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Abstract
Estimating and predicting temporal trends in species richness is of general impor‐
tance, but notably difficult because detection probabilities of species are imperfect 
and many datasets were collected in an opportunistic manner. We need to improve 
our capabilities to assess richness trends using datasets collected in unstandardized 
procedures with potential collection bias. Two methods are proposed and applied to 
estimate richness change, which both incorporate models for sampling effects and 
detection probability: (a) nonlinear species accumulation curves with an error vari‐
ance model and (b) Pradel capture–recapture models. The methods are used to as‐
sess nationwide temporal trends (1945–2018) in the species richness of wild bees in 
the Netherlands. Previously, a decelerating decline in wild bee species richness was 
inferred for part of this dataset. Among the species accumulation curves, those with 
nonconstant changes in species richness are preferred. However, when analyzing 
data subsets, constant changes became selected for non‐Bombus bees (for samples 
in collections) and bumblebees (for spatial grid cells sampled in three periods). Smaller 
richness declines are predicted for non‐Bombus bees than bumblebees. However, 
when relative losses are calculated from confidence intervals limits, they overlap and 
touch zero loss. Capture–recapture analysis applied to species encounter histories 
infers a constant colonization rate per year and constant local species survival for 
bumblebees and other bees. This approach predicts a 6% reduction in non‐Bombus 
species richness from 1945 to 2018 and a significant 19% reduction for bumblebees. 
Statistical modeling to detect species richness time trends should be systematically 
complemented with model checking and simulations to interpret the results. Data 
inspection, assessing model selection bias, and comparisons of trends in data subsets 
were essential model checking strategies in this analysis. Opportunistic data will not 
satisfy the assumptions of most models and this should be kept in mind throughout.
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1  | INTRODUC TION

Species richness, the number of species present in a community or 
assemblage, is an important component of biodiversity. Methods for 
estimating species richness have been given a lot of attention (Gotelli 
& Colwell, 2011). In particular, obtaining local estimates of species 
richness by means of multispecies occupancy modeling (Dorazio 
& Royle, 2005; Guillera‐Arroita, Kéry, & Lahoz‐Monfort, 2019) has 
seen a recent surge in interest. In comparison to such estimation of 
local occupancy and the estimation of sizes of local and total spe‐
cies pools, assessing species richness changes over time seems to 
have received less attention in method development. There seems 
to be no general strategy for comparing more than two samples or 
for estimating a time trend when not all species have been sampled 
or detected. For data collected in an opportunistic manner without 
standardized protocols or a planned sampling scheme, even the anal‐
ysis of a trend in a single focal species is not straightforward (Isaac, 
Strien, August, Zeeuw, & Roy, 2014).

However, this contrasts with the need to obtain adequate trend 
estimates even when only opportunistic data are available. For ex‐
ample, in the face of climate change and when accounting for geo‐
graphical crop variation, the conservation of pollinator richness 
levels might be crucial to mitigate effects of ecosystem change 
(González‐Varo et al., 2013; Klein, Müller, Hoehn, & Kremen, 2009). 
It also seems that an overall and substantial decline in total bio‐
mass, such as observed for insects in nature reserves in Germany 
(Hallmann et al., 2017), will reduce species richness inevitably. 
Species richness trends of pollinators providing essential ecosystem 
services therefore merit a lot of attention and different drivers of 
pollinator abundance and richness change have already been iden‐
tified (Potts, Imperatriz‐Fonseca, Ngo, Aizen, et al., 2016; Potts, 
Imperatriz‐Fonseca, Ngo, Biesmeijer, et al., 2016). Marshall et al. 
(2018) stated that bumblebees in Europe have been in a steady de‐
cline for decades. However, in a recent analysis of species richness 
trends, Carvalheiro et al. (2013) concluded that declines in species 
richness have slowed down for several taxa in NW‐Europe, includ‐
ing bumblebees. A reassessment of that analysis (Van Dooren, 2016) 
concluded that it only provided support for decelerating declines 
for the bees Anthophila in the Netherlands, conditional on accepting 
the inference strategy and parameter estimates as valid. An inspec‐
tion of the scripts executing the analysis of Carvalheiro et al. (2013) 
found that many of their estimates have uncorrected errors or lead 
to anticonservative inference (Van Dooren, 2016).

The Dutch wild bee data in these studies are a heterogeneous 
mix: the records (sensu Isaac & Pocock, 2015) were collected in 
different ways (observations, observations submitted to a website, 
samples deposited in collections, by hundreds of observers and col‐
lectors) and relatively unplanned. This might be exemplary for most 
data collected in citizen science efforts. However, this heterogene‐
ity was unaccounted for in previous analyses. In Carvalheiro et al. 
(2013), data were binned in arbitrary time periods while a year‐to‐
year continuous time analysis would be insightful and could pro‐
vide more detail on patterns of change, in particular on whether 

decelerating declines occur. For the reanalysis, I chose to reconsider 
the inference strategy. It applies two promising approaches for as‐
sessing species richness trends among four explored (Appendices 
S1–S3) and compares their merits, assisted by simulations. The first 
analyses time patterns in species richness by modeling time‐depen‐
dent asymptotes of species accumulation curves. In an alternative 
statistical analysis, richness will not be estimated itself for reasons 
detailed below. There, time patterns in the rates of colonization and 
local (i.e., within the Netherlands) extinction will be estimated. Both 
assume nonexhaustive sampling of the species present and assess 
richness trends at the level of the entire Netherlands. The opportu‐
nistic nature of the data implies the absence of any spatial sampling 
scheme or design in the data. I therefore decided not to attempt to 
assess important local variability in richness trends (Yoccoz, Nichols, 
& Boulinier, 2001).

