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Exact expressions are derived for the intermediate scattering function (ISF) of a quantum particle diffusing in a
harmonic potential and linearly coupled to a harmonic bath. The results are valid for arbitrary strength and spectral
density of the coupling. The general, exact non-Markovian result is expressed in terms of the classical velocity
autocorrelation function, which represents an accumulated phase during a scattering event. The imaginary part
of the exponent of the ISF is proportional to the accumulated phase, which is an antisymmetric function of the
correlation time t . The expressions extend previous results given in the quantum Langevin framework where
the classical response of the bath was taken as Markovian. For a special case of non-Markovian friction, where
the friction kernel decays exponentially in time rather than instantaneously, we provide exact results relating to
unconfined quantum diffusion, and identify general features that allow insight to be exported to more complex
examples. The accumulated phase as a function of the t has a universal gradient at the origin, depending only on the
mass of the diffusing system particle. At large t the accumulated phase reaches a constant limit that depends only
on the classical diffusion coefficient and is therefore independent of the detailed memory properties of the friction
kernel. Non-Markovian properties of the friction kernel are encoded in the details of how the accumulated phase
switches from its t → −∞ to its t → +∞ limit, subject to the constraint of the universal gradient. When memory
effects are significant, the transition from one limit to the other becomes nonmonotonic, owing to oscillations in
the classical velocity autocorrelation. The result is interpreted in terms of a solvent caging effect, in which slowly
fluctuating bath modes create transient wells for the system particle.
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I. INTRODUCTION AND MOTIVATION

The interaction of a quantum system with a thermal envi-
ronment is a rich topic that arises naturally in many fields of
physics, including quantum optics [1,2], chemical physics [3],
nuclear physics [4], and macroscopic quantum coherence [5,6].
The effect of the environment has a crucial bearing on foun-
dational areas such as quantum measurement theory [7], and
on applications with the potential for enormous impact such
as quantum computing [8]. In the latter case, central questions
include the precision to which coherence can be maintained
in the presence of an environment, when a low-dimensional
quantum system evolves from an initial superposition with a
well-defined phase relationship. Loss of coherence, as well as
population transfer, can be addressed on a consistent math-
ematical footing by considering the evolution of the qubit’s
reduced density matrix ρS (t ) in which the environment degrees
of freedom are traced over [9]. A range of techniques for
time evolving ρS (t ) have been developed using, for example,
projection operator techniques [10], stochastic wave-function
evolution [11] path integral methods [12], and many-body
wave-function techniques that simulate the extended global
system [13]. There is no completely general, efficient method
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and so simplifying assumptions are required in different cases,
for example, weak coupling or the absence of memory effects
in the thermal bath. Memory effects, when the effect of the
bath cannot be treated in a Markovian approximation, are a
wide area of topical interest in the field [14–16]. It is widely
recognized that exactly solvable large quantum systems, such
as globally harmonic systems, are valuable for investigating the
effect of arbitrarily strong non-Markovian quantum damping
[9]. In the present work we consider memory effects in a
globally harmonic model that has been utilized extensively
as a model for damped quantum oscillations including the
unconfined limit of dissipative quantum diffusion [17].

In many contexts, such as chemical dynamics, the theoret-
ical aim is to describe the dynamics of a system or particle
in continuous contact with its environment, without being pre-
pared in a special state to begin with. Then, the most convenient
description of the open system dynamics is often not via the
evolution of ρS (t ), but by equilibrium correlation functions
〈A(t )B(0)〉, the expectation of a product of operators evaluated
at different times. Equilibrium correlation functions arise nat-
urally [18] in the description of experiments where the system
dynamics are measured via a gentle scattering probe, for exam-
ple, in surface diffusion measurements with the helium-3 sur-
face spin echo technique [19]. In surface diffusion, the strength
and memory properties of the environment coupling play a
central role in governing the rate and the detailed mechanism
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of dynamical processes, even within an entirely classical de-
scription and regardless of whether the diffusion is continuous
or occurs by jumps [20–22]. Surface diffusion in real physical
systems takes place in a nonlinear potential energy landscape,
and exact correlation functions are intractable. However, diffu-
sion in either a flat or harmonic potential, coupled to a harmonic
bath, can be described by a globally harmonic system and
therefore exact thermal correlation functions can be derived
both classically and quantum mechanically because the global
dynamics and thermodynamics are accessible. As with the
problem of time-evolving ρS , correlation-function methods
that can be used to treat nonlinear systems are generally
restrictive in other ways, and establishing exact reference re-
sults for linear systems is therefore valuable for understanding
the strengths and limitations of approximate methods. As an
example, a formula has recently been proposed for calculating
dynamical correlation functions for a particle in a periodic
potential directly from the Bloch states of the uncoupled system
and their lifetimes [23]. Exact results on harmonic systems can
be used to explore the extent to which such methods can be
pushed with respect to strong coupling and memory effects.

