed directions

d1 = (1, 0), d2 = (cos
2π
3
, sin

2π
3

), d3 = (cos
4π
3
, sin

4π
3

), (30)
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the 4-equidistributed directions

d1 = (1, 0), d2 = (0, 1), d3 = (−1, 0), d4 = (0,−1), (31)

or the 5-equidistributed directions

d1 = (1, 0), d2 = (cos
2π
5
, sin

2π
5

), d3 = (cos
4π
5
, sin

4π
5

),

d4 = (cos
6π
5
, sin

6π
5

), d5 = (cos
8π
5
, sin

8π
5

).
(32)

As pointed in [25], the choice of directions at the interface plays an important role to
correctly capture the boundary layers. It is essential to locally get the one dimensional
direction perpendicular to the interface associated with the boundary layer. We make
the special choice of directions (31) at the interface. Such directions are well adapted
if one considers the one dimensional problem at the interface. A graphical illustration
of the adaptive directions at the interface is provided on the right of Figure 4. As stated
previously, when σa = 0 the degenerative exponentials are replaced with polynomials.
With our parameters, the number of polynomials used in the basis functions is equal to
the number of directions.

The reference solution is calculated on a 200 × 200 random mesh with the 3 di-
rections (30) and adaptive directions (31) at the interface. The following cases are
calculated on a coarse 20 × 20 mesh

• The DG method with constant basis functions only (= finite volume) for a total
of 10 basis functions per cell.

• The DG method with affine basis functions (that is 1, x, y) for a total of 30 basis
functions per cell.

• The TDG method with the basis functions of Propositions 5.3 and 5.4 depending
on the 3 directions (30) (for a total of 12 basis functions per cell) and on the 4
directions (31) at the interface (for a total of 16 basis functions per cell).

• The TDG method with the basis functions of Propositions 5.3 and 5.4 depending
on the 5 directions (32) (for a total of 20 basis functions per cell) and the 4
directions (31) at the interface.

The results are given in Figure 5. One notices a better approximation of the solu-
tion for the TDG method with less degrees of freedom compared to the standard DG
scheme. If the TDG method gives such good result, it is in fact because the correct
exponential solutions (i.e. with the right directions) are locally used in the boundary
layers. Actually, an enrichment strategy, where the DG basis is locally (in the bound-
ary layers) enriched with some exponential solutions, would give similar result on this
numerical test [26, Section 5-4.3.2]. The same kind of idea is used, for example, in the
context of the so-called extended finite element method (XFEM) [49, 50].
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7.2. A test problem in the regime σa = 0
For the P3 model we compare the results obtained with the DG and TDG method

on a 80 × 80 mesh. The time step is ∆t = T/80. We consider four different results:

• The limit solution which is the fundamental solution of the 2D heat equation.

• The DG method with constant basis functions only (= finite volume) for a total
of 10 basis functions per cell.

• The DG method with affine basis function (that is 1, x and y) for a total of 30
basis functions per cell.

• The TDG method initially with the basis made of three directions for the expo-
nential functions. But the degenerate exponential function (that is v3 in Propo-
sition 5.3) is systematically removed. Instead it is replaced by the first three
polynomial functions v1,2,3 in (25) That is the TDG method applied to the P3
model uses a combination of exponential and polynomial basis functions. For an
implementation with five directions, one should replace the degenerate exponen-
tials with v1,2,3,4,5.

The results presented in Figure 6 illustrate that the DG method with only constant
basis functions is too diffusive. On the contrary, one recovers a good approximation
with the TDG method. This illustrates the good behavior of TDG approximations for
such problems. The DG scheme with affine basis functions is also accurate, but with
the disadvantage of using approximately three times more basis functions than the TDG
scheme.

7.3. A lattice problem
We consider a lattice problem [35, 12, 9, 51]. The spatial domain ΩS = [0, 7]×[0, 7]

is represented in Figure 7 and we take T = 3.2. The white area is a purely scattering
region while the striped and black areas are purely absorbing regions. Additionally, the
black region contain a source of particles. More precisely, let Ωc be the union of the
eleven striped squares and the black square in Figure 7, then one hasσa(x) = 10, σs(x) = 0, if x ∈ Ωc,

σa(x) = 0, σs(x) = 1, else.