2  | MATERIAL AND METHODS

Species richness is the horizontal asymptote of a species accumula‐
tion curve representing the expected number of species in a sample 
as a function of sample size. Estimators of this asymptote are often 
biased (Walther & Moore, 2005), or the precision of an estimate 
can be limited (O'Hara, 2005). In a comparison of two assemblages, 
species accumulation curves can cross (Chao & Jost, 2012; Lande, 
DeVries, & Walla, 2000; Thompson & Withers, 2003; Van Dooren, 
2016), such that patterns in the relative numbers of species found at 
low sampling efforts or at rarefied sample sizes (e.g., Biesmeijer et 
al., 2006) can be independent of actual species richness differences.

Gwinn, Allen, Bonvechio, Hoyer, and Beesley (2016) found high 
sensitivity of bias and precision of change estimates to the relative 
abundances of species in a dataset. Gonzalez et al. (2016) argued 
that the risk of biased estimates of change needs to be considered in 
short time series of species richness. Similarly, Cardinale, Gonzalez, 
Allington, and Loreau (2018) drew attention to risks of using esti‐
mates of the earliest time point as baseline, pointing to the possi‐
bility of mistaking regressions to the mean for actual responses. 
Additionally, nonlinear data transformations can in particular affect 
the impression time series give us, as the distance between data 
points will change more in some intervals due to the transformation 
than in others.

2.1 | Data

The dataset analyzed here consists of 73 years of opportunistic data. 
Bee records in the EIS (European Invertebrate Survey Netherlands) 
database in the period 1945–2018 are analyzed, extending periods 
investigated in Biesmeijer et al. (2006), Carvalheiro et al. (2013) 
and Van Dooren (2017). The data were provided by EIS as a list 
of records with species names, years of collection, and the square 
kilometer cell where each record was collected. The dataset ana‐
lyzed in Van Dooren (2017) turned out to contain 150,047 spurious 
records, presumably due to a query error and therefore had to be 
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redone. Sampling has not occurred in a standardized manner across 
the study period, and not in a spatially homogeneous or balanced 
manner either (Figure 1). In particular from mid‐eighties until around 
2005, increasingly larger numbers of records have been collected, 
more often by observation and with records from a larger number 
of square kilometer grid cells (Figure 1). For both non‐Bombus and 
Bombus bees, there have been years where the number of records 
was less than twice the number of species sampled over the entire 
study period (four, resp. eleven times). In particular for bumblebees, 
1966–1971 and 1981–1983 were periods of consecutive years with 
such relatively low sampling intensities. These years are expected 
to contribute little to the estimation of species richness and indi‐
cate that insufficient data are available for an analysis at finer spatial 
scales. The observation data contributed by volunteers through the 
website https​://waarn​eming.nl since 2005 is from a steadily increas‐
ing number of grid cells per year (Figure 1), such that the number 
of observations per grid cell with records now steadily decreases, 
again complicating any analysis at smaller spatial scales. The samples 

per year of non‐Bombus species show important time trends in 
the heterogeneity parameter σ of Poisson lognormal distributions 
(Engen, Lande, Walla, & DeVries, 2002). This parameter σ is a com‐
pound measure representing abundance variation between species 
rescaled by species‐specific sampling effort if present. Its changes 
suggest that the heterogeneity in numbers of individuals per species 
in the samples has increased during the study period.

I assessed patterns of species richness change over time in the 
entire Netherlands and therefore fitted models with explanatory 
variables that changed over time to all data or data subsets that in 
principle span the entire Netherlands. Previous conclusions were 
drawn at that scale and I expect that changes at smaller scales are 
increasingly affected by (nonrandom) sampling variability and lack of 
consistent protocol. The models fitted did not contain any parame‐
ters or variables representing spatial species richness differences or 
heterogeneity. Only the number of grid cells sampled was added as an 
explanatory variable because it can be expected to affect predicted 
nationwide trends. To facilitate comparisons with Carvalheiro et al. 

F I G U R E  1  Sampling strategy and volume of wild bee data in the Netherlands have changed over the years. Top row. Total numbers 
of records per year have changed substantially over the period (thick black lines). Note the difference in scale between both panels. The 
fractions of records that represent individuals deposited in collections have become a minor fraction of the totals in recent years (thin blue 
line). The difference is caused by an increasing number of observations without specimens deposited in collections, of which the fraction 
contributed by volunteers on the website https​://waarn​eming.nl is increasing (thin black line: all records except those contributed through 
https​://waarn​eming.nl). Horizontal lines are drawn at twice the total number of species sampled over the entire period per taxonomic group. 
For points below this line, there are on average fewer than two observations per species. Middle row. Records are obtained in a variable 
number of square kilometer grid cells per year (thick: total numbers, thin blue line: samples deposited in collections, thin black: samples in 
collections plus observations not contributed via https​://waarn​eming.nl). Bottom row. When distributions of records per species per year are 
analyzed using Poisson lognormal models (Engen et al., 2002), the σ heterogeneity parameter for their distribution shows a gradual change 
over the years (estimates for different years connected by a line, approximate 95% confidence intervals for each estimate. Thick/thick: 
samples deposited in collections, thin/dotted: observations)
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(2013), time patterns in species richness of Bombus and non‐Bombus 
bee genera in the EIS database were analyzed separately. The data 
were analyzed in different ways which should be seen as separate 
attempts to arrive at a satisfactory model for richness change. I re‐
peat the statement of Guillera‐Arroita et al. (2019) here: “we cannot 
model our way out of every situation,” which I believe to apply in 
particular to situations with opportunistic data.