Here we focus on the intermediate scattering function
(ISF), the autocorrelation of the kinematic scattering amplitude
exp(i�Kx), which reflects the origins of the present work
in the context of quasielastic atom-surface scattering [19]. A
precise definition of the ISF will be given in Sec. II where
the analytical results are derived. The significance of the ISF
arises via a Born approximation for the inelastic scattering
amplitude from dynamical scattering centres [18], in which the
inelastic differential scattered intensity is proportional to the
dynamical structure factor (DSF) of the ensemble of scattering
centers. The ISF is the Fourier transform of the DSF into
the time domain [24], and is measured approximately in the
HeSE experiment where the Fourier transform is carried out
physically [19]. The ISF is often the more convenient of the two
scattering functions to work with since closed analytical forms
are available for a wide range of physical models including
classical Langevin dynamics [22]. The short time behavior of
the ISF is sensitive to the nature of the coupling between each
diffusing adsorbate and the substrate heat bath. For example, in
the classical diffusion of an adsorbate subject to the Langevin
equation, the ISF displays a regime switch between a Gaussian
function describing ideal ballistic motion at short times, and
an exponential decay describing continuous diffusion at long
times. The crossover is compactly represented in the time
domain, and the transition between the two regimes is governed
by the velocity correlation time [22]. The classical result can be
readily extended to cover the case of linear but non-Markovian
dissipation [25], and a key qualitative outcome is that the
introduction of a finite memory time in the bath can strongly
increase the amplitude of the ISF encompassed by ballistic-like
behavior, while leaving the long-term diffusion rate unaffected.
Hence, the short-time behavior of the classical ISF is sensitive
to both the absolute strength of the coupling to the heat bath,
and also the frequency dependence of the coupling. Later on
we show that the same is true for the quantum mechanical ISF.

While the classical ISF is a real, symmetric function of the
correlation time, the quantum ISF is complex. The origin of the
complexity can be viewed as originating from the necessary
asymmetry in the Fourier domain, a condition known as

detailed balance imposed by the Boltzmann distribution [24].
Equivalently, the origin of the imaginary contribution to the
exponent of the ISF can be attributed to the position operator
x(t ) of the scattering center failing to commute with its original
self x(0) as it evolves in time via the operator equations of
motion [26,27]. For a particle completely decoupled from its
thermal bath and therefore carrying out ballistic motion, the
result is a pure frequency-domain shift of the classical DSF,
where the size of the shift is given by the dispersion relation
of the scattering center. Therefore in the time domain, the
quantum ISF consists of the classical ISF multiplied by a non-
decaying complex exponential in time. In the dissipative case,
in which classically the particle undergoes a ballistic-diffusive
transition, the imaginary part of the exponent of the ISF does
not oscillate forever but is a damped, antisymmetric function of
time whose limit as t → ∞ is nonzero. The imaginary part is
proportional to h̄ and therefore describes a quantum effect, and
its existence is known as quantum recoil [26]. The functional
form of the imaginary part of the exponent has been derived
from a quantum Langevin description, both heuristically and
in a linear response framework [26,27], assuming that the
classical fluctuation and dissipation are Markovian. The value
of the present work in relation to those previous studies will
be to give a concise expression for the imaginary part of the
ISF exponent in terms of the classical velocity autocorrelation
function, and evaluate the function for an example of non-
Markovian linear dissipation.

The linear coupling model of surface diffusion is a well-
explored model system and has been investigated in some
detail using projection operator methods [28] and functional
integral approaches [29,30]. Additionally, atom-scattering line
shapes have been derived for scattering from surface phonons
and harmonically bound adsorbates using fundamentally the
same model [31]. However, to our knowledge the precise
analytical connection between linear correlation functions and
quantum recoil in the ISF, for non-Markovian coupling to the
bath, has not been fully elucidated, and that is the purpose
of the present work. In Sec. II, exact expressions are given
for the real and imaginary parts of the exponent of the ISF in
terms of classical correlation functions. The results are valid
for any globally harmonic system, and could therefore apply
to damped vibrations as well as dissipative diffusion. The
imaginary part is illustrated for the special case of exponential
memory friction where memory effects are described by a
single parameter and the classical velocity autocorrelation is
straightforwardly accessible.

