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Abstract

A discretization of the PN model for 2D transport of particles is presented, together with the derivation of new high
order convergence estimates and new numerical results for the P1 and P3 models. The discretization method is based
on recent advances about the construction of a Trefftz Discontinuous Galerkin (TDG) method for Friedrichs systems
coming from linear transport with relaxation are presented in a comprehensive setting. More numerical results in 2
dimensions illustrate the theoretical properties.

1 Introduction
In this work, we consider the PN approximation in 2D of the transport equation of photons, neutrons or other types of
particles in dimension d = 3

∂tI(t,x,Ω) + cΩ · ∇I(t,x,Ω) = −σa(x)I(t,x,Ω) + σs(x) (〈I〉 − I(t,x,Ω)) , (1)

where I is the distribution function, t the time variable, x ∈ Rd the space variable, Ω the direction and 〈I〉 =
1

4π

∫
S2 I(t,x,Ω′)dΩ′ is the mean of I. The absorption and scattering coefficients are σa(x) ≥ 0 and σs(x) ≥ 0. We

will adopt the common strategy which is to construct the PN model [1, 2] in the form of a Friedrichs system with re-
laxation. The numerical method that we use is the Trefftz Discontinuous Galerkin (TDG) method. This method will be
comprehensively presented for a class of Friedrichs systems with relaxation which encompasses many physical problems
coming from the approximation of transport phenomena.

Given a linear system of partial differential equations, TDG methods are discontinuous Galerkin type schemes that
use solutions to the model as basis functions The name comes from the seminal 1926 paper of E. Trefftz which has been
recently translated in English [3]. With respect to more traditional numerical approximation methods, Trefftz methods
offer in good cases a strong reduction of the number of unknowns, which may seem as a magic property. Trefftz methods
have been widely used and studied for time harmonic wave propagation problems, see the review [4] and reference therein,
and more recently for time formulation of propagation equations [5, 6, 7, 8, 9, 10, 11]. The TDG method allows to
incorporate some information about the solution of the model in the basis functions and, in certain cases, can require
fewer degrees of freedom than standard schemes.
TDG method have their pros and cons:
Pros a) Incorporate a priori knowledge in the basis functions, which are therefore well adapted to multiscale problems;
b) Often need less degrees of freedom to reach a given accuracy. A typical example for the 2D version of the P1 model
(2.4) in the dominant absorption regime σa > 0 (with c = ε = 1) is illustrated in the table below, where we compare
the number of basis functions p needed to achieve a given fractional order. The first line is for our TDG method. One
gets pTDG = 2(order + 1) which is a rephrasing of the result of Theorem 6.4 with N = 1. The second line is the optimal
number of basis function for a general DG method pDG = 3

2 (order + 1
2 )(order + 3

2 ).

order 1/2 3/2 5/2 7/2 9/2
pTDG 3 5 7 9 11
pDG 3 9 18 30 45

5E-mail addresses: guillaume.morel@inria.fr, christophe.buet@cea.fr, despres@ann.jussieu.fr
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In particular the number of basis functions is the same to get order = 1/2. One always gets pTDG ≤ pDG; c) Is easy
to incorporate in DG codes, since one only needs to change the basis functions.
Cons d) May suffer ill-conditioning due to poor linear independence of the basis functions [12, 13]. For wave problems,
some remedies exist in the literature [14]; e) The practical calculation of the basis functions adds to the computational
burden. If one can calculate the basis functions analytically, the computational burden is moderate. If this is not consider,
the computational burden is heavier: several options could be considered such as numerically computing the basis functions
or relying on the general procedure [15, 16, 17].

In this work we intend to give a review of recent advances of the TDG method for our model problem (4-8), starting
from the preliminary works [18, 19, 20]. Assuming that the coefficient σa and σs are piecewise constant, we will construct
families of TDG basis functions adapted to the numerical approximation of the model problem. For first order PDE’s the
adjoint equations may differ from the direct equations for R 6= 0 which is our case, and therefore one can construct two
kinds of TDG basis functions: using adjoint solutions or using direct solutions. It turns out that using adjoint solutions
is not an efficient method and we will therefore focus on the TDG method with forward solutions. Note this issue does
not occur with the already mentioned works [5, 6, 7, 8, 9, 10, 11] because there is no relaxation in their case. Another
possibility might be to adopt a Petrov-Galerkin approach choosing test functions as adjoint solutions and trial functions
as direct solutions [21, 22]. We have noticed serious stability issues with this method for time dependent problems.

This paper is organized as follows. In Section 2, the Friedrichs system with relaxation is physically motivatedThe as
the angular discretization of the kinetic equation (1): in the literature it is called the PN model and its main properties are
given; these properties are directly connected to invariance principles common to many different models. In Section 3 we
present the TDG method for Friedrichs systems. Section B is devoted to the numerical analysis the method, in particular
a quasi-optimality result and the well-balanced property of the scheme. In Section 4, we determine Trefftz families of
exponential and polynomial solutions to our model problem. Next, in Section 5, the stationary solutions (polynomials
and exponentials) are explicitly calculated for the P1 and P3 models. In section 6 we give a new approximation result
showing that with sufficiently exponentials or polynomial solutions we can approach any stationnary 2D solutions of the
PN equations at any order. Thus combining it with the quasi-optimality result we obtain a new high order convergence
result. In the final Section 7 we provide numerical examples. First a new numerical example with boundary layers is
provided for the P3 model in Section 7: in terms of accuracy, it shows an important improvement with respect to more
standard DG methods. The second test problem illustrates the advantage of the method for a test problem in a diffusion
regime. For the last numerical result TDG is compared with standard DG for a time dependent problem.

In this paper all vectors are written in bold. For v(x) ∈ Rm we use the simplified notation v ∈ L2(Ω) instead of
v ∈ L2(Ω)m. Moreover we may write v = (v1, ..., vm)T where T denotes the transpose and denote v2 = vTv to facilitate
the distinction with other types of norms or semi-norms.

2 The PN model
In this section, we start with the kinetic equation (1) and we construct the transport matrices and the relaxation matrix
of the PN approximation in 2D.

2.1 3D configuration
Let ψ ∈ [0, 2π) and φ ∈ [0, π) be the polar and azimutal angles on the sphere, so that in Cartesian coordinate with usual
notations Ω := (Ω1,Ω2,Ω3)T = (sinφ cosψ, sinφ sinψ, cosφ)T ∈ R3. To be consistent with the standard notation of the
spherical harmonics, the uppercase letter Yk,l is used to denoted the real spherical harmonics. We make a slight abuse of
notation by not distinguishing between the two forms

Yk,l(Ω) := Yk,l(ψ, φ) : R2 → R, |l| ≤ k ≤ N, k, l ∈ N.

The construction and properties of the spherical harmonics are detailed in Appendix A. We introduce some notations and
adopt the presentation from [23] but with the spherical harmonics vector arranged as in [2]. In the following, we denote
m3D the total number of unknowns, m3D

e the number of even moments (which correspond to k even) and m3D
o the number

of odd moments (which correspond to k odd) for the three dimensional PN model. That is

m3D := m3D
e +m3D

o = (N + 1)2, m3D
e :=

1

2
N(N + 1), m3D

o :=
1

2
(N + 1)(N + 2).

For any integer 0 ≤ k ≤ N we define yk(Ω) the vectorial function whose components are the 2k+1 real valued spherical har-
monics of order k. Moreover we denote ye(Ω) the vectorial function made of the so-called even moments

(
y2k(Ω)

)
0≤2k≤N
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and yo(Ω) the vectorial function made of the so-called odd moments
(
y2k+1(Ω)

)
0≤2k+1≤N . That is

yk(Ω) :=
(
Yk,−k(Ω), Yk,−k+1(Ω), ..., Yk,k−1(Ω), Yk,k(Ω)

)T
∈ R2k+1,

ye(Ω) :=
(
yT0 (Ω),yT2 (Ω), ...,yTN−1(Ω)

)T
∈ Rm

3D
e , yo(Ω) :=

(
yT1 (Ω),yT3 (Ω), ...,yTN (Ω)

)T
∈ Rm

3D
o ,

Finally, we define y(Ω) the vectorial function made of ye(Ω), yo(Ω) and arranged as follow y(Ω) =
(
yTe (Ω),yTo (Ω)

)T
∈

Rm3D

. We generalize this decomposition for any vector v ∈ Rm3D

. We set vk := (v−kk , v−k+1
k , ..., vk−1

k , vkk)T ∈ R2k+1,
ve := (vT0 ,v

T
2 , ...,v

T
N−1)T ∈ Rm3D

e and vo := (vT1 ,v
T
3 , ...,v

T
N )TRm3D

o , and denote v as v = (vTe ,v
T
o )T ∈ Rm3D

. The
decomposition of the intensity on the spherical harmonics basis can be written as I(t,x,Ω) =

∑
k≥0

∑
|l|≤k Yk,l(Ω)ulk(t, x).

The truncation at order N defines the truncated series IN

IN (t,x,Ω) := yT (Ω)u(t,x) =

N∑
k=0

yTk (Ω)uk(t, x) =

N∑
k=0

∑
|l|≤k

Yk,l(Ω)ulk(t, x),

where the unknown of the PN model are u ∈ Rm3D

. With the approximation I = IN the equation (1) reads

yT (Ω)∂tu(t,x) + c

3∑
i=1

Ωiy
T (Ω)∂xiu(t,x) =

(
−
(
σa + σs

)
yT (Ω)u(t,x) + σs < yT (Ω) >

)
u(t,x).

Multiplying by y(Ω) and integrating over the sphere gives

< y(Ω)yT (Ω) > ∂tu(t,x) + c

3∑
i=1

< Ωiy(Ω)yT (Ω) > ∂xiu(t,x) =(
−
(
σa + σs

)
< y(Ω)yT (Ω) > +σs < y(Ω) >< yT (Ω) >

)
u(t,x).