Each approach accounts for imperfect detection of species, 
which should never be ignored (Guillera‐Arroita, 2017) and for time 
trends in sampling strategy. Within each approach, model simpli‐
fication is carried out with the purpose of obtaining the best pos‐
sible predictions without a priori assuming that the true model is 
among the candidates compared, hence by means of AICc compar‐
isons (Akaike information criterion adjusted for finite sample sizes, 
Burnham & Anderson, 2002) as AIC(c) model selection is efficient 
(Claeskens & Hjort, 2008). Model selection, parameter estimation, 
and inference in general were backed up as follows. Next, to an anal‐
ysis of all data, two subsets of records were analyzed separately and 
for each method: (a) Records for which the individual was depos‐
ited in a museum collection, excluding for example observations. (b) 
Records collected in square kilometer grid cells that were sampled 
in three periods of approximately equal length. These are the last 
period where the number of observations and grid cells have drasti‐
cally increased (1994–2018; Figure 1), a period of equal length right 
after the end of WWII (1945–1969) and the years in between (1970–
1993). In this subset, spatial locations that contributed samples in a 
restricted time period only were excluded. This avoided that in one 
part of the study period richness might have been assessed for a 
different set of grid cells than in another.

To the entire dataset and to the subsets, different models were 
fitted. Model simplification increases the precision of the remain‐
ing individual parameter estimates, but this can come at the cost of 
larger estimation bias. In each statistical analysis presented below, I 
assessed effects of this bias‐variance trade‐off (Claeskens & Hjort, 
2008) by comparing the predicted time trend of species richness 
between the best maximal model fitted and a simplified minimum 
adequate model (see below). I will only conclude that a deceleration 
occurs when it is detected in the full data and in the data subsets 
and does not suddenly emerge as a result of model selection bias. 
To understand patterns of estimation bias, the analysis was further 
complemented with simulations.

2.2 | Generalized nonlinear models

In a first approach, the number of records and the number of spe‐
cies per year in a dataset were used to estimate nonlinear species 
accumulation curves (Gotelli & Colwell, 2011, Appendix S3) with pa‐
rameters that change over time. In other studies, nonlinear power 
functions without horizontal asymptote have been fitted (Ugland, 
Gray, & Ellingsen, 2003) that predict species richness by extrapolat‐
ing from a smaller area to a larger fixed range. Here, species accumu‐
lation curves are represented by Michaelis–Menten curves a(t)x(t)/
(b(t)  +  x(t)), estimating species number with two time‐dependent 

non‐negative functions a(t) and b(t) and with x(t) the number of re‐
cords in year t, representing sample size. Function a(t) is the time‐
dependent horizontal asymptote of the curve, hence it is this part of 
the model which describes the change in species richness over time. 
I assume that functions a(t) and b(t) change gradually across years 
and therefore used smooth functions (Wood, 2006) to parameter‐
ize them and assess their gradual changes. We can expect that b, 
which quantifies the increase in species number with sampling ef‐
fort shows a time pattern affected by changes in sampling method 
and the number of grid cells sampled. The ratio b/a is an estimate of 
the Simpson diversity in random samples (Lande et al., 2000). If spe‐
cies richness, given by the asymptote a, has a decelerating decline, 
we should be able to observe that in the predicted time pattern for 
a(t). Note that this model representing a species accumulation curve 
combines the estimation of state variable a(t) with properties of the 
observation/detection process captured by function b(t). This ap‐
proach does not need specification of a distribution of capture prob‐
abilities per species, nor a distribution of species abundances (e.g., 
O'Hara, 2005 for some examples).

Michaelis–Menten curves were fitted to numbers of species 
sampled per year. I used the function gnlr() in R (Lindsey, 1997) which 
maximizes the model likelihood using a general purpose optimizer. 
None of the estimation methods proposed by Raaijmakers (1987) 
nor the nonlinear least squares used by O'Hara (2005) were used, 
hence the performance assessments of O'Hara (2005) and Walther 
and Moore (2005) of this estimation method do not immediately 
apply. Functions a and b in the model were fitted with natural cubic 
splines of the year variable of up to eight degrees of freedom and ex‐
ponential link functions assuring non‐negativity of a and b. Gaussian 
errors were assumed (Colwell et al., 2012) with variances specific 
to each year. In simple tests for a change in species richness, Gwinn 
et al. (2016) found inflated type I errors when using estimates of 
species richness as data. To limit this, the actual species counts are 
used as data, and their variances are modeled and kept above a min‐
imum. The error variance in the model consisted of the sum of an 
estimated variance parameter plus an offset equal to the uncondi‐
tional sampling variance of the number of observed species in a year 
given multinomial sampling of individuals (equation 5 in Colwell et 
al., 2012). The variance regression equation ensured that the error 
variance never became smaller than this multinomial sampling vari‐
ance (Appendix S3 gives an example of the code). This is reasonable 
given that we do not know how much the sampling was different 
from random, which is an extra source of uncertainty. For the cur‐
vature function b(t), alternative models were fitted with splines (up 
to eight df) of the total number of grid cells with data per year or 
of the σ parameter of the Poisson lognormal distribution (Engen et 
al., 2002) fitted to the data per year for the group analyzed. Model 
simplification occurred in a manner which slightly reduced the total 
number of models to fit and compare. I fitted all models with splines 
of 8, 5, 3, and 1 degrees of freedom and the model with no explan‐
atory variables for a or b. Among the models in this set, I selected 
the one with the lowest AICc. Then, models with one df added to 
each spline in this model or with one df removed were also fitted, 
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to check whether these modifications would reduce the AICc fur‐
ther. The model with the lowest AICc among all the ones fitted is 
called the "minimum adequate” model. This model is compared with 
the “maximal” model: the model with lowest AICc among those with 
splines of 8 df for both a(t) and b(t).