II. DERIVATION OF THE QUANTUM ISF

Consider the model Hamiltonian H in which a particle of
mass m, harmonically bound in a one-dimensional potential
of natural oscillation frequency ω0, is linearly coupled to a
harmonic bath as follows:

H = p2

2m
+ 1

2
mω2

0 +
∑

α

[
p2

α

2mα

+ 1

2
mαω2

α

(
xα − cαx

mαω2
α

)2]
,

(1)

where x and p are the position and co-ordinate operators of
the particle considered as our open system. pα and xα are the
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position and momentum operators of bath degrees of freedom,
which are harmonic oscillators of frequency ωα and mass mα ,
coupled to our system particle with coupling constants cα .

The quantum ISF for our system particle is defined as

I (�K, t ) = 1

Z
tr[ei�Kx(t )e−i�Kx(0)e−βH ], (2)

where Z is the partition function of the global model, �K

is a parameter called the momentum transfer, β is the inverse
temperature (kBT )−1, and any complete basis can be chosen for
the trace. The definition is made within the Heisenberg picture
of operator evolution, in which x(t ) is the time evolution of
x(0). Throughout the present article, operators without an
explicit time argument have an implicit time argument of zero.
The connection between the definition here and the dynamic
structure factor and hence scattering intensity in the Born
approximation, can be established by performing the trace in
the basis of global energy eigenstates.

A real scattering experiment would normally involve scat-
tering of a beam of particles from an ensemble of scattering
centers, say an ensemble of atoms adsorbed on a surface. Here
we are assuming that no scattering is induced directly by the en-
vironment modes (such as phononic or electronic excitations).
Additionally, if the probe particles scatter coherently from the
adsorbates in the ensemble, then we are assuming that there are
no explicit correlations between the dynamics of the different
particles in the ensemble, which is a reasonable qualitative
assumption as long as the ensemble has a low density. However,
our purpose here is to derive an exact result on a model system
rather than account for the additional factors that would affect
the results of approximate experimental realisations.

If H is considered as a classical Hamiltonian, then the
classical dynamics of the system particle are given by the
generalized Langevin equation (GLE) [32,33],

mẍ(t ) = −mω0x(t ) −
∫ t

0
mγ (t − t ′)ẋ(t ′)dt ′ + F (t ), (3)

with the friction kernel given by

γ (t ) = 1

m
θ (t )

∑
α

c2
α

mαω2
α

cos(ωαt ), (4)

and where F (t ) is a normally distributed, zero-mean ran-
dom force that satisfies 〈F (t )F (0)〉 = mkBT γ (t ), a classical
fluctuation-dissipation relation where 〈〉 indicates an ensem-
ble average over initial states of the bath with the position
of the system particle taken into account in the averaging
process [32]. The GLE can be used to derive classical corre-
lation functions such as the velocity autocorrelation function
(VACF) ψ (t ) = 〈v(t )v(0)〉, which can be readily expressed
as a Laplace transform, and expressed analytically in the
time domain whenever the Laplace transform is analytically
invertible. For example, when the friction kernel γ (t ) is an
exponentially decaying function of time, the resulting Laplace
space form of the VACF can be straightforwardly inverted to
give a biexponential function in time [34] which generalizes the
well-known mono-exponential form ψ (t ) = 〈v2〉 exp(−γ t )
derived from the Langevin equation [22].

In the classical situation just described, the effect of the bath
mode masses mα on the dynamical properties on the system

particle is entirely captured in the expansion (4) where the
masses always enter in the combination c2

α/mα . Therefore,
cα can always be traded against mα to make the bath mode
masses equal to the system particle mass (mα = m∀α) with
no loss of generality, as long as we are interested only in
correlation functions involving the system particle alone. The
same outcome can be seen where, for example, an explicit
transformation to mass-weighted co-ordinates has been used to
address memory effects in classical barrier crossing [35]. The
operator-valued generalization of the classical GLE (3) is the
quantum Langevin equation (QLE) for the system particle’s
position operator which reads the same as the GLE but for
operator-valued x(t ) and F (t ), where quantum effects enter
into the fluctuation-dissipation relations that apply to F [36].
In the present notation [33], the statistical dynamics of the
random force (still with zero mean) are given in terms of
the commutator [A,B] = AB − BA and the anticommutator
{A,B} = AB + BA by