From the orthogonal properties of the spherical harmonics one has < y(Ω)yT (Ω) >= Im3D and < y(Ω) >< yT (Ω) >=

e1e
T
1 with e1 = (1, 0, ..., 0)T ∈ Rm3D

. Therefore one gets the system ∂tu +
∑3
i=1Ai∂xiu = −Ru, where u ∈ Rm3D

and
A1,A2,A3,R ∈ Rm3D×m3D

. The matrices Ai = c < Ωiy(Ω)yT (Ω) > can be computed using the recursion relations
(39) to expand Ωiy(Ω) in terms of spherical harmonics. As pointed out in [2] the matrices A1, A2 and A3 have a block

structure A1 =

(
0 A
AT 0

)
, A2 =

(
0 B
BT 0

)
, A3 =

(
0 C
CT 0

)
where A, B, C ∈ Rm3D

e ×m
3D
o are rectangular matrices. This

block structure is a direct consequence of a decoupling between the even moments and odd moments. The relaxation
matrix is diagonal R = diag(σa, σa + σs, ..., σa + σs). One obtains a system (4) in dimension 3.

2.2 3D rotational invariance
There are some inherent technicalities attached to the description of rotational invariance principles, however what this
reveals is extremely valuable for implementations and is why we take the time to describe them.

The matrix representations of the rotation operators in the basis of spherical harmonics, known as D-Wigner matrices
[24, 25, 26], are U(α, β, γ) ∈ Rm3D×m3D

, where α, β and γ denotes rotation around the axes Oz, Oy and Oz respectively.
It is a block matrix

U(α, β, γ) = diag
(

∆0(α, β, γ),∆2(α, β, γ), ...∆me(α, β, γ),∆1(α, β, γ), ...,∆mo(α, β, γ)
)

where the matrices ∆k reads [26] ∆k(α, β, γ) =Wk(α)Dk(β)Wk(γ) ∈ R2k+1×2k+1. Here Dk ∈ R2k+1×2k+1 is a (reduced)
d-Wigner matrix and the matrix Wk has non-zero elements only on its diagonal and anti-diagonal
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Wk(α) =



cos kα sin kα
. . . 0 . .

.

cos 2α sin 2α
cosα sinα0 1 0
− sinα cosα

− sin 2α cos 2α

. .
. 0 . . .

− sin kα cos kα


∈ R2k+1×2k+1.

To simplify the matrix U we may consider a rotation θ in the plane xy only and denote

Uθ := U(0, 0, θ) ∈ Rm
3D×m3D

. (2)

Using the block rotations, the structure is written as Uθ = diag
(
W0(θ),W2(θ), ...Wme(θ),W1(θ), ...,Wmo(θ)

)
. The

matrix U represents the orthogonal transformations on y(Ω). That is for an orthogonal matrix Q ∈ R3×3 one has
y(QΩ) = U(α, β, γ)y(Ω) where α, β and γ are the angles of the rotation associated with the matrix Q in R3.

2.3 2D configuration
We briefly recall the invariance principles which can be found in the references [23, 2, 26].
a) In practice, the PN model is rarely applied for even values of N (see for example [23, Section 2] for a discussion on the
benefits of considering N odd). So we will consider only the case N = 2n+ 1 odd in the following.
b) Provided σa and σs are invariant with respect to z, then the system is invariant by translation with respect to z. It
corresponds to ∂z = 0 (equivalent to setting A3 = 0) and it has the consequence that the dimension is lowered from d = 3
to d = 2.
c) We assume that the solution has a mirror symmetry with respect to the plane xy. It is interpreted as pure reflective
conditions at the top and bottom boundaries of the 3D domain, as illustrated in Figure 1. This is equivalent to saying
that the function u is an even function of cosφ. Inspection of the spherical harmonics (37-38) shows that they are odd
with respect to cosφ if and only if k+ l odd, see [2]. Thus one can remove the unknowns ulk such that k+ l is odd (because

x

y

z

Ω1 = (sinφ cosψ, sinφ sinψ, cosφ)T

Ω2 = (sinφ cosψ, sinφ sinψ,− cosφ)T

ψ

φ

Figure 1: Mirror symmetry. If u is an even function of cosφ then u(t,x,Ω1) = u(t,x,Ω2).

they must vanish). This simplifies the matrices A1, A2 and R by removing rows and lines such that k+ l is odd. One can
check that the size of the remaining part is m3D

o = (N + 1)(N + 2)/2. This procedure defines the matrices

A1 = c

(
0 A
AT 0

)
∈ Rm

3D
o ×m

3D
o , A2 = c

(
0 B
BT 0

)
∈ Rm

3D
o ×m

3D
o and R ∈ Rm

3D
o ×m

3D
o (3)
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and one gets the PN model in two dimensions with m3D
o unknowns. These matrices correspond to the ones (5-7) in the

introduction and
m = m3D

o =
1

2
(N + 1)(N + 2).

d) Finally, a PN model has to satisfy some rotational invariance principles. With the previous assumptions this rotational
invariance is expressed in the plane xy. The plane xz may also be a possible choice [27, 28], however the rotation matrix
associated with the spherical harmonics is more difficult to calculate [24, 29, 26].

After reduction to the plane xy, the rotation matrix Uθ becomes Uθ ∈ Rm3D
o ×m

3D
o with the natural properties UθUµ =

Uθ+µ and (Uθ)
T = U−θ.

2.4 First example: the P1 model
For the P1 model, one takes m = 3, me = 1, mo = 2. The matrices A1, A2, R and Uθ are

A1 =
c√
3

0 0 1
0 0 0
1 0 0

, A2 =
c√
3

0 1 0
1 0 0
0 0 0

, R =

σa 0 0
0 σt 0
0 0 σt

 , Uθ =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 .

The submatrices are A =
(

1√
3
, 0
)
and B =

(
0, 1√

3

)
.

2.5 Second example: the P3 model
For the P3 model one takes m = 10, me = 4, mo = 6. The submatrices read [2]

A =


0 1√

3
0 0 0 0

1√
5

0
√

3
14 − 1√

70
0 0

0 − 1√
15

0 0
√

6
35 0

0 1√
5

0 0 − 1√
70

√
3
14

 , B =


1√
3

0 0 0 0 0

0 1√
5

0 0 − 1√
70
−
√

3
14

− 1√
15

0 0
√

6
35 0 0

− 1√
5

0
√

3
14

1√
70

0 0

 ,

R1 =


σa 0 0 0
0 σt 0 0
0 0 σt 0
0 0 0 σt

 and R2 = σtImo where Imo is the identity matrix of Rmo×mo . The matrices A1 and A2 are

assembled by a symmetrization of A and B (5). The rotation matrix is constructed in [19][chapter 4]: its structure is

Uθ =

(
V2(θ) 0

0 V3(θ)

)
where V2(θ) =

(
W0(θ) 0

0 W2(θ)

)
, V3(θ) =

(
W1(θ) 0

0 W3(θ)

)
and finally Wp(θ) is the matrix

of rotation for the spherical harmonics of order p = 1, 2, 3, 4. These matrices are W0(θ) = 1,

W1(θ) =

(
cos θ sin θ
− sin θ cos θ

)
, W2(θ) =

 cos 2θ 0 sin 2θ
0 1 0

− sin 2θ 0 cos 2θ

 and W3(θ) =


cos 3θ 0 0 sin 2θ

0 cos θ sin θ 0
0 − sin θ cos θ 0

− sin 3θ 0 0 cos 3θ

 .

2.6 2D rotational invariance
Rotational invariance is related to the construction of Uθ at the end of Section 2.3 and has important implications for the
numerical implementation. It can be checked directly on the PN model. One introduces the change of frame

(x′, y′) = (x cos θ − y sin θ, x sin θ + y cos θ)⇐⇒ (x, y) = (x′ cos θ + y′ sin θ,−x′ sin θ + y′ cos θ).

A possible formulation of the rotational invariance of the PN model is as follows: if u(t, x, y) is the solution in the reference
frame (x, y), then the function U−θu(t, x′, y′) is also a solution in the same frame. The minus sign is for compatibility
reasons with the notations of [26] and [19, Section 4.1].

Proposition 2.1. Rotational invariance is equivalent to UθR = RUθ, UθA1 = (A1 cos θ +A2 sin θ)Uθ and UθA2 =
(−A1 sin θ +A2 cos θ)Uθ.
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Proof. Set V (t, x′, y′) = U−θu(t, x cos θ − y sin θ, x sin θ + y cos θ). Rotational invariance states that V is the solution of
the same model for arbitrary values of θ.

The derivatives are ∂tV = U−θ∂tu, ∂xV = U−θ (cos θ∂xu + sin θ∂yu) and ∂yV = U−θ (− sin θ∂xu + cos θ∂yu). One has
that ∂tu = −A1∂xu−A2∂yu−Ru, therefore

∂tV +A1∂xV +A2∂yV +RV = U−θ (−A1∂xu−A2∂yu−Ru)

+A1U−θ (cos θ∂xu + sin θ∂yu) +A2U−θ (− sin θ∂xu + cos θ∂yu) +RU−θu

that is

0 = (RU−θ − U−θR) u + (A1U−θ cos θ −A2U−θ sin θ − U−θA1) ∂xu + (A1U−θ sin θ +A2U−θ cos θ − U−θA2) ∂yu.

Considering arbitrary independent values of u, ∂xu and ∂yu yields

0 = RU−θ − U−θR = A1U−θ cos θ −A2U−θ sin θ − U−θA1 = A1U−θ sin θ +A2U−θ cos θ − U−θA2.

Changing θ in −θ, one gets the claim.

2.7 Other properties
More properties which concern the matrix A (3) can be proved for a general PN model. The full proofs can be found in
[19, Section 4.1]. It is straightforward to verify these properties for the P1 model and the P3 model.

Proposition 2.2. The symmetric matrix AAT is invertible and all its eigenvalues are strictly positive. The eigenvalues
µi of(AAT )−1R1 are strictly positive when σa > 0 and non negative when σa = 0. An important property will be the
degeneracy of the lowest eigenvalue as σa → 0. Assume σs > 0. The lowest eigenvalue of (AAT )−1R1 is such that
µ1→0 as σa → 0, and it is non-degenerate (has multiplicity one). Finally, one can count the number of distinct pairs of
eigenvalue/eigenvectors of the matrix (AAT )−1R1 (something we will need for the proof of Theorem 4.1). The eigenvectors
of (AAT )−1R1 ∈ Rme×me form a basis of Rme .