A bootstrap estimate of estimation bias (Davison & Hinkley, 
1997) was obtained as follows. One hundred bootstrap pseudodata‐
sets were constructed by randomly drawing for each year a num‐
ber of individuals equal to the number of records in that year and 
repeating the analysis above for each of these sets of pseudodata. 
The covariates calculated from the original data were kept except 
for the multinomial sampling variances which were recalculated for 
each sample. The maximal and adequate models were fitted to each 
of these datasets, and species richnesses per year predicted. The es‐
timated bootstrap bias equaled the average of these predictions per 
year minus the predicted value obtained from the original data. Note 
that this straightforward bootstrap differs from the one proposed by 
Chao et al. (2014), in that the number of undetected species is not 
estimated and incorporated in the resampling.

2.3 | Capture–recapture analysis of species 
encounter histories

Given the recent interest in occupancy methods and the possibility 
they offer to estimate local and total species richness (Kéry & Royle, 
2008), it needs to be argued why these methods were not used here. 
Many implementations of occupancy models assume no changes in 
total richness (closedness). This does not prevent assessing richness 
trends in itself. For example, Dennis et al. (2017) first estimated oc‐
cupancy per species year assuming closedness and used a weighted 
regression on these single‐species estimates to test for trends over 
time. Repeated observations within years are required at a fixed set 
of locations for estimating occupancy, which does not match with 
the structure of the bee data and the lack of data in some years. van 
Strien et al. (2016) constructed detection/nondetection records per 
square kilometer cell with observations and analyzed these per spe‐
cies separately. In this dataset, there is no guarantee that collectors 
sampled in a manner representative of the species locally present 
and I therefore refrain from such reconstructions.

Furthermore, while Kéry and Royle (2008) claimed unbiased es‐
timates of species richness for occupancy models, Guillera‐Arroita 
et al. (2019) found that estimation bias can be substantial, in partic‐
ular when 15% or more of the total richness has not been sampled. 
Inference on parameters representing changes in species richness 
might proceed differently from the estimation of species richness 
itself and patterns of bias and precision do not need to be the same 
for different parameters. A relevant case is found in the difference 
in estimation bias between estimates of population size and of indi‐
vidual survival between two time points (Cormack, 1972). Survival is 
a parameter determining changes in population size and is generally 
much less biased than population size estimators. Hillebrand et al. 
(2018) rightfully state that richness change in itself should be de‐
composed into trends in immigration and local extinction. Estimates 

of these rates might additionally be less biased than of species rich‐
ness itself.

The analogy between estimating population size and species 
richness goes deeper. Estimation methods of the capture–recapture 
framework for individuals can be applied to assemblages of aggre‐
gated species encounter histories (MacKenzie et al., 2006; Nichols, 
Boulinier, Hines, Pollock, & Sauer, 1998; Nichols & Pollock, 1983). 
Each is a sequence of zeroes and ones indicating for which years at 
least one record is present for that species in the dataset. Williams, 
Nichols, and Conroy (2002) noted that the modeling of such spe‐
cies encounter histories when assuming open communities with col‐
onization and extinction is similar to individual capture–recapture 
histories in the presence of temporary emigration. However, the 
dataset and the subsets analyzed here have no repeated within‐year 
occasions where the assemblage can be assumed to be closed, such 
that "temporary emigration," which here is a component of the col‐
onization and extinction dynamics cannot be estimated because a 
robust design model cannot be fitted (Pollock, 1982). Temporary 
emigration, that is the probability that an individual is absent and 
cannot be sampled, can also be estimated for individual capture–
recapture histories assuming an unobservable state (Kendall & 
Nichols, 2002; Schaub, Gimenez, Schmidt, & Pradel, 2004). Such 
a model as constructed for capture histories of individuals cannot 
deal with individual species jointly present inside and outside of the 
Netherlands and we would have to use occupancy models. For pa‐
rameter estimability, we would further have to assume that there 
are no time trends in temporary absence and survival (Schaub et 
al., 2004) such that the time‐dependent models of interest cannot 
be fitted. Therefore, encounter histories per species were analyzed 
using capture–mark–recapture analysis for open populations (Pradel, 
1996) and trends in temporary absence were assessed otherwise as 
explained below. Models were fitted to species encounter histories 
across years using Mark software (White & Burnham, 1999) called 
via RMark in R (Laake, 2013). I parameterized using the “Pradrec” 
model, which estimates local survival and colonization, where I note 
that the first is a probability per species (in between zero and one) 
and the second the number of colonizing species relative to the num‐
ber present at the beginning of a time interval (non‐negative). Local 
survival probabilities, species colonization, and detection probabili‐
ties were estimated as being constant, with a linear trend over time 
(in the linear predictor), with categorical effects per year (“time‐de‐
pendent”), or with regression models that have the total number 
of records, number of grid cells with records per year, and σ of the 
Poisson lognormal distribution of the taxon concerned as year‐spe‐
cific covariates (“regression”). This assumes that changes in the grid 
cells sampled primarily affect detection probabilities and that sur‐
vival and colonization apply to the entire Netherlands. Correlated 
explanatory variables were jointly included in the detection prob‐
ability model because the aim was to obtain the best predictions 
for survival and recruitment, not to interpret parameter estimates 
of the detection model or do hypothesis testing on them. The total 
number of records per species was added as a species‐specific (indi‐
vidual) covariate in some models. The Pradel models fit parameters 
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that express per‐year gains and losses in species richness and not 
richness itself. This is expected to reduce estimation bias (Cormack, 
1972) but it is also known that capture heterogeneity needs to be ad‐
dressed (Abadi, Botha, & Altwegg, 2013) to avoid biased estimates of 
local survival and colonization. For that reason, mixtures of species 
effects on detection probability were fitted, with two or three com‐
ponents (“PradelRecMix” in RMark, Pradel, Choquet, Lima, Merritt, 
& Crespin, 2009). Models were compared using AICc to select the 
minimum adequate model with lowest AICc.