Note that for some authors σa = 0, σs = 1, in the central region [12, 9] while other
authors take σa = 10, σs = 0 [35, 51]. These two choices give similar numerical
results and we consider here the second option. We recall that Friedrichs systems with
a source term read (

∂t + A1∂x + A2∂y

)
u(t, x) = −Ru(t, x) + f(x). (33)

In this example, the source f(x) ∈ Rm is contained in the black regionf(x) = σa(x) × e1, if x ∈ [3, 4]2,

f(x) = 0, else,
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where e1 = (1, 0, ..., 0)T ∈ Rm. The boundary conditions of Dirichlet type, that is u = 0
at the boundaries of the domain, play essentially no role in the problem for the final
time considered.

Following the convention coming from [35, 12, 9, 51], the density of particle (also
called the first moment, that is the first component of U) is plot in logscale. It allows
for a fine description of the numerical diffusion at the propagation front of the different
numerical methods.

7.3.1. The P1 model.
The numerical results obtained for the P1 model are displayed in Figure 8. The

reference solution is computed with the DG method with affine basis functions for a
total of 9 basis functions per cell on a 280 × 280 random mesh with dt = 0.01. We
compare the DG and TDG methods on a 140 × 140 mesh with dt = 0.02. We consider
the following cases

• The DG method with constant basis functions only for a total of 3 basis functions
per cell.

• The DG method with affine basis functions (that is 1, x, y) for a total of 9 basis
functions per cell.

• The TDG method with the basis functions (23)-(24) depending on the 5 direc-
tions (32), for a total of 5 basis functions per cell (plus one (22) in the black
region).

• The TDG method with the basis functions (23)-(24) depending on the 5 direc-
tions (32) and the time dependent solutions (21), for a total of 8 basis functions
per cell (plus one (22) in the black region).

Figure 8 shows that the DG method with only constant basis functions is too diffusive.
However, if one increases the number of basis functions and considers affine basis func-
tions, the DG method recovers a very good accuracy. From Figure 8, one also notices
that the TDG method with 5 directions and only stationary basis functions seems too
diffusive. Adding the time dependent basis functions (21) to the TDG method allow to
recover a good accuracy similar to the affine DG method.

7.3.2. The P3 model.
The comments are very similar for the P3 model. Figure 9 represents the numerical

results obtained for the P3 model. The reference solution is computed with the DG
method with affine basis functions for a total of 30 basis functions per cell on a 280×280
random mesh with dt = 0.01. We compare the DG and TDG methods on a 140 × 140
mesh with dt = 0.02. More precisely, we consider the following cases

• The DG method with constant basis functions only for a total of 10 basis func-
tions per cell.

• The DG method with affine basis functions (that is 1, x, y) for a total of 30 basis
functions per cell.
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• The TDG method with the basis functions of Propositions 5.3 and 5.4 depending
on the 3 directions (30), for a total of 12 basis functions per cell (plus one (22)
in the black region).

• The TDG method with the basis functions of Propositions 5.3 and 5.4 depending
on the 3 directions (30) and the time dependent solutions (21), for a total of 22
basis functions per cell (plus one (22) in the black region).

As for the P1 model, Figure 9 illustrates that the DG method recovers a good accuracy
when using affine basis functions. For the TDG method, considering only 3 stationary
basis functions seems too diffusive. Nevertheless, if one adds the time dependent basis
functions (21), the TDG method recovers a good accuracy similar to the affine DG
method.

In particular, a benefit of the TDG method compared to the standard DG method
is that it uses less basis functions to recover a good approximation of the numerical
solution. However, as we will see in the next section, the TDG method may suffer from
conditioning issue when considering stationary and time dependent basis functions on
fine meshes.

Finally note that, both for the P1 and P3 model, the numerical results are similar to
those obtained in [12, 35].

7.4. The condition number

It is well known that Trefftz method can be very sensitive to ill-conditioning. That
is why we provide some numerical evidence of this fact.

In Figure 10, we compare an estimation of the condition number of the matrices for
the test problem described in Appendix C for the cases 1 to 4 on random meshes. The
estimation is provided using the AztecOO package of the Trilinos library [52]. The
Figure illustrates that the conditioning of the mass matrix can deteriorate dramatically
depending of the basis functions used in a given calculation. In this case, the tempo-
ral exponentials (Case 2) give the best result in term of the condition number. More
research is needed to determine if it is a general rule.