3 Presentation of the Trefftz Discontinuous Galerkin method for Friedrichs
systems

The model problem considers both stationary and time dependent problems. Let ΩS be a bounded polygonal/polyhedral
Lipschitz space domain in Rd and consider a time interval [0, T ], T > 0. We denote Ω = ΩS for stationary problems and
Ω = ΩS × [0, T ] for time dependent problems. Friedrichs systems [30] with linear relaxation can be written as{∑d

i=0Ai∂iu = −R(x)u, in Ω,

M−u = M−g, in ∂Ω,
(4)

the dependent variable is u ∈ Rm, x = (x1, ..., xd) ∈ Rd is the space variable and t is the time variable. The coefficients σa
and σs in (1) are contained in the relaxation matrix R. Recalling that the problem can be stationary or time dependent
one may write u(t,x) or just u(x) depending on the situation. The matrices Ai, R(x) ∈ Rm×m are symmetric and we
assume R(x) ∈ Rm×m is a non negative matrix, i.e. (R(x)v,v) ≥ 0 for all v ∈ Rm,x ∈ Rd. We use the notation ∂0 = ∂t,
∂i = ∂xi for i = 1, ..., d. The outward normal unit vector is n(t,x) = (nt, nx1

, ..., nxd) for x ∈ ∂Ω and of course for
stationary problems nt = 0 for all x ∈ ∂Ω. We set M(n) = A0nt +

∑d
i=1Ainxi , on ∂Ω. Since M is symmetric one has the

standard decomposition M(n) = M+(n) +M−(n) where M+ is a non negative matrix and M− is a non positive matrix.
We use the matrix M− to write the boundary conditions with g ∈ L2(∂Ω). Finally we assume the problem (4) admits a
unique solution. This family of problems is considered in [5, 6, 7, 8, 9, 10, 11], but without relaxation since they do not
model any kind of diffusion. In our case, which stems from the transport of particles or energy together with interactions
with the matter in 2D configuration, we set d = 2 and adopt the convention coming from [2] that the matrices A1 and A2

have the block structure
A1 = c

(
0 A
AT 0

)
∈ Rm×m, A2 = c

(
0 B
BT 0

)
∈ Rm×m, (5)

where A, B ∈ Rme×mo are constant rectangular matrices (me + mo = m). The coefficient c > 0 is a constant non
dimensional wave velocity. For the purposes of mathematical manipulation, the first matrix is

A0 = εIm ∈ Rm×m (6)
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where Im ∈ Rm×m is the identity matrix. The new parameter

0 < ε ≤ 1

indicates a possible rescaling of the time variable, which is adapted to different physical regimes. In particular ε → 0
corresponds to the Diffusion Asymptotic regime, where transport is approximated with a diffusion equation [31, 28, 32, 33].
With respect to [7, 5, 11], the originality of our methods is in the non zero relaxation matrix. A natural structure [34]
which models relaxation mechanisms is R + Rt ≥ 0. In our work, we follow closely the convention proposed in [2] by
taking a piecewise constant matrix

R =

(
R1 0
0 R2

)
∈ Rm×m, (7)

where R1 and R2 are both diagonal matrices R1 := diag(εσa, σt, ..., σt) ∈ Rme×me , R2 := σtImo ∈ Rmo×mo , with Imo the
identity matrix of Rmo×mo . For transfer models [1, 35, 36, 37, 2] the absorption coefficient is σa ≥ 0 and the scattering
coefficientis σs ≥ 0. The weighted sum of the scattering and absorption coefficients will be denoted as

σt := σεt := εσa +
σs
ε
, σa, σs ∈ R+. (8)

The matrix R = R(x) will be assumed piecewise constant, because the coefficients σa(x) and σs(x) are piecewise constant.
The underlying physics is described in more detail in Section 2.

t

x

tn

tn+1

Ωk

ΩS

Figure 2: Illustration of the partition Th for a time dependent problem.

3.1 Mesh notation and generic discontinuous Galerkin formulation
The partition or mesh of the space domain Ω = ΩS ⊂ Rd is denoted as Th. It is made of polyhedral non overlapping
subdomains ΩS,r, that is Th = ∪rΩS,r. For a space time problem we split the time interval into smaller time intervals
(tn, tn+1) with 0 = t0 < t1 < ... < tN = T . Making an abuse of notation, the mesh of the space time domain Ω =
ΩS × [0, T ] ⊂ Rd+1 is still denoted as Th = ∪r,nΩS,r × (tn, tn+1). So Th denotes either a purely spatial mesh for stationary
models or a space-time mesh for time dependent models. Moreover the cells or subdomains will be referred to with the
same notation, that is Ωk = ΩS,r or Ωk = ΩS,r× (tn, tn+1). The context makes these notations unambiguous. The broken
Sobolev space is

H1(Th) := {v ∈ L2(Ω), v|Ωk ∈ H
1(Ωk) ∀Ωk ∈ Th}.

We assume u ∈ H1(Th). We may rewrite (4) under the form Lu = 0 where L(x) =
∑
iAi∂i +R(x). We consider also the

adjoint operator L∗(x) = −
∑
iAi∂i + R(x). All matrices are constant (do not depend either on the time variable or on

the space variables). Multiplying (4) by v ∈ H1(Th) and integrating on Ω gives
∑
k

∫
Ωk

vTk L(x)uk = 0, where vk = v|Ωk ,

uk = u|Ωk . Integrating by parts one gets
∑
k

∫
Ωk

(
L∗vk

)T
uk +

∑
k

∫
∂Ωk

vTkMk(x)uk = 0, where ∂Ωk is the contour of the
element Ωk with an outward unit normal nk(x) = (nt, nx1

, ..., nxd)T , M(x) = A0nt+
∑
iAini and Mk(x) = M(nk). Since

Mk is symmetric it can decomposed under the form Mk(x) = M+
k (x) +M−k (x) where M+

k is a non negative matrix, M−k
is a non positive matrix and the matrices annihilate each other M+

k M
−
k = M−k M

+
k = 0. It is sufficient for this task to

compute the eigenvectors Mr = λr, ‖r‖ = 1, and to set M± =
∑
±λ>0 λr ⊗ r. Denoting Σkj the edge oriented from Ωk
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to Ωj when k 6= j and Σkk the edges belonging to Ωk ∩ ∂Ω (for simplicity we use the same notation even if there is more
than one edge in Ωk ∩ ∂Ω), one can write∑

k

∫
Ωk

(
L∗(x)vk

)T
uk +

∑
k

∑
j<k

∫
Σkj

(vTM(x)u)k + (vTM(x)u)j +
∑
k

∫
Σkk

vTkM
+
k (x)uk = −

∑
k

∫
Σkk

vTkM
−
k (x)g. (9)

For u satisfying the equation (4), the normal flux is continuous on Σkj : Mk(x)uk(x) = Mk(x)uj(x) = −Mj(x)uj(x) for
x ∈ Σkj . This vectorial identity can be projected along the positive and negative eigenvectors of Mk = −Mj , leading to
similar continuity relations. So, denoting Mkj = Mk|Σkj = −Mj|Σjk = −Mjk on Σkj , one can write also

Mkuk = Mkjuj = M+
kjuk +M−kjuk = M+

kjuk +M−kjuj

because the projection of Mkuk = Mkjuj along the eigenvectors yields the continuity rTkjuk = rTkjuj for λ 6= 0. It yields
the identity (vTM(x)u)k + (vTM(x)u)j = (vk − vj)

T (M+
kjuk +M−kjuj). So (9) can be recast as∑

k

∫
Ωk

(
L∗(x)vk

)T
uk +

∑
k

∑
j<k

∫
Σkj

(vk−vj)
T (M+

kj(x)uk +M−kj(x)uj) +
∑
k

∫
Σkk

vTkM
+
k (x)uk = −

∑
k

∫
Σkk

vTkM
−
k (x)g.

(10)
We define the bilinear form aDG : H1(Th)×H1(Th)→ R

aDG(u,v) =
∑
k

∫
Ωk

(L∗(x)vk)Tuk +
∑
k

∑
j<k

∫
Σkj

(vk − vj)
T (M+

kj(x)uk +M−kj(x)uj)

+
∑
k

∫
Σkk

vTkM
+
k (x)uk, u,v ∈ H1(Th)

(11)

and the linear form l(v) = −
∑
k

∫
Σkk

vTkM
−
k (x)g for v ∈ H1(Th). One can rewrite (10) as aDG(u,v) = l(v), ∀v ∈ H1(Th).

We can now define the classic discontinuous Galerkin method for Friedrichs systems with polynomial basis functions [34, 6].
Define Pdq the space of polynomials of d variables, of total degree at most q and the broken polynomial space

Pdq(Th) := {v ∈ L2(Ω),v|Ωk ∈ Pdq ∀Ωk ∈ Th} ⊂ H1(Th).

Definition 3.1. Assume Pm(Th) is a finite subspace of H1(Th), for example Pm(Th) = Pdq(Th). The standard upwind
discontinuous Galerkin method for Friedrichs systems is formulated as follows{

find uh ∈ Pm(Th) such that
aDG(uh,vh) = l(vh), ∀vh ∈ Pm(Th).

(12)

3.2 Trefftz Discontinuous Galerkin formulation
A TDG method takes basis functions which are solutions to (4) in each cell

V (Th) = {v ∈ H1(Th), Lvk = 0 ∀Ωk ∈ Th} ⊂ H1(Th).

The space V (Th) is a genuine subspace of H1(Th) except in the case L = 0. Starting from the bilinear form aDG, the
volume term can be written as

∫
Ωk

(
L∗(x)vk

)T
uk = 2

∫
Ωk

vTkR(x)uk for all u,v ∈ V (Th). One can therefore define another
bilinear form aT : V (Th)× V (Th)→ R as

aT (u,v) =
∑
k

2

∫
Ωk

vTkR(x)uk +
∑
k

∑
j<k

∫
Σkj

(vk − vj)
T (M+

kj(x)uk +M−kj(x)uj)

+
∑
k

∫
Σkk

vTkM
+
k (x)uk, u,v ∈ V (Th).