If the probability that a species is temporarily absent remains 
constant over time, it will not affect estimates of species richness 
change, only detectability. The presence of time‐inhomogeneous 
temporary absence could affect time trends in species richness 
and was assessed as follows. If the probability of being temporarily 
absent in year t is pe(t) and the probability of detection when pres‐
ent pd(t), then the probability of detection p(t) in the time‐depen‐
dent Pradel model should equal the product of pd(t) and (1 − pe(t)). 
Assuming that our regression model for detection probabilities 
with variables characterizing sampling effort and method fits in 
fact pd(t) multiplied by a constant, we can investigate the presence 
of elevated temporary absence in some time intervals by checking 
time patterns in the difference between detection probabilities 
predicted by the regression and by the fully time‐dependent mod‐
els. Large positive differences in a sequence of consecutive years 
can indicate temporary absence affecting species richness trends.

Parameter estimates of local survival and colonization were used 
to calculate the change in species number in 2018 relative to 1945. The 
growth rate λt of species richness in between year t and t + 1 is the sum 
of the survival probability st and colonization ft. The predicted relative 
change in richness in year t̂+𝜏 relative to reference year t̂ is equal to,

Confidence intervals for these changes were calculated from the 
confidence interval boundaries of parameters in the minimum ade‐
quate models.

To assess estimation bias in the parameters of Pradel models, 
simulations were used. Appendix S5 and Figures S3 and S4 present 
results of simulations of local survival, colonization, temporary ab‐
sence and sampling, which allowed another assessment of estima‐
tion bias and of the statistical power to detect decelerating declines 
and temporary absence concentrated in a certain period.

3  | RESULTS

All 44,355 and 197,827 records from 1945 to 2018 were included 
in the analysis of Bombus and non‐Bombus genera, respectively. The 
analysis of the data subsets had (a) 13,309 and 145,457 records for 

(1)
𝜏−1
∏

t=0

(

s
t̂+t

+ f
t̂+t

)

F I G U R E  2  Time patterns of species richness obtained from generalized nonlinear modeling (gnlr). Model predictions and 95% confidence 
bands of the predicted values are drawn as full lines (confidence band limits: thin, estimates: thick). Per taxon, the left column shows 
predictions of maximum models with lowest AICc, the right column minimum adequate models. Blue dotted lines indicate predictions from 
a bootstrap‐bias‐corrected model and raw data points are added for comparison (black). Top row: models fitted to all data. Non‐Bombus 
genera. AICc non‐Bombus maximal model (a(t) 8 df spline of year, b(t) 8 df spline of σ): 419.9; AICc non‐Bombus adequate model (a(t) 3 df 
spline of year, b(t) 3 df spline of σ): 393.5. All data Bombus. AICc Bombus maximal model (a(t) 8 df spline of year, b(t) 8 df spline of year): 301.2; 
AICc Bombus adequate model (a(t) 8 df spline of year, b(t) 8 df spline of year): 301.2. Second row: data from 100 km2 grid cells visited in three 
periods. Left: non‐Bombus genera. AICc non‐Bombus maximal model (a(t) 8 df spline of year, b(t) 8 df spline of σ): 390.9; AICc non‐Bombus 
adequate model (a(t) 8 df spline of year, b(t) 1 df spline of σ): 373.4. Right: Bombus. AICc Bombus maximal model (a(t) 8 df spline of year, b(t) 8 
df spline of year): 350.0; AICc Bombus adequate model (a(t) 1 df spline of year, b(t) 3 df spline of σ): 327.4
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the analysis of specimens in collections and (b) 7,087 and 61,576 re‐
cords from grid cells sampled in each of three periods.

3.1 | Generalized nonlinear models

Prediction intervals of the best maximal models and the models with 
the most favorable AICc (adequate model) are shown in Figure 2 for 
the full data and the second subset, that is records from grid cells 
sampled in three predefined periods (results on collection specimens 
are available in Figure S1, Table S1).

The overall impression from Figure 2 is that there are moder‐
ate declines of species richness for the non‐Bombus genera. For 
Bombus, the analysis of the complete dataset produces a complex 
pattern in species richness over time. The complexity disappears 
when the data are restricted to grid cells that have been sampled 
in three periods and when we consider the minimum adequate 
model. Comparison with the analyses on the other grid cells that 
were not sampled in three periods (Appendix S4, Figure S2) reveals 
that the complex pattern might originate from this data subset and 
thus from data heterogeneity. For the minimum adequate model on 
collection specimens only, a straight line remaining within the pre‐
diction intervals can be drawn from the start to the end of the study 
period (Figure S1).