In Figure 11, we display the condition number for a stationary P1 problem depend-
ing of a stiff parameter ε. The number of cells is constant. On the left part of the Figure,
the condition number goes to 0 when ε→ 0, at the same rate for a DG scheme and for
a TDG scheme. This is normal, since σa = 0 in this case, so the basis functions of the
TDG are also polynomials. But on the right part of the Figure which corresponds to
σ > 0, the condition number of TDG dramatically increases for small ε. Our explana-
tion is that the exponential functions contain a stiff dependence with respect to ε, so it
is normal that the conditioning of TDG is more sensitive than the one of DG for ε→ 0.

Finally, in Figure 12, we calculate an evaluation of the condition number. A first
calculation is the condition number itself. A second one is the condition number of
the matrix preconditioned with a usual diagonal technique. One observes a dramatic
improvement, since the condition number is even better than the one for the DG method
without preconditioning.
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8. Conclusions

In this work, the Trefftz discontinuous Galerkin (TDG) method applied to transport
models has been studied and analyzed in the general case of the two dimensional PN

model. After recalling the derivation of the PN model, some of its properties were
given. Numerical results for the two dimensional P1 and P3 models were provided. It
has been shown that the TDG method outperforms the standard DG method for some
numerical tests with boundary layers, using less degrees of freedom for a better accu-
racy. The main drawback of the TDG method is that it may lead to ill-conditioning
systems when considering too many basis functions per cell or in some asymptotic
regimes. The formulation of the TDG method can be easily generalized to the three
dimensional case.in 3D for the PN model, the basis functions can be constructed as
in Section 4, starting from a one dimensional solution and then applying a rotation.
Note however that the three dimensional rotation is not as simple as in the two dimen-
sional case [31, 36, 33]. Another perspective is to develop good preconditioners to
deal with the ill-conditioning systems of the TDG method. This could be particularly
useful when considering, for example, stationary and time dependent basis functions.
It could also be interesting to extend the TDG method to the discrete ordinate method
(S N model) which is the other popular approximation of the transport equation. Since
the S N model is naturally written under the form of a Friedrichs system, the general
formulation given in Section B can be used. It remains to construct the basis functions.

Appendices
Appendix A Spherical harmonics

We recall some definitions and properties of the spherical harmonics and adopt the
presentation given in [9].

A.1 Legendre functions
The spherical harmonics are based on the Legendre functions Pl

k which read

Pl
k(µ) =


1

2kk!
(1 − µ2)l/2 dk+l

dµk+l ((µ2 − 1)k), l ≥ 0,

(−1)l (k + l)!
(k − l)!

P−l
k (µ), l < 0.

(34)

The Legendre polynomials satisfy the orthogonal relations 1
2

∫ 1
−1 P0

kdµ = δ0
k ,

1
2

∫ 1
−1 Pl

kPl
mdµ =

1
(al

k)2 δ
m
k , where al

k is the normalization factor al
k =

√
(2k + 1) (k−l)!

(k+l)! . They also satisfy the
following recursion relations which are fundamentals to derive the PN model

√
1 − µ2Pm

k = 1
2k+1

(
Pm+1

k+1 − Pm+1
k−1

)
,√

1 − µ2Pm
k = 1

2k+1

(
− (k − m + 1)(k − m + 2)Pm−1

k+1 + (k + m − 1)(k + m)Pm−1
k−1

)
,

µPm
k = 1

2k+1

(
(k − m + 1)Pm

k+1 + (k + m)Pm
k−1

)
.
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A.2 Spherical harmonics
The complex valued spherical harmonics read Y l

k(ψ, φ) := Y l
k(Ω) := (−1)lal

kPl
k(cos φ)eilψ

for |l| ≤ k. The real valued spherical harmonics Yk,l are

.



Yk,l(Ω) = Y l
k(Ω) = al

kPl
k(cos φ), l = 0,

Yk,l(Ω) =
(−1)l

√
2

(
Y l

k(Ω) + Ȳ l
k(Ω)

)
= al

k

√
2 cos(lψ)Pl

k(cos φ), 0 < l ≤ k,

Yk,l(Ω) =
i
√

2

(
Y l

k(Ω) − Ȳ l
k(Ω)

)
= a|l|k

√
2 sin(|l|ψ)P|l|k (cos φ), −k ≤ l < 0.