(13)

Thanks to an integration by part for functions v ∈ V (Th) which are piecewise homogeneous solutions of the equation, one
gets an equivalent formulation of the bilinear form aT (·, ·)

aT (u,v) = −
∑
k

∑
j<k

∫
Σkj

(M−kj(x)vk +M+
kj(x)vj)

T (uk − uj)−
∑
k

∫
Σkk

vTkM
−
k (x)uk, u,v ∈ V (Th). (14)
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The relaxation term R completely disappeared in the formulation (14). It might seem a paradox at first sight but it is
not because, for a Trefftz method, some information about R is encoded in the basis functions. Since there is no volume
term in the formulation (14) compared to (13) it may be easier to implement. The related bilinear form l : V (Th)→ R is
the same as in (11), that is l(v) = −

∑
k

∫
Σkk

vTkM
−
k (x)g for all v ∈ V (Th).

Definition 3.2. Assume Vm(Th) is a finite subspace of V (Th). The upwind Trefftz discontinuous Galerkin method for the
model problem (4) is formulated as follows{

find uh ∈ Vm(Th) such that
aT (uh,vh) = l(vh), ∀vh ∈ Vm(Th).

(15)

In the case of a time dependent problem, even if the classic upwind discontinuous Galerkin formulation (12) and the
upwind Trefftz discontinuous Galerkin formulation (15) are posed on the whole space-time domain Ω, they still can be
decoupled into a sequence of time-steps. This comes from the fact that the matrix A0 is definite positive and therefore
M−(n) = 0 if n = (1, 0, ..., 0). With natural notations with respect to the time step n, we define the time slice bilinear
form anT : V (Th)× V (Th)→ R

anT (u,v) = −
∑
k

∑
j<k

∫
Σknjn

(M−knjnvnk+M+
knjnvnj )T (unk−unj )−

∑
k

∫
∂ΩS∩∂Ωkn

(vnk )TM−knunk−
∑
k

∫
Σknkn−1

(vnk )TM−knkn−1u
n
k

and the time slice linear form ln(v) = −
∑
k

∫
∂ΩS∩∂Ωkn

(vnk )TgS −
∑
k

∫
Σknkn−1

(vnk )TM−knkn−1u
n−1
k . The convention is

Σk1k0 = ∂Ωk1 ∩ (∂Ω × {0}) and ΣkN+1kN = ∂ΩkN ∩ (∂Ω × {T}). The space-time formulation (15) is equivalent to the
series of space-only problems {

find unh ∈ Vm(Th), n = 1, ..., N, such that
anT (unh,v

n
h) = ln(vnh), ∀vnh ∈ Vm(Th).

4 Construction of local exact solutions
In order to develop a TDG method, one needs to construct basis functions which are exact solutions to the system. It
is reasonable to assume that all matrices are piecewise constants. Because it needed to distinguish the case σa = 0 to
the case σa > 0, we propose 2 different methods to construct stationary basis functions: the first method constructs
exponential functions as solutions of a generalized eigenproblem which comes from [38, 32, 39, 40]; the second one shows
how the Birkhoff and Abu-Shumays approach can be used to deduce polynomial solutions of a general PN model. A third
method is specific to the time dependent case. A fourth method is adapted to sources.

4.1 Exponential solutions
Plug the Ansatz u(x) = reλx, r 6= 0, into the stationary PN model. One gets the spectral problem

λA1r = −Rr. (16)

Here λ is an eigenvalue of the matrix −R in the metric associated to the matrix A1. Both matrices are real symmetric,
however A1 is degenerated because in general it has positive, negative and vanishing eigenvalues. This is why it is
a generalized eigenproblem. Now if the pair (r, λ) is a solution of the generalized eigenproblem, then u(x) is a one
dimensional solution of the stationary PN model and

v(x, y) = Uθu(x cos θ + y sin θ) (17)

is also a solution of the stationary PN model, which is linearly independent from the first one provided θ is not a multiple
of 2π.

With the decomposition r = (wT ,χT )T with w ∈ Rme and χ ∈ Rmo , the eigenproblem (16) is transformed into

−R1w = −λAχ and − σtχ = −λAT z.

Using that σt > 0, elimination of χ yields R1w = λ2

σt
AATw. In our context, Proposition 2.2 guarantees that AAT is

non-singular, so one gets the reduced eigenproblem (AAT )−1R1w = µw where µ = λ2

σt
. This problem is solvable using

Proposition 2.2.
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Theorem 4.1. Let σt > 0 and w1, ...,wme ∈ Rme be the eigenvectors of the matrix (AAT )−1R1 associated with the
eigenvalues µ1, ..., µme . Note χi = −

√
µi
σt
ATwi ∈ Rmo and zi = (wT

i ,χ
T
i )T ∈ Rm. Let d = (cos θ, sin θ)T ∈ R2 be the

direction with angle θ and Uθ be the rotation matrix (2). Then the exponential functions

vi(x) = Uθzie
1
c

√
σtµid

Tx, i = 1, ...,me, θ ∈ [0, 2π), (18)

are stationary solutions to the system.

Proof. For θ = 0, the function vi is a solution to (16). For θ 6= 0, the rotational invariance (17) yields the claim.

Examples of exponential solutions are constructed in Section 5 for the P1 and the P3 models. This method can
be complemented with the study of the secular equation [20] which gives sharp estimates for the eigenvalues and more
information about the eigenvectors.

Proposition 4.2. Take a finite number of directions dk = (cos θk, sin θk)T which are different θk − θl 6∈ 2πZ for k 6= l,
and assume that σa > 0. Then the functions (vi)k(x) = Uθkzie

1
c

√
σtµidk

Tx are linearly independent.

Proof. The condition σa > 0 guarantees that µi > 0, refer to Proposition 2.2. Then the scalar functions e
1
c

√
σtµidk

Tx are
all different and are also linearly independent.

4.2 Harmonic polynomial solutions with Birkhoff and Abu-Shumays work
If σa = 0, then µ1 = 0 by Proposition 2.2 so the exponential factor degenerates (is equal to 1). It results in linearly
dependent functions (v1)k (at least if the number of directions is strictly greater than the size of the system m). This
is a critical issue in view of implementation, because linearly dependent basis functions yield singular matrices after
discretization. The situation is the same as the one described in [14] for the plane wave basis of the Helmholtz equation
when the frequency tends to zero: in the cited reference, the authors show that convenient rescaling of the exponential
functions yields special polynomial functions. In our case, we construct polynomial solutions for σa = 0 and σs > 0 with
the Birkhoff and Abu-Shumays approach.

The series of all harmonic polynomials is generated as follows: firstly set q1(x, y) = 1, then consider the series for

q2k(x) =
1

k!
<((x− x0) + i(y − y0))k and q2k+1(x) =

1

k!
=((x− x0) + i(y − y0))k (19)

All these polynomials are harmonic, that is ∆qk = 0. Define the function I which depends on a given harmonic polynomial
q

I(x, y,Ω) :=

∞∑
k=0

(−1

σs

)k(
Ω · ∇

)k
q(x, y), l ≥ 0, (20)

where Ω := (sinφ cosψ, sinφ sinψ, cosφ)T ∈ R3 with ψ ∈ [0, 2π) and φ ∈ [0, π). The series is finite and the function I is a
polynomial with respect to x and y: its degree is deg(q) which is the degree of the polynomial q. The terms of the series
can be evaluated with the following formula.

Lemma 4.3 (Proof in [20]). For k ≥ 1, one has
(
Ω · ∇

)k
q(x, y) =

(
sinφ

2

)k(
e−ikψ(∂x + i∂y)k + eikψ(∂x − i∂y)k

)
q(x, y).

Proposition 4.4 ([39]). For σa = 0 and σs > 0, I(x, y,Ω) is solution to the stationary transport equation (1).

Proof. Equation (20) yields I + 1
σs

Ω · ∇I = q. But Lemma 4.3 also yields that < I >= q. So Ω · ∇I = σs(< I > −I)
which is the claim.

Following Hermeline [2, Appendix A], we redefine the vector y(ω) as the collection of real valued orthonormal spherical
harmonics Yk,l for k ≤ N and k+ l even. One can check that y(Ω) ∈ Rm with m = 1

2 (N + 1)(N + 2). We denote ΠN the
L2 orthogonal projection onto the space of these particular spherical harmonics.

Theorem 4.5 (Proof in [20]). Take σa = 0, σs > 0. The function IN (x, y) =< y(Ω)ΠNI(x, y,Ω) >∈ Rm is a solution of
the PN model and is a harmonic polynomial with respect to x, y.

We refer to [19] for additional details. Examples of such solutions are in Section 5 for the P1 and the P3 models.
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4.3 Time dependent solutions
We give some possible ways to get time dependent solutions to the PN model which can be used as basis functions for
the TDG method when considering a space-time mesh. Other time dependent solutions can be constructed starting from
[40]. Once again, we take ε = 1 for simplicity.

A general form is
v(t,x) = g(x)eαt, (21)

where α ∈ R is arbitrary and g is a polynomial function of x. One can inject this solution in the PN model. One gets after
removing the exponentials

(
A1∂x +A2∂y + (R+ αIm)

)
g(x) = 0 where Im is the identity matrix of Rm×m. The function

g(x) is very similar to the previous stationary solutions. The matrix R is just replaced by the matrix R̃ := R+αIm. If α
is an eigenvalue of the matrix −R, then R̃ is a non trivial kernel and g can be taken as a constant-in-space vector (in the
kernel of R̃).

Another second possibility is to start from a one dimensional solution under the form v(t, x) = q(t, x)eλx, where
q(t, x) ∈ Rm is polynomial vector in x and t. A concrete example is given in [18, Proposition 4.2] for the case of the
P1 model. Using rotational invariance, one gets the family v(t,x) = Uθq(t, x cos θ + y sin θ)eλ(x cos θ+y sin θ). Another
possibility is to look for more general two dimensional solutions under the form v(t,x) = p(t, x, y)eλ(x cos θ+y sin θ), where
p(t, x, y) ∈ Rm is polynomial vector in x, y and t.