The bootstrap‐bias assessment shows that the predictions of 
bias‐corrected models remain within the original confidence inter‐
vals for the non‐Bombus genera but not for Bombus (Figure 2). There, 
the bootstrap predicts substantial bias. A first explanation is that 
this is due to the fact that I did not add rare species in the bootstrap 
procedure (Chao et al., 2014) and thus never sampled more species 
than in the data for that year. The bootstrap bias disappears in the 
minimum adequate model for the grid cells that were repeatedly 

sampled (Figure 2). This suggests that bias might be larger when 
complex models overfit the bumblebee data. With overfitting, sam‐
pling variation is interpreted as part of the nonlinear regression. I 
therefore conclude that sampling heterogeneity and overfitting lead 
to spurious patterns and that we should infer a constant decline for 
bumblebees.

For non‐Bombus, species richness in 1945 is estimated from the 
maximal model as 281 (95% confidence interval [267, 296]), in 2018 
as 259 [251, 268]. For Bombus, the estimate for 1946 is 25 [20, 30], 
by 2018 richness is 19 species [18, 20]. Note that the estimated rel‐
ative loss of richness is larger for Bombus than the other bee genera 
but when relative losses are calculated from confidence intervals 
limits, they overlap and both touch zero loss.

3.2 | Capture–recapture analysis

Figures three and four show the results of fitting time‐dependent 
(left, no mixtures) or minimum adequate Pradel models (right) to 
the data. Reducing the datasets to shorter intervals and refitting 
models revealed that the estimated survival and colonization pat‐
terns near the start and the end of encounter histories are biased 
in models with categorical time effects. In both groups of species, 
models with detection probabilities that are mixtures of several 
components without year effects on local survival nor coloniza‐
tion were preferred (Table 1, Figures 3 and 4). The time‐dependent 
models show negligible colonization and some years with reduced 
survival. Table 1 gives AICc values of the adequate models and a 
set of other models that are useful for comparison. In these tables, 
“t” indicates time categorical effects fitted, “T” a linear effect in the 
linear predictor, which was linked to the data using log (coloniza‐
tion) or logit (local survival) link functions. The number of mixture 

TA B L E  1  A selection of Pradel models fitted to the data. The minimum adequate model is given on the first line per taxon. The first three 
columns list the covariates in the models for local survival, colonization and detection, the last two columns confidence intervals for the time 
trends in survival and colonization, when estimated. T refers to a linear effect of year, t to categorical effects of year, “1” indicates a model 
without explanatory variables. The numbers of components in the mixture distributions for detection probabilities are given. Abbreviations 
for the year‐dependent variables are σ for the heterogeneity parameter of the Poisson‐log normal distribution, Nrec is the total number of 
records per year, Ngrid the number of square kilometer grid cells sampled

Survival Colonization Detection Deviance Npar AICc
Estimated change in 
survival

Estimated change in 
colonization

(a) Non‐Bombus Bees—All data 1945–2018

1 1 Ngr, Nrec, σ, 3 components 13,600 9 17,127 NA NA

T T t, 2 components 14,084 80 17,753 [−0.026, −0.001] [−0.028, −0.004]

1 1 t, 2 components 14,447 78 18,113 NA NA

T T Ngr, Nrec, σ, 2 components 14,593 10 18,122 [−0.027, −0.002] [−0.022, −0.009]

t t T 20,753 220 24,709 NA NA

(b) Bombus Bumblebees—All data 1945–2018

1 1 t, 3 components 1,203 79 1,552 NA NA

T T t, 3 components 1,202 81 1,555 [−0.052, −0.013] [−183, 182]

1 1 Ngr, Nrec, σ, 2 components 1,369 8 1,566 NA NA

T T Ngr, Nrec, σ, 2 components 1,369 10 1,570 [−0.037, 0.034] [−62, 62]

t t T 1,684 220 2,390 NA NA
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components in the detection model is given. In the last two col‐
umns of the tables, estimates of the linear effect of T are given 
when fitted. At least one estimate for local survival or coloniza‐
tion needs to be significantly positive for a deceleration in the de‐
cline of species richness to be possible. This does not occur in the 
analyses of the different data subsets either (Table S2). However, 
this is in agreement with simulation results (Appendix S5, Figure 
S3) that indicate that there is a bias toward estimating negative 
trends in local survival. However, the simulations also indicate that 
survival intercept parameters are estimated relatively well, such 
that we can use these to estimate species richness change while 
our minimum adequate models are not including any time effects 
on survival or colonization. When time‐dependent and regression 
models are compared (no mixtures, Figures 3 and 4, second rows 
left), there are a limited number of years where detection prob‐
abilities differ significantly between these models, once for bum‐
blebees and repeatedly for the non‐Bombus genera. Simulations 
(Appendix S6) show that this approach can indeed detect tempo‐
rary absence of species, with limited power. The years in between 

1955 and 1965 could be years where a fraction of non‐Bombus 
species temporarily disappeared. However, the period is brief and 
early in the time series such that the species are expected to have 
been present again since 1965. Based on parameter estimates of 
the models with lowest AICc, in 2018 the species richnesses of 
non‐Bombus wild bees and of Bombus bumblebees have decreased 
6% (confidence interval [−6, 16%] and 19% ([10, 34], colonization 
fixed at zero), respectively, since 1946. Simulations (Figure S4) in‐
dicate that these values might be estimating the real decreases 
relatively well.