〈[F (t ), F (0)]〉 = −ih̄
∑

α

c2
α

mαωα

sin(ωαt ); (5)

〈{F (t ), F (0)}〉 = h̄
∑

α

c2
α

mαωα

coth

(
1

2
βh̄ωα

)
cos(ωαt ) ,

(6)

where in the quantum mechanical case as the classical case,
the averaging 〈〉 is performed over a bath equilibrated with
the initial system particle position [32,33]. The numbers {cα}
and {mα}, characterizing the bath, still appear only in the
combination c2

α/mα . Therefore, just as in the classical case,
being able to vary cα and mα independently gives no more
flexibility than fixing mα = m∀α and varying cα , in terms of
the effect on system particle correlation functions. The purpose
of writing out the QLE explicitly in the present work was
to emphasize the amount of generality retained even when
mα = m∀α; the derivation of the ISF will proceed shortly
through a different representation of the system-bath coupling
based on the global normal modes.

As a separate convenient ingredient for the derivation, we
quote a re-exponentiation result for the ISF of a particle in a
harmonic potential but not coupled to a bath. Namely, the ISF
associated with the uncoupled Hamiltonian

H� = p2

2m
+ 1

2
m�2x2 (7)

is given by [37]

I�(�K, t ) = exp
{

1
2�K2[X�(t ) + iY�(t )]

}
, (8)

where

X�(t ) = 1

m�
[ cos(�t ) − 1]h̄ coth

(
1

2
βh̄�

)
; (9)

ih̄Y�(t ) = ih̄
1

m�
sin(�t ) . (10)

Taking the limit � → 0 returns the quantum ballistic ISF
that can be obtained directly using, for example, the Baker-
Hausdorff theorem [26], which demonstrates that it is safe to
treat a free particle as the ω0 → 0 limit of a quantum oscillator
in the present context. Next we consider the ISF (2) when the
scattering center is coupled to the environmental oscillators.
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To compute the ISF for the open system, we put the system
and bath co-ordinates are on equal footing by performing
a normal modes transformation, a simultaneous orthogonal
transformation of the co-ordinates and momenta of the global
model such that the Hamiltonian as a function of the new
operators represents a collection of uncoupled oscillators.
An application of normal modes transformations to study
classical barrier crossing has been mentioned already [35]; in
the quantum mechanical case the transformation is also known
as a Bogoliubov-Valatin transformation [38], when considered
as a transformation of creation and annihilation operators. In
general, the purpose of such a transformation is to find the
good quantum numbers of collective excitations. Phonons in a
harmonic solid provide one familiar example, but the technique
also finds broad application across condensed matter, in sys-
tems that can be described via a variable number of collective
excitations, including superfluidity and magnetism [39].

The normal modes transformation brings the Hamiltonian
into the form

H =
∑

k

(
q2

k

2m
+ 1

2
mk�

2
ky

2
k

)
, (11)

where yk are the quantum operators representing normal co-
ordinates, qk are the corresponding canonical momenta, m is
still the particle mass, and {�k} are the frequencies of the
oscillators that have been decoupled by the transformation. The
normal co-ordinates yk and corresponding momenta qk satisfy
the canonical commutation relations as long as the original x,
p and xα , pα did so since the normal modes transformation
is orthogonal and therefore canonical. Further details of the
operator transformation are given in the Appendix. If there
are N bath modes, that is α runs from 1 to N , then there
are N + 1 values of the index k. The system and bath modes
are not treated separately by the k index, and so when we
compute the ISF shortly, there will be no separate summation
over bath modes and system states, only a single summation
over the normal modes of the global system.

The frequency sets {�k} and (ω0, {ωα}), and the correspond-
ing coefficient sets {dk} and {cα} are related via the solution
of an eigenvalue problem, and there is no general expression
for a specific element of one set in terms of the elements
of the other. However, the fact that the Hamiltonian can be
expressed in the form (11) allows formally exact expressions
for the ISF to be found, which can, in turn, be related back to
the original parameters of the coupled-modes Hamiltonian as
we will see shortly. Therefore {dk} and {�k} never need to be
known explicitly if it is not convenient to compute them. As part
of the definition of the model problem, the operator x always
represents the system co-ordinate, regardless of the values
all other parameters. Aside from starting with the inherently
approximate model of Eq. (1), no further approximations are
made concerning the system and bath frequencies, or the
overall strength of coupling to the bath.