4.4 Sources
For non homogeneous problems where there is a non zero source right hand side f , it is valuable to add specific basis
functions which are like P0 Finite Volume basis functions. We refer to Section 2-2.3 of Chapter 2 in [19] for a more detailed
presentation. Instead of a general theory, it is sufficient to take an example. Consider the lattice geometry, test case (7.3),
and the equation (33), then one may add the basis function vf = R−1f in the central region where R is non singular
(where e1 = (1, 0, . . . , 0) has only one non zero component)

vf (x) = e1 for x ∈ [3, 4]2 and vf (x) = 0 everywhere else. (22)

5 Stationary solutions to the P1 and P3 models
In this section, we construct explicit stationary solutions to the P1 and P3 models. For convenience, we reintroduce the
scaling parameter (6) ε ∈ (0, 1].

5.1 The P1 model

We recall that the matrices read A =
(

0 1√
3

)
, B =

(
1√
3

0
)
, R1 = εσa and R2 =

(
σt 0
0 σt

)
. We are interested in the

stationary solutions to the P1 model.

Proposition 5.1. Take dk = (cos θk, sin θk)T ∈ R2. Let P the permutation matrix
(

0 1
1 0

)
. Assume σa > 0 the following

functions are solutions to the P1 model

vk =

( √
σt

−√εσaPdk

)
e

1
c

√
3εσaσtd

T
k x, σt = εσa +

σs
ε
. (23)

Assume σa = 0. The functions below are solutions to the P1 model

vk =

( σs
ε qk

− c√
3
P∇qk

)
. (24)

The direct verification that harmonic polynomials of any order are solutions of the P1 equations for σa = 0 is evident.
However this is also a consequence of the general Theorem 4.5.
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5.2 The P3 model
The calculations for the proofs can be verified from [20, 19]. First, we give the stationary exponential solutions.

Proposition 5.2. Take dk = (cos θk, sin θk)T ∈ R2. The following functions are solutions to the P3 model

v1(x) =



0

−
√

30 cos 2θk
0√

30 sin 2θk√
14 cos θk

−
√

14 sin θk√
15 cos 3θk
− cos θk
sin θk

−
√

15 sin 3θk


e

1
c

√
7
3σtd

T
k x, v2(x) =



0√
2 sin 2θk√

6√
2 cos 2θk

0
0

−
√

3 sin 3θk
−
√

5 sin θk
−
√

5 cos θk
−
√

3 cos 3θk


e

1
c

√
7σtd

T
k x,

v3(x) =



√
σt

14
√

15
ρ+

ε
√
σtσa sin 2θk

− ε
√
σtσa√

3

ε
√
σtσa cos 2θk

− 1
630
√

2
υ−τ+ sin θk

− 1
630
√

2
υ−τ+ cos θk

− ε
2
√

21
σaυ

− sin 3θk
ε

2
√

35
σaυ

− sin θk
ε

2
√

35
σaυ

− cos θk
− ε

2
√

21
σaυ

− cos 3θk



e
1
cυ
−
√

σt
18d

T
k x, v4(x) =



√
σt

14
√

15
ρ−

ε
√
σtσa sin 2θk

− ε
√
σtσa√

3√
σtσa cos 2θk

−
√
ε

630
√

2
υ+τ− sin θk

−
√
ε

630
√

2
υ+τ− cos θk

−
√
ε

2
√

21
σaυ

+ sin 3θk√
ε

2
√

35
σaυ

+ sin θk√
ε

2
√

35
σaυ

+ cos θk

−
√
ε

2
√

21
σaυ

+ cos 3θk



e
1
cυ

+
√

σt
18d

T
k x,

with σt = εσa + σs
ε , κ =

√
605ε2σ2

a + 14εσaσt + 245σ2
t , υ± =

√
55εσa + 35σt ±

√
5κ, τ± =

√
5εσa + 35

√
5σt ± 5κ and

ρ± = (υ±)2 − 110εσa. For σa = 0, then v− = µ3 = 0 and the exponential functions associated with the third family have
a degeneracy (as expected from Proposition 2.2).

Proposition 5.3. Take σa = 0. The polynomial functions below are solutions

v1(x) =
(
1, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
, v2(x) =

(
σtx, 0, 0, 0, 0,− c√

3
, 0, 0, 0, 0

)
,

v3(x) =
(
σty, 0, 0, 0,− c√

3
, 0, 0, 0, 0, 0

)
, v4(x) =

(
σ2
t xy,

2c2√
15
, 0, 0,−σtc√

3
x,−σtc√

3
y, 0, 0, 0, 0

)
,

v5(x) =
(

1
2σ

2
t (x2 − y2), 0, 0, 2c2√

15
, σtc√

3
y,−σtc√

3
x, 0, 0, 0, 0

)
.

(25)

6 High order convergence (stationary case)
The main results of this section are, on the one hand the Theorem 6.4 which establish the h-convergence of the TDG
method applied to the PN model when σa > 0, and, on the other hand, the numerical tests of h-convergence which confirm
the theoretical analysis.

We consider a series of meshes T nh , n ∈ N. For a polygonal cell Ωnj ∈ T nh , we define hnj the size of its larger edge and
ρnj the radius of the largest circle that can be inscribed within Ωj . The sequence of meshes verifies hn := maxj h

n
j→0 as

n→∞. It is quasi-uniform, that is there exists a constant Cτ ∈ R+ such that maxj,n
hnj
ρnj
≤ Cτ . For the simplicity of

notation, the index n is removed in the following. The coefficients σa and σs are bounded: there exists Cσ ∈ R+ such that
σa ≤ Cσ and σs ≤ Cσ. We also take ε = 1 and c = 1. The material below is organized in subsections which are, general
bounds, convergence bounds for σa > 0, convergence bounds for σa = 0 and finally numerical tests.

6.1 General bounds
Proposition 6.1. Let u = (ue,uo) ∈ W k+1,∞(Ω) be a local solution to the stationary PN model. Let ω ⊂ Ω with
h = diam(ω). Assume σa > 0 and σs > 0 and consider the basis functions constructed in Proposition 4.2 for 2k + 1
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different directions
0 ≤ θ1 < θ2 < · · · < θ2k < θ2k+1 < 2π.

It yields (2k + 1)me solutions v1, ...,v(2k+1)me ∈W k+1,∞(ω) decomposed as vi = (vei ,v
o
i ) for 1 ≤ i ≤ (2k + 1)me.

Generically, with an additional hypothesis on the linear independance of the coefficients of the Taylor expansion of the
vei , there exists a vector a = (ai)

T ∈ R(2k+1)me such that

∥∥∥ue − (2k+1)me∑
i=1

aiv
e
i

∥∥∥
L∞(ω)

≤ Chk+1‖ue‖Wk+2,∞(Ω), (26)

and
∥∥∥uo −∑(2k+1)me

i=1 aiv
o
i

∥∥∥
L∞(Ωj)

≤ Chk‖ue‖Wk+2,∞(Ωj).

If σa = 0 and σS > 0, the same result holds after replacement of the 2k + 1 degenerate exponentials -Proposition 2.2-
by 2k + 1 harmonic polynomial solutions of degree at most k -Theorem 4.5 and Definition (19)-.

The additional hypothesis on the linear independence holds if one adds 2(N − 1) directions. More precisely among the
corresponding (2(k +N)− 1)me basis functions, there exist (2k + 1)me basis functions which satisfy the hypothesis.

Sketch of the proof. It is based on the second order form of the PN model. For σt > 0 and u regular enough, one has the
decomposition (

A∂x +B∂y

)
uo(x) = −R1ue(x) and

(
AT∂x +BT∂y

)
ue(x) = −R2uo(x). (27)

It is equivalent to saying that ue(x) is a solution of the second order form of the PN model(
AAT∂xx + (ABT +BAT )∂xy +BBT∂yy

)
ue(x) = σtR1ue(x). (28)

The functions vei satisfy the same equation. To obtain (26) it is sufficient to find a vector a = (ai) such that all terms of
the Taylor expansion of

∑(2k+1)me
i=1 aiv

e
i − ue vanish up to total degree k + 1. Since this vectorial function is made of me

scalar functions, the number of Taylor coefficients that one must annihilate (by conveniently choosing the ai’s) is equal
to N# = (k+1)(k+2)

2 me. However the equation (28) yields many linear relations between the coefficients of the Taylor
expansion of ue (and the same linear relations for the coefficients of the Taylor expansion of vei ). A counting argument
shows that it yields N% = (k−1)(k)

2 me linear relations.
Generically these linear relations are linearly independent: this is not immediate to prove, we refer to [19] for the PN

system, to [12, 41] for the Helmholtz equation. It is proved that, for the Helmholtz equation or the P1 system, the linear
independence of basis functions holds up except on a set of measure zero. Then, the claim (26) is obtained with a total
number of basis functions

Ntot = N# −N% = (2k + 1)me.

Eliminating the first expression in (27), a similar result is obtained for the approximation of uo, but with a loss of one order
of approximation. The last part of the proposition is proved in [19], using the Bézout theorem for system of multivariate
polynomials.

Let us denote the space of approximation Vh := ⊕
Ωj∈Th

Span
{

v1, ...,v(2k+1)me

}
1Ωj where 1Ωj is the indicatrix function

of the cell Ωj . The norms ‖ . . . ‖DG and ‖ . . . ‖DG∗ are defined in the appendix in (40).

Proposition 6.2. There exists vh ∈ Vh such that ‖u− vh‖DG∗ ≤ Chk−1/2‖u‖Wk+1,∞(Ω).

Proof. Combine (B.10) with Proposition 6.1.

Proposition 6.3. Let uh be the solution generated by the TDG method. One has ‖u− uh‖DG ≤ Chk−1/2‖u‖Wk+1,∞(Ω).

Proof. It comes from the quasi-optimality estimate of Proposition B.6 combined with the previous bound.