(35)

They satisfy the relations 1
4π

∫
S 2 Yk,ldψdµ = δ0

kδ
0
l , 1

4π

∫
S 2 Yk,lYm,ndψdµ = δm

k δ
n
l and the

recursion relations
sin φ cosψYk,m = εm(Am

k Yk+1,m+1 − Bm
k Yk−1,m+1) − ζm(Cm

k Yk+1,m−1 − Dm
k Yk−1,m−1),

sin φ sinψYk,m = ηm(Am
k Yk+1,−m−1 − Bm

k Yk−1,−m−1) + φm(Cm
k Yk+1,−m+1 − Dm

k Yk−1,−m+1),
cos φYk,m = Em

k Yk+1,m + Fk,mYk−1,m,
(36)

where 

Am
k =

√
(k + m + 1)(k + m + 2)

(2k + 1)(2k + 3)
, Bm

k =

√
(k − m − 1)(k − m)

(2k − 1)(2k + 1)
,

Cm
k =

√
(k − m + 1)(k − m + 2)

(2k + 1)(2k + 3)
, Dm

k =

√
(k + m − 1)(k + m)

(2k − 1)(2k + 1)
,

Em
k =

√
(k − m + 1)(k + m + 1)

(2k + 1)(2k + 3)
, Fm

k =

√
(k − m)(k + m)

(2k − 1)(2k + 1)
,

and the other coefficients are given in Table 1.

m < −1 m = −1 m = 0 m = 1 m > 1
εm − 1

2 0
√

2
2

1
2

1
2

ζm − 1
2 − 1

2 0
√

2
2

1
2

ηm − 1
2 −

√
2

2

√
2

2
1
2

1
2

φm − 1
2 − 1

2 0 0 1
2

Table 1: Coefficients of the equations (36)

Appendix B Numerical analysis of the TDG method

Because of different approximation spaces, TDG methods are not completely stan-
dard ones with respect to traditional DG methods. It is therefore valuable to review
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the basic results [3, 10, 2, 25, 26] which are at the core of the h-convergence analysis
of TDG methods. We make the distinction between what we call the classical theory
which deals with the case R = 0 and the strictly dissipative case R > 0.

B.1 Well posedness and quasi-optimality

In this section we show well posedness of (11) and a quasi-optimality bound in
mesh-dependent norms. Our analysis follows results of [2] where special case with
R = 0 was studied and [25, 26] adapted to the situation where R > 0 provides additional
L2 control in the cells. One defines two semi-norms on H1(Th)

‖u‖2DG =
∑

k

∫
Ωk

uT
k Ruk +

∑
k

∑
j<k

1
2

∫
Σk j

(uk − u j)T |Mk j|(uk − u j) +
∑

k

1
2

∫
Σkk

uT
k |Mk |uk,

‖u‖2DG∗ =
∑

k

∫
∂Ωk

−uT
k M−k uk,

(37)
with |Mk j| = |M jk | = M+

k j − M−k j. First steps are to show that these two semi-norms are
in fact norms on the Trefftz space. All proves can be completed from [3, 10, 2, 25, 26].

Lemma B.1. One has the inequality ‖v‖DG ≤ c‖v‖DG∗ for all v ∈ V(Th), with c =

√
5
2 .

Lemma B.2. Assume M ∈ Rn×n is a symmetric matrix. Then one has zT M2z ≤
CzT |M|z for all z ∈ Rn, where M = M+ + M−, M+ is a non negative matrix, M−

is a non positive matrix and |M| = M+ − M−.

Proposition B.3. The semi-norms ‖ · ‖DG and ‖ · ‖DG∗ are norms on the Trefftz space
V(Th).

Next, we study the coercivity and the continuity of the bilinear form a(·, ·) regarding
the norms ‖ · ‖DG and ‖ · ‖DG∗ .

Proposition B.4 (Coercivity). For all u ∈ H1(Th) one has aDG(u,u) = ‖u‖2DG. For all
u ∈ V(Th) one has aDG(u,u) = aT (u,u).

Proposition B.5 (Continuity). The continuity bound aT (u, v) ≤
√

2‖u‖DG‖v‖DG∗ holds
for all u, v ∈ V(Th).

The classical quasi-optimality result is the following.