We now consider one row of the normal modes transforma-
tion, namely the expression for x in terms of the global normal
mode co-ordinates, in terms of unknown coefficients dk:

x =
∑

k

dkyk . (12)

It follows from the separable form (11) of the Hamiltonian
that the ISF is the product of terms like that of Eq. (8), which
we now demonstrate. For convenience we write the separable
Hamiltonian as the sum of commuting parts Hk ,

H =
∑

k

Hk , (13)

where

Hk = q2
k

2m
+ 1

2
mk�

2
ky

2
k . (14)

We substitute the linear combination (12) into the definition
(2) of the ISF, and take the trace in the basis of eigenstates
of the normal mode co-ordinate operators. If we define A

as the operator whose trace gives the numerator of the ISF,
namely A = ei�Kx(t )ei�Kx(0)e−βH , with the explicit expansion
in normal co-ordinate operators

A = ei�K
∑

k dkyk (t )e−i�K
∑

k dkyk (0)e−β
∑

k Hk , (15)

then

I (�K, t ) = 1

Z

∫
dy〈y|A|y〉, (16)

where
∫

dy stands for
∫

dy1dy2 · · · dyN+1, and |y〉 stands for
|y1〉|y2〉 · · · |yN+1〉. By construction, the operators associated
with different normal modes commute, i.e., if k �= l then
[Hk,Hl] = [yk, yl] = [qk, ql] = 0. Therefore the exponential
operators can be arranged as a product over {k}, which holds for
all times t since the time evolution of the normal co-ordinate
operators does not mix the different k.

The trace itself therefore also reduces to a product, where
if we define operators

Ok (t ) = ei�Kdkyk (t )e−i�Kdkyk (0)e−β
∑

k Hk , (17)

then

I (�K, t ) = 1

Z

∏
k

∫
dyk〈yk|Ok (t )|yk〉. (18)

We emphasize that the trace is not performed separately over
bath and system degrees of freedom, which are mixed by the
normal modes transformation.

By writing the partition function similarly as a product over
k, the result can be written in terms of the one-mode ISF of
Eq. (8) as

I (�K, t ) =
∏
k

I�k
(dk�K, t ), (19)

where each coupling coefficient dk is accounted for efficiently
by noting that it appears exclusively in the combination dk�K .

The result can be conveniently written as

I (�K, t ) = exp
{

1
2�K2[X(t ) + iY (t )]

}
, (20)
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where

X(t ) =
∑

k

d2
k

mk�k

[ cos(�kt ) − 1]h̄ coth

(
1

2
βh̄�k

)
; (21)

ih̄Y (t ) = ih̄
∑

k

d2
k

mk�k

sin(�kt ). (22)

Since �K appears in the exponent of the one-mode for-
mula (8) as �K2, the kth contribution to the exponent in
the multimode result is weighted by d2

k . The dk coefficients
are as yet unspecified, but the real and imaginary parts of
the exponent can be written entirely in terms of classical
correlation functions of the system, which, in turn, depend on
the classical friction kernel γ (t ). The friction kernel (4) is given
directly in terms of the original specification of the coupling
constants cα . To draw the connection with classical correlation
functions we first evaluate the classical VACF ψ (t ) in terms
of the dk . The classical velocity is given by the prevailing
transformation into normal modes

ẋ =
∑

k

dkẏk . (23)

The time evolution of a normal mode is simply

yk (t ) = yk (0) cos(�kt ) + qk (0)

mk�k

sin(�kt ) , (24)

where mk = m∀k because mα = m∀α so that the normal
modes transformation could be performed without any trans-
formation of mode masses. The classical velocities therefore
evolve according to

ẏk (t ) = qk (0)

mk

cos(�kt ) − yk (0)�k cos(�kt ). (25)

Performing the thermal, classical phase space average over
Boltzmann-distributed initial conditions yk (0) and qk (0) gives
the VACF as

ψ (t ) = kBT

m

∑
k

d2
k cos(�kt ). (26)

As a simple check on the consistency of the result, we
recall that the coefficients dk form the row of an orthogonal
matrix which effected the normal modes transformation, and
therefore