6.2 Convergence estimates for σa > 0

Theorem 6.4 (Convergence of the TDG method for the PN model). Assume σa > 0 and the previous hypotheses. One
has

‖u− uh‖L2(Ω) ≤ Chk−1/2‖u‖Wk+1,∞(Ω). (29)

Proof. Use (B.8) and Proposition 6.3.
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This Theorem shows a remarkable property of the TDG method: the number of additional basis functions to gain one
order of convergence from k to k+ 1 does depend linearly on k, . This is not the case for the standard DG method where
the number of additional basis functions increases quadratically with k. The table in the introduction summarizes these
findings.

6.3 Convergence for σa = 0

In case the absorption coefficient is zero, then the matrix R becomes singular and the previous proof is no longer applicable.
In simple cases, it is possible to bypass this technical obstruction. We refer to [18] for such an estimate for N = 1, that is
for the P1 model. The rate of convergence is reduced by 1 with respect to the general case (29).

6.4 A numerical test of convergence
Here we display a test of convergence which confirms the theoretical results of the Theorem 6.4 with a number of basis
functions equal to (2k+1)me with 2k+1 equidistributed directions. This holds also for all numerical results in this paper.

Consider the stationary P1 model in two dimensions. Let x = (x, y)T ,Ω = [0, 1]2, σa = 1/
√

3, σs = 1/
√

3. The exact

solution we consider here is uex(x) =
(

cos(y)e
√

3x,−(
√

3/2) cos(y)e
√

3x, 0.5 sin(y)e
√

3x
)T

. Results obtained with 3, 5 and
7 basis functions are displayed on the left of Figure 3. As stated in Theorem 6.4 for the particular case N = 1, one only
needs two additional basis functions to increase the order by 1. Note however that the orders obtained here are slightly
better than those predicted in Theorem 6.4: with 3, 5 and 7 basis functions, one gets respectively orders 0.8, 1.5 and 2.5.
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Figure 3: Order depending on the number of basis functions with respect to the number of cells per unit length (denoted
as N). On the left P1 model and on the right P3 model. L2 error in logarithmic scale and random meshes.

On the right of Figure 3, we consider the stationary P3 model in two dimensions. Let x = (x, y)T ,Ω = [0, 1]2,
σa = 0.2, σs = 0.3. The exact solution we consider is taken from the solution (18) and has eigenvalue

√
7/
√

3 with a
direction d = (cosπ/4, sinπ/4)T which does not belong to our basis functions. Results obtained with 3, 5 and 7 directions
(for a total of 12, 20 and 28 basis functions) are displayed on the right of Figure 3. The maximal number of degrees of
freedom is Ntot ≈ 122 × 282 = 112896, so the test is already expensive on CPU grounds. The order obtained are close to
those predicted by Theorem 6.4. Note however that the tests for the P3 model are displayed on much coarser meshes than
for the P1 model. This comes from the bad condition number of the matrix, which is a well known drawback of the TDG
method [12, 13, 19] and occurs when increasing the number of basis functions on fine meshes. Since we do not want the
condition number to interfere with the error study we chose not to refine the meshes too much. Still, the bad conditioning
of the matrix can probably be seen on the last point of the curve representing 28 basis functions, which is not completely
aligned with the other points. Using better preconditioners could solve this issue.

7 Numerical results
Various h-convergence results (theoretical and numerical) are available in the literature for TDGmethods for time harmonic
equations [12, 11, 14], p-convergence is analyzed in [42]. For the family of Friedrichs systems evaluated in this work, h-
convergence can be found in [5, 18, 19].
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When the scaling parameter (6) tends to zero (ε → 0), the model problem admits a diffusion limit [2, 28]. General
references which provide accurate numerical methods for the diffusion limit are [31, 28, 32, 33] for asymptotic-preserving
methods. In principle, the Trefftz method may be very efficient in the diffusion limit since the exact solutions in the cell
have a perfect balance between the transport terms (matrices A1 and A2) and the relaxation (matrix R). A simple proof
that the Trefftz scheme is indeed Asymptotic Diffusion Preserving can be found in [18].

The relaxation matrix R(x) can be discontinuous in applications. This is typical of the physics of transfer at the
interface between two different materials and of neutron propagation: in the application illustrated at the end of this
work, the unknown u comes from an angular discretization of the population of neutrons and the relaxation coefficients
model the interaction of neutrons with matter; the issue is that the materials are different on both sides of an interface.
Boundary layers may occur when σa and/or σs vary significantly and the transport equation tends to a diffusion limit
when σs is high. These two phenomena are challenging for numerical methods and research on devising numerical methods
which perform better in these regimes continues to be pursued by the scientific community. The literature is scarce on
numerical methods for boundary layers. It has been highlighted in [18] that the TDG method naturally leads to schemes
adapted to such problems.

7.1 A test problem with a boundary layer
In this test, taken from [18], a two dimensional test problem with discontinuous coefficients is studied and we focus here
on the results obtained with the P3 model. The structure of the numerical code is classical: assemble matrix and right
hand side, invert matrix, display results. It is described in [19]. The domain is Ω = [0, 1]2 and we define Ω1 (resp. Ω2) as
Ω1 = [0.35, 0.65]2 (resp. Ω2 = Ω \ Ω1). We take ε = 1, c = 1, σa = 2× 1Ω1

(x) and σs = 2× 1Ω2
(x) + 105 × 1Ω1

(x). The
absorption coefficient has compact support in Ω1 while the scattering coefficient is discontinuous and takes a high value
in Ω1. These coefficients involve a discontinuous matrix R. When considering random meshes, the interface between Ω1

and Ω2 is maintained as a straight line. The geometry and parameters of this test are represented in Figure 4.

Figure 4: On the left: Domain and boundary condition for the two dimensional boundary layers test. On the right:
representation of adaptive directions at the interface. In this example: the 3 equi-distributed directions (30) in each cell
except at the interface where the directions are locally adapted into (31).

For the directions, we may consider the following 3-equidistributed directions

d1 = (1, 0), d2 = (cos
2π

3
, sin

2π

3
), d3 = (cos

4π

3
, sin

4π

3
), (30)

the 4-equidistributed directions

d1 = (1, 0), d2 = (0, 1), d3 = (−1, 0), d4 = (0,−1), (31)

or the 5-equidistributed directions

d1 = (1, 0), d2 = (cos
2π

5
, sin

2π

5
), d3 = (cos

4π

5
, sin

4π

5
), d4 = (cos

6π

5
, sin

6π

5
), d5 = (cos

8π

5
, sin

8π

5
). (32)

As pointed out in [18], the choice of directions at the interface plays an important role in correctly capturing the boundary
layers. It is essential to locally get the one dimensional direction perpendicular to the interface associated with the
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boundary layer. We make the special choice of directions (31) at the interface. Such directions are well adapted if one
considers the one dimensional problem at the interface. A graphical illustration of the adaptive directions at the interface
is provided on the right of Figure 4. As stated previously, when σa = 0 the degenerate exponentials are replaced with
polynomials. With our parameters, the number of polynomials used in the basis functions is equal to the number of
directions.

Figure 5: P3 model. Representation of the first variable for the P3 model. Top left: reference solution. Top center: DG
scheme with 10 basis functions per cell. Top right: DG scheme with 30 basis functions per cell. Bottom left: TDG scheme
with 12 basis functions per cell. Bottom right: TDG scheme with 20 basis functions per cell. For the TDG scheme, the
directions at the interface are locally adapted into the 4 directions (31).

The reference solution is calculated on a 200 × 200 random mesh with the 3 directions (30) and adaptive directions
(31) at the interface. The following cases are calculated on a coarse 20× 20 mesh
• The DG method with constant basis functions only (= finite volume) for a total of 10 basis functions per cell.
• The DG method with affine basis functions (that is 1, x, y) for a total of 30 basis functions per cell.
• The TDG method with the basis functions of Propositions 5.2 and 5.3 depending on the 3 directions (30) (for a total of
12 basis functions per cell) and on the 4 directions (31) at the interface (for a total of 16 basis functions per cell).
• The TDG method with the basis functions of Propositions 5.2 and 5.3 depending on the 5 directions (32) (for a total of
20 basis functions per cell) and the 4 directions (31) at the interface.

The results are given in Figure 5. One notices a better approximation of the solution for the TDG method with less
degrees of freedom compared to the standard DG scheme. If the TDG method gives such good result, it is in fact because
the correct exponential solutions (i.e. with the right directions) are locally used in the boundary layers. Actually, an
enrichment strategy, where the DG basis is locally (in the boundary layers) enriched with some exponential solutions,
would give similar result on this numerical test [19, Section 5-4.3.2]. The same kind of idea is used, for example, in the
context of the so-called extended finite element method (XFEM) [43, 44].

7.2 A test problem in the regime σa = 0

For the P3 model we compare the results obtained with the DG and TDG method on a 80 × 80 mesh. The time step is
∆t = T/80. We consider four different results:
• The limit solution which is the fundamental solution of the 2D heat equation.
• The DG method with constant basis functions only (= finite volume) for a total of 10 basis functions per cell.
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• The DG method with affine basis function (that is 1, x and y) for a total of 30 basis functions per cell.
• The TDG method initially with the basis made of three directions for the exponential functions. But the degenerate
exponential function (that is v3 in Proposition 5.2) is systematically removed. Instead it is replaced by the first three
polynomial functions v1,2,3 in (25) That is the TDG method applied to the P3 model uses a combination of exponential and
polynomial basis functions. For an implementation with five directions, one should replace the degenerate exponentials
with v1,2,3,4,5.

Figure 6: Top left: limit solution. Top right: DG-P0=FV solution with 10 basis functions per cell. Bottom left: DG-P1

solution with 30 basis functions per cell. Bottom right: TDG solution with 12 basis functions per cell.

The results presented in Figure 6 illustrate that the DG method with only constant basis functions is too diffusive.
On the contrary, one recovers a good approximation with the TDG method. This illustrates the good behavior of TDG
approximations for such problems. The DG scheme with affine basis functions is also accurate, but with the disadvantage
of using approximately three times more basis functions than the TDG scheme.

7.3 A lattice problem
We consider a lattice problem [28, 35, 2, 45]. The spatial domain ΩS = [0, 7] × [0, 7] is represented in Figure 7 and we
take T = 3.2. The white area is a purely scattering region while the striped and black areas are purely absorbing regions.
Additionally, the black region contain a source of particles. More precisely, let Ωc be the union of the eleven striped
squares and the black square in Figure 7, then one has{

σa(x) = 10, σs(x) = 0, if x ∈ Ωc,

σa(x) = 0, σs(x) = 1, else.