Proposition B.6 (Quasi-optimality). For any finite dimensional space Vm(Th) ⊂ V(Th),
the TDG formulation (11) admits a unique solution uh ∈ Vm(Th). Moreover, the fol-
lowing quasi-optimality bounds holds

‖u − uh‖DG ≤
√

2 inf
vh∈Vm(Th)

‖u − vh‖DG∗ ,

where u stands for the exact solution to (1).
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Using the quasi-optimality proposition one has the well-balanced property of the
scheme. In one dimension a scheme is well-balanced if it captures all the stationary
states of a hyperbolic system. This is possible because, in one dimension, the num-
ber of linearly independent stationary solutions is finite. However in two dimensions
the space of stationary solutions becomes infinite. It has a huge impact on what is a
well-balanced scheme in space dimensions higher than one. One must choose a finite
subset of solutions for which the scheme is supposed to be exact. This is a practical
definition of a well-balanced scheme and it is immediately deduced from the quasi-
optimality result of proposition B.6. Of course a standard DG scheme has the same
quasi-optimality result, but it can be well-balanced only for some particular polyno-
mial functions. On the contrary a TDG method can be well-balanced for more general
solutions which contain for example exponential factors as in Example 1 in Section 2.2
for which σa > 0.

Proposition B.7 (Well-balanced scheme). If the solution u ∈ H1(Ω) of (1) is locally
(in each cell) a linear combination of the basis functions (which are by construction
exact solutions), then uh = u.

B.2 Estimate in standard norms
In the previous section, the error is bounded in terms of DG-norm. It is of course

desirable to have estimates in a more standard norm. In this section we present some
elementary L2 lower bounds of the DG norm which take advantage of the relaxation
matrix R and an L2 upper bound of the DG∗ norm. Proofs are in [25, 26].

Proposition B.8. Assume Ωk ∈ Th, Rk = R(x)|Ωk , and ∀k Rk is definite positive. One
has

1
supk∈Th

‖
√

Rk
−1‖2
‖w‖L2(Ω) ≤ ‖w‖DG, ∀w ∈ H1(Th).

This inequality holds when R is definite positive but degenerates when R→ 0. For
non stationary problems, one can give a L2 lower bound at the final time that does not
depend on R.

Proposition B.9. For time dependent problems one has ‖w‖L2(ΩS×{T }) ≤ ‖w‖DG for al
w ∈ H1(Th).

Define the semi-norm |w|21,Ω :=
∫

Ω

∑n
i=1

∑d
j=1(∂ jwi)2.

Proposition B.10. One has ‖w‖2DG∗ ≤ C
∑

j ‖w‖L2(Ω j)

(
1
h j
‖w‖L2(Ω j) + |w|1,Ω j

)
for all w ∈

H1(Th), where h j = diam(Ω j) and where the constant C depends on the Ai.

If the matrices Ai are rescaled with respect to some small parameter, then the con-
stant C must be rescaled as well.

Appendix C Sensitivity of TDG to the choice of time dependent basis functions

In this section, we show that TDG method (applied to the P1 model in this sectin)
can be quite sensitive to the choice of the time dependent basis functions. The problem
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is that we found no theoretical means to determine in advance how the result depends
on this choice. It is only by numerical tests that one can evaluate this influence. The
results below are also a justification why the method (21 (with α = σa or α = σt) is
our favorite one to introduce time dependent basis functions.

We consider the following cases

• Case 1. The stationary basis functions (23)-(24) only with the 3 directions (30)
for a total of about 3 basis functions per cell.

• Case 2. The stationary basis functions (23)-(24) with the 3 directions (30) and
the time dependent solutions (21) (with α = σa or α = σt) for a total of about 6
basis functions per cell.

• Case 3. The stationary basis functions (23)-(24) and the time dependent solu-
tions (39)-(40) with the 3 directions (30) for a total of about 9 basis functions per
cell.

• Case 4. The stationary basis functions (23)-(24) and the time-dependent solu-
tions (38) with the 3 directions (30) for a total of about 6 basis functions per
cell.

• Case 5. The stationary basis functions (23)-(24) and the time-dependent solu-
tions (38) with the 4 directions (31) for a total of about 8 basis functions per
cell.

We give some special time dependent solutions to the P1 model. In this section, the
solutions that we consider are product of time dependent polynomials and stationary
exponentials. The proof is by direct calculus. More details are in [26].

Lemma C.1. The value α = σt in the basis functions (21) gives

v(t, x) =

( √
σt(1 + ε)

−
√
ε(σa + σt)d

)
e

1
c

√
3ε(σa+σt)σt(1+ε)dT x+σt t, (38)

with d = (cos θ, sin θ)T ∈ R2.