4  | DISCUSSION

To investigate trends in species richness, a dataset with records 
and observations of Bombus and non‐Bombus wild bee species in 
the Netherlands spanning 73  years was analyzed using two ap‐
proaches. In the analysis of such an opportunistic dataset, emerg‐
ing patterns can be caused by sampling heterogeneity across 

F I G U R E  3  Results obtained from fitting Pradel models to encounter histories for species from non‐Bombus wild bee genera. Left column: 
Parameter estimates and predictions of the fully time‐dependent model without fitting mixtures; right column: the adequate model with a 
mixture for detection probability (Table 1). Top row: Local survival (upper full curve) and colonization probabilities (lower full curve) per year, 
which are close to values one and zero, respectively. Confidence intervals are indicated as dotted lines, in red for colonization probabilities. 
Middle row: Detection probabilities. In the left panel the predictions of a model with categorical time effects (black) and a model with logit 
regressions of the three year‐specific explanatory variables (blue) are plotted with 95% confidence intervals. The differences between 
both are plotted in red and can be informative on the occurrence of temporary emigration. Right panel: For the minimum adequate model, 
detection probabilities vary between species, and the curve plotted is for each of the three components in the species mixture. Bottom row: 
Trends in relative species richness over years, where 1955 is used as a reference and given value 1 (blue: species richness, black: predicted 
relative number of species sampled). In the bottom right panel, the predicted relative number of species sampled is plotted for each mixture 
component. Gray bands: biased parameter estimates for survival and colonization are expected for these years on the basis of similar 
analyses over shortened time intervals

(a) (b)

(e) (f)

(c) (d)
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years, while there is insufficient data to model all potential sources 
of sampling heterogeneity adequately within a single elaborate 
model. Therefore, I proposed that a constant decline in species 
richness should only be rejected when we can also do so when 
records are removed from spatial locations that only contributed 
data in a restricted time interval and when records are removed 
that do not correspond to samples in natural history collections. 
This was the main source of records before 2000, but now con‐
tributes a minor fraction of the data. Neither of the approaches 
then rejected the hypothesis of a constant decline or no decline 
at all in favor of a decelerating decline. In fact, the species rich‐
ness decline is small and maybe absent for non‐Bombus bees. For 
bumblebees, if we take advantage of the larger precision of the 
capture–recapture analysis, a moderate and significant decline of 
19% is inferred. Among the generalized nonlinear models, there 
was one data subset for which the preferred model had a con‐
stant decline in species richness for both bumblebees and other 
wild bee species, while preferred models for the other subset and 
the full dataset had smooth regressions of species richness with 
at least three parameters. Therefore we can conclude that the 
approach is capable of selecting a nonlinear model, but it did not 
do so consistently. Several estimation issues were encountered. 
Generalized nonlinear modeling showed potential estimation bias 
for bumblebees, which might result from the lack of adding rare 
species in the bootstrap, or from fitting too complex models to the 
data. Simulations indicated that the modeling of species richness 
changes via encounter histories suffers from estimation bias of pa‐
rameters representing time trends, making it difficult to reliably 
detect decelerating declines when using that method alone.

4.1 | Wild bee species richness trends

The fraction of species richness lost since 1945 or the species rich‐
nesses at the end of the study period could be predicted using either 
approach. From the capture–recapture analysis, the conclusion is 
that species richness has declined since 1945 for the Bombus genus. 
For the non‐Bombus genera small declines are estimated with con‐
fidence intervals including zero. The decrease estimated for the 
Bombus genus is comparable to a study using rarefied richness on 
Swedish data (Bommarco, Lundin, Smith, & Rundlöf, 2011). On the 
other hand, the estimated overall decrease for the other genera 
seems smaller than in an analysis of bee species richness in the UK 
with relative decreases between 10% and 30% in most study sites, 
when comparing periods separated by 33  years (Senapathi et al., 
2015). However that study used the same methods as Carvalheiro 
et al. (2013) and no confidence intervals for the changes were given. 
Again for the UK, Ollerton, Erenler, Edwards, and Crockett (2014) 
analyzed bee and flower‐visiting wasp species richness and noted 
extinctions before 1960, which they attributed to agricultural inten‐
sification. These authors noted that their results for the most recent 
decades contradict Carvalheiro et al. (2013), as extinctions might be 
increasing again. Van Strien et al. (2016) observed a modest recov‐
ery of biodiversity in the Netherlands, measured as the living planet 
index, from 1990 to 2014. It is concentrated, however, in the fresh‐
water habitats and with diversity decreases in the habitats where 
wild bees typically occur.

The stronger decrease suggested for Bombus bumblebees is sur‐
prising, given that bumblebee densities and presences are assumed 
not to be determined by very local landscape characteristic and can 

F I G U R E  4  Results obtained from 
Pradel models fitted to species in the 
Bombus bumblebee genus. Order and 
content of all panels are as for Figure 3. 
For Bombus, detection probability is a 
mixture of three components, of which 
one group of species has negligible 
detectability. Additional information on 
the adequate model can be found in Table 
1

(a) (b)

(c) (d)

(e) (f)
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benefit from urbanization (Carré et al., 2009; Kennedy et al., 2013; 
Senapathi, Goddard, Kunin, & Baldock, 2016). However, bumblebees 
might show an elevated susceptibility to rapid climate change (Kerr 
et al., 2015).

Combining the results on Dutch wild bees and bumblebees with 
the reassessment of Van Dooren (2016), the conclusion must be 
that there are no decelerations in the declines of species richness in 
pollinators in northwest Europe. There is thus no reason to be sat‐
isfied with current biodiversity conservation efforts, as there is no 
or insufficient evidence that they have been effective. It has been 
stated elsewhere that the most recent EU CAP Agricultural Reform 
fails on managing biodiversity adequately (Pe'er et al., 2014). While 
it has been shown that visitation to crop flowers increases with the 
number of species per field (Garibaldi et al., 2013), species richness 
might be not the key quantity predicting crop pollination services to 
agriculture, as common species provide most of these (Winfree, Fox, 
Williams, Reilly, & Cariveau, 2015). Kleijn et al. (2015) therefore state 
that conservation and immediate utility goals for agriculture might 
not align. However, it might just be a matter of time before they do 
when environments continue to change. Inferring arrested biodiver‐
sity declines as was done by Carvalheiro et al. (2013) appears danger‐
ous and I prefer to consider the small estimated loss for non‐Bombus 
bees as meaningful and potentially indicating an actual trend.