Note that for some authors σa = 0, σs = 1, in the central region [35, 2] while other authors take σa = 10, σs = 0 [28, 45].
These two choices give similar numerical results and we consider here the second option. We recall that Friedrichs systems
with a source term read (

∂t +A1∂x +A2∂y

)
u(t,x) = −Ru(t,x) + f(x). (33)

In this example, the source f(x) ∈ Rm is contained in the black region with f(x) = σa(x)× e1 for x ∈ [3, 4]2 and f(x) = 0
everywhere else, where e1 = (1, 0, ..., 0)T ∈ Rm. The boundary conditions are of Dirichlet type, that is u = 0 at the
boundaries of the domain and play essentially no role in the problem for the final time considered.
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Figure 7: Domain for the lattice problem 7.3.

Following the convention coming from [28, 35, 2, 45], the density of particle (also called the first moment, that is the
first component of U) is plotted on a logarithmic color scale. This emphasises the numerical diffusion at the propagation
front of the different numerical methods.

7.3.1 The P1 model.

The numerical results obtained for the P1 model are displayed in Figure 8. The reference solution is computed with the
DG method with affine basis functions for a total of 9 basis functions per cell on a 280×280 random mesh with dt = 0.01.
We compare the DG and TDG methods on a 140× 140 mesh with dt = 0.02. We consider the following cases
• The DG method with constant basis functions only for a total of 3 basis functions per cell.
• The DG method with affine basis functions (that is 1, x, y) for a total of 9 basis functions per cell.
• The TDG method with the basis functions (23)-(24) depending on the 5 directions (32), for a total of 5 basis functions
per cell (plus one (22) in the black region).
• The TDG method with the basis functions (23)-(24) depending on the 5 directions (32) and the time dependent solutions
(21), for a total of 8 basis functions per cell (plus one (22) in the black region).

Figure 8 shows that the DG method with only constant basis functions is too diffusive. However, if one increases
the number of basis functions and considers affine basis functions, the DG method recovers a very good accuracy. From
Figure 8, one also notices that the TDG method with 5 directions and only stationary basis functions seems too diffusive.
Adding the time dependent basis functions (21) to the TDG method allow to recover a good accuracy similar to the affine
DG method.

7.3.2 The P3 model.

The comments are very similar for the P3 model. Figure 9 represents the numerical results obtained for the P3 model.
The reference solution is computed with the DG method with affine basis functions for a total of 30 basis functions per
cell on a 280 × 280 random mesh with dt = 0.01. We compare the DG and TDG methods on a 140 × 140 mesh with
dt = 0.02. More precisely, we consider the following cases
• The DG method with constant basis functions only for a total of 10 basis functions per cell.
• The DG method with affine basis functions (that is 1, x, y) for a total of 30 basis functions per cell.
• The TDG method with the basis functions of Propositions 5.2 and 5.3 depending on the 3 directions (30), for a total of
12 basis functions per cell (plus one (22) in the black region).
• The TDG method with the basis functions of Propositions 5.2 and 5.3 depending on the 3 directions (30) and the time
dependent solutions (21), for a total of 22 basis functions per cell (plus one (22) in the black region).

As for the P1 model, Figure 9 illustrates that the DG method recovers a good accuracy when using affine basis functions.
For the TDG method, considering only 3 stationary basis functions seems too diffusive. Nevertheless, if one adds the time
dependent basis functions (21), the TDG method recovers a good accuracy similar to the affine DG method.

In particular, a benefit of the TDG method compared to the standard DG method is that it uses less basis functions
to recover a good approximation of the numerical solution. However, as we will see in the next section, the TDG method
may suffer from conditioning issues when considering stationary and time dependent basis functions on fine meshes.

Finally note that, both for the P1 and P3 model, the numerical results are similar to those obtained in [35, 28].
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Figure 8: P1 model. Representation of the first variable for the test case 7.3, logarithmic scale.Top left: reference solution.
Top center: DG scheme with 3 basis functions per cell. Top right: DG scheme with 9 basis functions per cell. Bottom left:
TDG scheme with about 5 stationary basis functions per cell. Bottom right: TDG scheme with about 8 basis functions
per cell (stationary and time dependent).

7.4 The condition number
It is well known that the Trefftz method can be very sensitive to ill-conditioning. That is why we provide some numerical
evidence of this fact.

In Figure 10, we compare an estimation of the condition number of the matrices for the test problem described in
Appendix 7.5 for the cases 1 to 4 on random meshes. The estimation is provided using the AztecOO package of the Trilinos
library [46]. The Figure illustrates that the conditioning of the mass matrix can deteriorate dramatically depending of the
basis functions used in a given calculation. In this case, the temporal exponentials (Case 2) give the best result in term
of the condition number. More research is needed to determine if this is a general rule.

In Figure 11, we display the condition number for a stationary P1 problem depending on a stiff parameter ε. The
number of cells is constant. On the left part of the Figure, the condition number goes to 0 when ε → 0, at the same
rate for a DG scheme and for a TDG scheme. This is normal, since σa = 0 in this case, so the basis functions of the
TDG are also polynomials. But on the right part of the Figure which corresponds to σa > 0, the condition number of
TDG dramatically increases for small ε. Our explanation is that the exponential functions contain a stiff dependence with
respect to ε, so it is normal that the conditioning of TDG is more sensitive than that of DG for ε→ 0.

Finally, in Figure 12, we study the behaviour of the condition number as a function of mesh resolution. We compare
the condition number of the original matrix with that obtained when the matrix is preconditioned with the usual diagonal
scaling technique. One observes a dramatic improvement, since the condition number is even better than the one for the
DG method without preconditioning.

7.5 Sensitivity of TDG to the choice of time dependent basis functions
In this section, we show that TDG method (applied to the P1 model in this section) can be quite sensitive to the choice of
the time dependent basis functions. The problem is that we found no theoretical means to determine in advance how the
result depends on this choice. It is only by numerical tests that one can evaluate this influence. The results below are also
a justification why the approach corresponding to equation (21 (with α = σa or α = σt) is our favorite one to introduce
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Figure 9: P3 model. Representation of the first variable for the test case 7.3. Top left: reference solution. Top center:
DG scheme with 10 basis functions per cell. Top right: DG scheme with 30 basis functions per cell. Bottom left: TDG
scheme with about 12 stationary basis functions per cell. Bottom right: TDG scheme with about 22 basis functions per
cell (stationary and time dependent). Logarithmic scale.
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Figure 10: The condition number versus the one-dimensional cell number, for the cases 1 to 4 in the appendix 7.5.
Logarithmic scale.

time dependent basis functions.
We consider the following cases

• Case 1. The stationary basis functions (23)-(24) only with the 3 directions (30) for a total of about 3 basis functions
per cell.
• Case 2. The stationary basis functions (23)-(24) with the 3 directions (30) and the time dependent solutions (21) (with
α = σa or α = σt) for a total of about 6 basis functions per cell.
• Case 3. The stationary basis functions (23)-(24) and the time dependent solutions (35)-(36) with the 3 directions (30)
for a total of about 9 basis functions per cell.
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• Case 4. The stationary basis functions (23)-(24) and the time-dependent solutions (34) with the 3 directions (30) for
a total of about 6 basis functions per cell.
• Case 5. The stationary basis functions (23)-(24) and the time-dependent solutions (34) with the 4 directions (31) for
a total of about 8 basis functions per cell.

We give some special time dependent solutions to the P1 model. In this section, the solutions that we consider are
product of time dependent polynomials and stationary exponentials. The proof is by direct calculus, see [19].

Lemma 7.1. The value α = σt in the basis functions (21) gives

v(t,x) =

( √
σt(1 + ε)

−
√
ε(σa + σt)Pd

)
e

1
c

√
3ε(σa+σt)σt(1+ε)dTx+σtt, (34)

with d = (cos θ, sin θ)T ∈ R2 and P the permutation matrix
(

0 1
1 0

)
.

Lemma 7.2 (Time dependent solutions when σa > 0). The following functions are solutions to the two dimensional P1

model (dk = (cos θk, sin θk)T )

w1,k(t,x) =

 −2cε
√
σaσt cos θk −

√
3εσt(εσa + σt)x− 2c

√
σaσtσt cos θkt

ε
√

3σaσt(εσa + σt) sin θkx+ 2c
√
εσaσt cos θk sin θkt

c
√
ε(εσa + σt) + ε

√
3σaσt(εσa + σt) cos θkx+ 2c

√
εσaσt cos2 θkt

e 1
c

√
3εσaσtd

T
k x,

w2,k(t,x) =

 −2cε
√
σaσt sin θk −

√
3εσt(εσa + σt)y − 2c

√
σaσtσt sin θkt

c
√
ε(εσa + σt) + ε

√
3σaσt(εσa + σt) sin θky + 2c

√
εσaσt sin2 θkt

ε
√

3σaσt(εσa + σt) cos θky + 2c
√
εσaσt cos θk sin θkt

e 1
c

√
3εσaσtd

T
k x.

(35)

21



Lemma 7.3 (Time dependent polynomial solutions when σa = 0). The following functions are solutions to the two
dimensional P1 model when σa = 0 (qk(x) is a harmonic polynomial)

v1,k(x) =

−
2√
3

√
εc2∂x −

√
3εσ2

t x− 2√
3ε
c2σtt∂x√

εcσtx∂y + 2
3
√
ε
c3t∂xy√

εcσt +
√
εcσtx∂x + 2

3
√
ε
c3t∂2

x

qk(x), v2,k(x) =

−
2√
3

√
εc2∂y −

√
3εσ2

t y − 2√
3ε
c2σtt∂y√

εcσt +
√
εcσty∂y + 2

3
√
ε
c3t∂2

y√
εcσty∂x + 2

3
√
ε
c3t∂xy

qk(x). (36)

The results are displayed in Figure 13, where the setup is the lattice problem. We plot the total density of particles
(the first component of U) in logscale. This is a severe test because the actual magnitude at the propagation front can be
quite small. The random mesh is made of 70× 70 cells.