Lemma C.2 (Time dependent solutions when σa > 0). The following functions are
solutions to the two dimensional P1 model (dk = (cos θk, sin θk)T )

w1,k(t, x) =

 −2cε
√
σaσt cos θk −

√
3εσt(εσa + σt)x − 2c

√
σaσtσt cos θkt

c
√
ε(εσa + σt) + ε

√
3σaσt(εσa + σt) cos θk x + 2c

√
εσaσt cos2 θkt

ε
√

3σaσt(εσa + σt) sin θk x + 2c
√
εσaσt cos θk sin θkt

 e
1
c

√
3εσaσtdT

k x,

w2,k(t, x) =

 −2cε
√
σaσt sin θk −

√
3εσt(εσa + σt)y − 2c

√
σaσtσt sin θkt

ε
√

3σaσt(εσa + σt) cos θky + 2c
√
εσaσt cos θk sin θkt

c
√
ε(εσa + σt) + ε

√
3σaσt(εσa + σt) sin θky + 2c

√
εσaσt sin2 θkt

 e
1
c

√
3εσaσtdT

k x.

(39)
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Lemma C.3 (Time dependent polynomial solutions when σa = 0). The following
functions are solutions to the two dimensional P1 model when σa = 0 (qk(x) is a
harmonic polynomial)

v1(x) =


− 2
√

3

√
εc2∂x −

√
3εσ2

t x − 2
√

3ε
c2σtt∂x

√
εcσt +

√
εcσt x∂x + 2

3
√
ε
c3t∂2

x
√
εcσt x∂y + 2

3
√
ε
c3t∂xy

 qk(x),

v2(x) =


− 2
√

3

√
εc2∂y −

√
3εσ2

t y − 2
√

3ε
c2σtt∂y

√
εcσty∂x + 2

3
√
ε
c3t∂xy

√
εcσt +

√
εcσty∂y + 2

3
√
ε
c3t∂2

y

 qk(x).

(40)

The results are displayed in Figure 13, where the setup is the lattice problem. We
plot the total density of particles (the first component of U) in logscale. This is a severe
test because the actual magnitude at the propagation front can be quite small. The
random mesh is made of 70 × 70 cells.

The results with only stationary basis functions is the most diffuse one. One sees
that all the time dependent basis functions reduce the diffusion. Compared to Case
2, one notices that the diffusion is lower for cases 3 to 5 but some weird oscillations
appear. For the basis functions (38) (Cases 4 and 5), the choice of directions seems
important. Indeed, with only the 3 directions (30) (Case 4), the numerical solution is
highly asymmetric. Considering the 4 directions (31) (Case 5), fix this issue. Note that
Case 3 also considers the 3 directions (30) without getting the asymmetric result of
Case 4.
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Figure 5: P3 model. Representation of the first variable for the P3 model. Top left: reference solution.
Top center: DG scheme with 10 basis functions per cell. Top right: DG scheme with 30 basis functions
per cell. Bottom left: TDG scheme with 12 basis functions per cell. Bottom right: TDG scheme with 20
basis functions per cell. For the TDG scheme, the directions at the interface are locally adapted into the 4
directions (31). 37



Figure 6: Top left: limit solution. Top right: DG-P0=FV solution with 10 basis functions per cell. Bottom
left: DG-P1 solution with 30 basis functions per cell. Bottom right: TDG solution with 12 basis functions
per cell.
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Figure 7: Domain for the lattice problem 7.3.

39



Figure 8: P1 model. Representation of the first variable for the test case 7.3, logarithmic scale.Top left:
reference solution. Top center: DG scheme with 3 basis functions per cell. Top right: DG scheme with 9
basis functions per cell. Bottom left: TDG scheme with about 5 stationary basis functions per cell. Bottom
right: TDG scheme with about 8 basis functions per cell (stationary and time dependent).
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Figure 9: P3 model. Representation of the first variable for the test case 7.3. Top left: reference solution.
Top center: DG scheme with 10 basis functions per cell. Top right: DG scheme with 30 basis functions per
cell. Bottom left: TDG scheme with about 12 stationary basis functions per cell. Bottom right: TDG scheme
with about 22 basis functions per cell (stationary and time dependent). Logarithmic scale.
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Figure 10: The condition number versus the one-dimensional cell number, for the cases 1 to 4 in the appendix
C. Logarithmic scale.
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Figure 11: Condition number versus ε for the P1 model. Logarithmic scale. On the left σa = 0. On the right
σa = 1.
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Figure 12: Preconditioning/conditioning versus the number of cells. Logarithmic scale.
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Figure 13: P1 model. Representation of the first variable for the test case 7.3. Cases 1 to 5. The cases are
numbered from from left to right and top to bottom (top left: Case 1, top center: Case 2...). Logarithmic
scale. 44
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