4.2 | Methodological developments

Risks of species richness loss seem taxon‐specific (Bombus vs. non‐
Bombus), and thus call for trend analysis in smaller taxonomic groups 
in general. However that requires sufficient data for each of them. 
Boyd (2013) has proposed that audited standards robust to varia‐
tions in assessor competence should be available and used in bio‐
diversity research and data collection. For historical data, it is too 
late for that. Retrospective sampling standardization is impossible. 
With data of the type analyzed here, we therefore need to resort to 
detailed statistical modeling, data inspection and model checking, 
with conservative inference to avoid new erroneous conclusions. 
The situation could have been as bad as O'Hara (2005) suggested, 
namely that we often rather analyze properties of estimators than 
richness patterns themselves. This is confirmed for the estimation 
of time trends in local survival using Pradel models, where estima‐
tion bias leads to wrong inference and masks differences between 
datasets. The generalized nonlinear modeling does not need to as‐
sume a constant presence or absence probability, and the manner in 
which the sampling process is modeled comes with limited assump‐
tions. However, the method needs manual work, as model fitting is 
tedious. Convergence to a global maximum likelihood solution is not 
guaranteed and results need to be inspected with care and can suf‐
fer from overfitting.

The results of each analysis presented here urge further meth‐
odological developments. Chao et al. (2014) proposed a bootstrap 
method to estimate variances of extrapolated richness, where the 
fraction of rare missing species is first estimated and then added 
to an imputed dataset from which resampling occurs. I have used 

bootstrap methods differently, to estimate magnitudes of estimation 
bias in the different types of analysis but without imputing rare spe‐
cies. For assessments of estimation of bias, independent simulations 
seemed more useful than the data bootstrap.

Issues with models for encounter histories are probably alle‐
viated when robust design models (Pollock, 1982) can be fitted to 
the data. If records had been collected throughout the study period 
independently by observations and via specimens deposited in col‐
lections, then these two sampling methods could have been used 
to fit a robust design. Heterogeneity in species detection probabili‐
ties can be expected in all methods addressing species richness (e.g., 
Boulinier, Nichols, Sauer, Hines, & Pollock, 1998) and it was incor‐
porated into the capture–recapture models by means of mixtures. 
Note that models for open populations were used in the analysis 
of species encounter histories. Models exist to estimate species 
richness in open occupancy models (Nichols et al., 1998; Yamaura 
et al., 2011), but these often depend on the assumption of individ‐
ual random sampling which is untenable for the opportunistic data 
analyzed here. Statistical modeling of how collectors vary in their 
sampling efforts over time clearly deserves more study and wider 
application, given that more and more data of the kind analyzed 
here are mined and as people are encouraged to collect citizen‐sci‐
ence data (Potts, Imperatriz‐Fonseca, Ngo, Biesmeijer, et al., 2016). 
Ideally, these developments should result in methods where local or 
landscape‐specific diversity trends and spatio‐temporal patterns in 
sampling effort can be studied jointly. Also studies on abundance 
trends in different taxa (e.g., Inger et al., 2015) could benefit from 
multimodel inference and assessments of bias‐variance tradeoffs 
and sampling heterogeneity.

Isaac and Pocock (2015) propose that an effort should be made 
to model observer responses, suggesting the application of data col‐
lected from mobile phones to assess different kinds of sampling bias. 
This seems to call for an effort to model recording syndromes and 
to integrate them into the development of statistical methods for 
uncontrolled data collection.

A very different avenue of research which could be rewarding 
might be the development of Focused Information Criteria (FIC; 
Claeskens & Hjort, 2003) for the estimation of species richness 
trends. Such information criteria have a focus (hence the F), a sta‐
tistic we are most interested in, and models are preferred that are 
expected to produce the most precise predictions of that statistic. 
We would thus require a FIC for the selection of models that predict 
species richness trends best.

Meanwhile, how can we decide which approach is reliable 
enough for inference of trends? Here I resorted to comparisons of 
consistency in the results from different approaches and subsets. 
Additional simulations with similarities to the dataset were essential 
and revealed critical estimation bias. Therefore, ranking estimates 
from different approaches based on consistency across data sub‐
sets should never occur without accounting for other criteria. For 
opportunistic data, there seems to be currently no safe alternative 
other than a pluralistic but conservative modeling approach assisted 
by simulations which provide some guidance.
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To conclude, I want to point out a potential example of how 
nonrandom data collection might be generated. Note that a recent 
Dutch reference work on wild bees (Peeters et al., 2012) explicitly 
pointed to recent records of the wild bee species Andrena coitana in 
Germany and the habitat type in the Netherlands where the species 
might be seen again after a long period without records. Recently, 
the rediscovery of A. coitana was reported (Nieuwenhuijsen, 2016). 
We cannot exclude the possibility that a new reference work or 
other public exposure motivates an increased effort to collect par‐
ticular species. This can thwart any effort to achieve random sam‐
pling, so essential to most of our inference methods, by replacing it 
with recording syndromes (Isaac & Pocock, 2015).
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