The results with only stationary basis functions is the most diffuse one. One sees that all the time dependent basis
functions reduce the diffusion. Compared to Case 2, one notices that the diffusion is lower for cases 3 to 5 but some weird
oscillations appear. For the basis functions (34) (Cases 4 and 5), the choice of directions seems important. Indeed, with
only the 3 directions (30) (Case 4), the numerical solution is highly asymmetric. Considering the 4 directions (31) (Case
5), fixes this issue. Note that Case 3 also considers the 3 directions (30) without getting the asymmetric result of Case 4.

Figure 13: P1 model. Representation of the first variable for the test case 7.3. Cases 1 to 5. The cases are numbered
from from left to right and top to bottom (top left: Case 1, top center: Case 2...). Logarithmic scale.

8 Conclusions
In this work, the Trefftz discontinuous Galerkin (TDG) method applied to transport models has been studied and analyzed
in the general case of the two dimensional PN model. After recalling the derivation of the PN model, some of its properties
were given. Numerical results for the two dimensional P1 and P3 models were provided. It has been shown that the TDG
method outperforms the standard DG method for some numerical tests with boundary layers, using less degrees of
freedom for a better accuracy. The main drawback of the TDG method is that it may lead to ill-conditioned system when
considering too many basis functions per cell or in some asymptotic regimes. The formulation of the TDG method can
be easily generalized to the three dimensional case. In 3D for the PN model, the basis functions can be constructed as in
Section 4, starting from a one dimensional solution and then applying a rotation. Note however that the three dimensional
rotation is not as simple as in the two dimensional case [24, 29, 26]. Another perspective is to develop good preconditioners
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to deal with the ill-conditioning of the linear systems arising from the TDG method. This could be particularly useful
when considering, for example, stationary and time dependent basis functions. It could also be interesting to extend the
TDG method to the discrete ordinate method (SN model) which is the other popular approximation of the transport
equation. Since the SN model is naturally written under the form of a Friedrichs system, the general formulation given in
Section B can be used. It remains to construct the basis functions.

Appendices
Appendix A Spherical harmonics
We recall some definitions and properties of the spherical harmonics and adopt the presentation given in [2].

A.1 Legendre functions
The spherical harmonics are based on the Legendre functions P lk which read

P lk(µ) =
1

2kk!
(1− µ2)l/2

dk+l

dµk+l
((µ2 − 1)k) for l ≥ 0 and P lk(µ) = (−1)l

(k + l)!

(k − l)!
P−lk (µ) for l < 0. (37)

The Legendre polynomials satisfy the orthogonality relations 1
2

∫ 1

−1
P 0
k dµ = δ0

k,
1
2

∫ 1

−1
P lkP

l
mdµ = 1

(alk)2
δmk , where alk is

the normalization factor alk =
√

(2k + 1) (k−l)!
(k+l)! . They also satisfy the following recursion relations which are fundamental

to deriving the PN model
√

1− µ2Pmk = 1
2k+1

(
Pm+1
k+1 − P

m+1
k−1

)
,√

1− µ2Pmk = 1
2k+1

(
− (k −m+ 1)(k −m+ 2)Pm−1

k+1 + (k +m− 1)(k +m)Pm−1
k−1

)
,

µPmk = 1
2k+1

(
(k −m+ 1)Pmk+1 + (k +m)Pmk−1

)
.

A.2 Spherical harmonics
The complex valued spherical harmonics read Y lk(ψ, φ) := Y lk(Ω) := (−1)lalkP

l
k(cosφ)eilψ for |l| ≤ k. The real valued

spherical harmonics Yk,l are

.



Yk,l(Ω) = Y lk(Ω) = alkP
l
k(cosφ), l = 0,

Yk,l(Ω) =
(−1)l√

2

(
Y lk(Ω) + Ȳ lk(Ω)

)
= alk

√
2 cos(lψ)P lk(cosφ), 0 < l ≤ k,

Yk,l(Ω) =
i√
2

(
Y lk(Ω)− Ȳ lk(Ω)

)
= a
|l|
k

√
2 sin(|l|ψ)P

|l|
k (cosφ), −k ≤ l < 0.

(38)

They satisfy the relations 1
4π

∫
S2 Yk,ldψdµ = δ0

kδ
0
l ,

1
4π

∫
S2 Yk,lYm,ndψdµ = δmk δ

n
l and the recursion relations

sinφ cosψYk,m = εm(Amk Yk+1,m+1 −Bmk Yk−1,m+1)− ζm(Cmk Yk+1,m−1 −Dm
k Yk−1,m−1),

sinφ sinψYk,m = ηm(Amk Yk+1,−m−1 −Bmk Yk−1,−m−1) + φm(Cmk Yk+1,−m+1 −Dm
k Yk−1,−m+1),

cosφYk,m = Emk Yk+1,m + Fk,mYk−1,m,

(39)

where coefficients are given in [2].

Appendix B Numerical analysis of the TDG method
Because of different approximation spaces, TDG methods are not completely standard ones with respect to traditional
DG methods. It is therefore valuable to review the basic results [6, 34, 5, 18, 19] which are at the core of the h-convergence
analysis of TDG methods. We make the distinction between what we call the classical theory which deals with the case
R = 0 and the strictly dissipative case R > 0.
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B.1 Well posedness and quasi-optimality
In this section we show well posedness of (15) and a quasi-optimality bound in mesh-dependent norms. Our analysis
follows results of [5] where the special case with R = 0 was studied and [18, 19] adapted to the situation where R > 0
provides additional L2 control in the cells. One defines two semi-norms on H1(Th)

‖u‖2DG =
∑
k

∫
Ωk

uTkRuk +
∑
k

∑
j<k

1

2

∫
Σkj

(uk − uj)
T |Mkj |(uk − uj) +

∑
k

1

2

∫
Σkk

uTk |Mk|uk,

‖u‖2DG∗ =
∑
k

∫
∂Ωk

−uTkM
−
k uk,

(40)

with |Mkj | = |Mjk| = M+
kj −M

−
kj . First steps are to show that these two semi-norms are in fact norms on the Trefftz

space. Further details on the proofs are given in [6, 34, 5, 18, 19].

Lemma B.1. One has the inequality ‖v‖DG ≤ c‖v‖DG∗ for all v ∈ V (Th), with c =
√

5/2.

Lemma B.2. Assume M ∈ Rn×n is a symmetric matrix. Then one has zTM2z ≤ CzT |M |z for all z ∈ Rn, where
M = M+ +M−, M+ is a non negative matrix, M− is a non positive matrix and |M | = M+ −M−.
Proposition B.3. The semi-norms ‖ · ‖DG and ‖ · ‖DG∗ are norms on the Trefftz space V (Th).

Next, we study the coercivity and the continuity of the bilinear form a(·, ·) regarding the norms ‖ · ‖DG and ‖ · ‖DG∗ .
Proposition B.4 (Coercivity). For u ∈ H1(Th) then aDG(u,u) = ‖u‖2DG. For u ∈ V (Th) then aDG(u,u) = aT (u,u).

Proposition B.5 (Continuity). The continuity bound aT (u,v) ≤
√

2‖u‖DG‖v‖DG∗ holds for all u,v ∈ V (Th).

The classical quasi-optimality result is the following.

Proposition B.6 (Quasi-optimality). For any finite dimensional space Vm(Th) ⊂ V (Th), the TDG formulation (15)
admits a unique solution uh ∈ Vm(Th). The following quasi-optimality bounds holds ‖u− uh‖DG ≤

√
2 infvh∈Vm(Th) ‖u−

vh‖DG∗ , where u stands for the exact solution to (4).

Using the quasi-optimality proposition one has the well-balanced property of the scheme. We refer to [47, 48, 49, 50]
for general references for well-balanced methods for similar problems. In one dimension a scheme is well-balanced if it
captures all the stationary states of a hyperbolic system. This is possible because, in one dimension, the number of linearly
independent stationary solutions is finite. However in two dimensions the space of stationary solutions becomes infinite.
It has a huge impact on what is a well-balanced scheme in space dimensions higher than one. One must choose a finite
subset of solutions for which the scheme is supposed to be exact. This is a practical definition of a well-balanced scheme
and it is immediately deduced from the quasi-optimality result of proposition B.6. Of course a standard DG scheme
has the same quasi-optimality result, but it can be well-balanced only for some particular polynomial functions. On the
contrary a TDG method can be well-balanced for more general solutions which contain for example exponential factors
as in Example 1 in Section 3.2 for which σa > 0.

Proposition B.7 (Well-balanced scheme). If the solution u ∈ H1(Ω) of (4) is locally (in each cell) a linear combination
of the basis functions (which are by construction exact solutions), then uh = u.

B.2 Estimate in standard norms
In the previous section, the error is bounded in terms of DG-norm. It is of course desirable to have estimates in a more
standard norm. In this section we present some elementary L2 lower bounds of the DG norm which take advantage of the
relaxation matrix R and an L2 upper bound of the DG∗ norm. Proofs are in [18, 19].

Proposition B.8. Assume all Rk = R(x)|Ωk > 0 are positive. Then 1

supk∈Th
‖
√
Rk
−1‖2
‖w‖L2(Ω) ≤ ‖w‖DG, for all

w ∈ H1(Th).

This inequality holds when R is definite positive but degenerates when R→ 0. For non stationary problems, one can
give an L2 lower bound at the final time that does not depend on R.

Proposition B.9. For time dependent problems one has ‖w‖L2(ΩS×{T}) ≤ ‖w‖DG for all w ∈ H1(Th).

Define the semi-norm |w|21,Ω :=
∫

Ω

∑n
i=1

∑d
j=1(∂jwi)

2.

Proposition B.10. One has ‖w‖2DG∗ ≤ C
∑
j ‖w‖L2(Ωj)

(
1
hj
‖w‖L2(Ωj) + |w|1,Ωj

)
for all w ∈ H1(Th), where hj =

diam(Ωj) and where the constant C depends on the Ai.

If the matrices Ai are rescaled with respect to some small parameter, then the constant C must be rescaled as well.
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