∑
k d2

k = 1, which is consistent with the zero-time
limit ψ (0) = 〈v2〉 = kBT /m. It will be convenient now to
define a normalised VACF,

φ(t ) = m

kBT
ψ (t ) =

∑
k

d2
k cos(�kt ). (27)

The imaginary part of the ISF exponent, Y (t ), can be written
compactly in terms of φ(t ) as

Y (t ) = 1

m

∫ t

0
φ(t ′)dt ′. (28)

Defining a new function ψQ(t ) as the classical VACF
filtered by the function 1

2βh̄ω coth ( 1
2βh̄ω) in the frequency

domain, i.e.,

�Q(t ) = kBT

m

∑
k

d2
k

1

2
βh̄�k coth

(
1

2
h̄β�k

)
cos(�kt ),

(29)

then the function X(t ) is given by an expression identical
in form to the classical cumulant expansion [22] relating
I (�K, t ) and ψ (t ), namely,

−1

2
X(t ) =

∫ t

0
(t − t ′)ψQ(t ′)dt ′, (30)

which is easily verified using the identity
∫ t

0 dt ′ (t − t ′)
cos(�t ′) = [1 − cos(�t )]/�2.

Therefore, the quantum ISF is not quite the product of the
classical ISF and a quantum recoil factor, as the real part
of the exponent has been filtered in a way that reflects the
spectral density of the global normal modes, and quantum
rather than classical occupation factors. However, the real part
of the exponent can still be derived entirely from the classical
VACF for the model system considered in the present work
by applying a Fourier filter. Alternatively, by evaluating the
quantum mean square displacement (MSD) 〈[x(t ) − x(0)]2〉,
it is readily shown that the result (30) is equivalent to replacing
the classical MSD in the classical cumulant expansion of the
ISF [22] with the quantum MSD. For the remainder of the
paper we will not consider X(t ) in further detail, but focus on
the purely quantum-mechanical term Y (t ).

One of the key results of the present section is that the input
parameters of the model required to evaluate Eq. (20) can be
specified in any of several forms. Any of the following inputs,
in addition to the particle mass, would be sufficient to evaluate
the model’s quantum ISF.

(1) The parameters ω0, {ωα}, and {cα} of the model Hamil-
tonian expressed in the form of coupled oscillators. Assuming
the bath modes form a continuum, the parameter set is conve-
niently expressed as the spectral density of the bath coupling,

conventionally written as J (ω) = π
2

∑
α

c2
α

mαωα
δ(ω − ωα ) [33].

The spectral density can be derived for specialized model cases
such as for a particle embedded in a harmonic chain [40],
but could alternatively be specified as a phenomenological
input without a rigorous derivation, chosen to represent the
underlying physics or timescales of the environment.

(2) The parameters {dk} and {�k} of the model Hamiltonian
expressed in the form of decoupled oscillators.

(3) The classical velocity autocorrelation ψ (t ), or friction
kernel γ (t ). Both time-dependent functions are readily related
to the underlying parameters of the Hamiltonian via relations
such as Eqs. (4) and (26). Further, ψ (t ) and γ (t ) are related
to each other via a Laplace transform of the GLE (3) [34].
Additionally, φ(t ) and γ (t ) are also routinely computed from
classical simulations of many-body anharmonic systems such
as liquids [41]. Equations such as Eq. (28) applied to such simu-
lation data would then represent a prediction of non-Markovian
effects in quantum recoil within a Gaussian approximation to
the anharmonic dynamics.

III. QUANTUM RECOIL SUBJECT
TO MEMORY FRICTION

To illustrate the result concerning quantum recoil, the
imaginary part of the ISF exponent can be calculated for
a simple non-Markovian model. We consider an unconfined
particle (ω0 = 0) undergoing quantum Brownian motion in
which the classical friction kernel (4) consists of an exponential
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decay in time. The unconfined, or flat-surface case, is chosen
to simplify the analytical results as far as possible and to isolate
the oscillatory features of the quantum recoil line shape that
arise purely due to memory friction. However, the methods
of Sec. II are still an indispensable part of the argument even
when ω0 = 0, as the globally harmonic model Hamiltonian
was a necessary step to derive the exact relationship between
the classical velocity autocorrelation and the imaginary part
of the quantum ISF. In other words we are representing
non-Markovian dissipation by the globally harmonic model
analyzed in Sec. II.

The exponential kernel is described by two parameters γ

and ωc, as

γ (t ) = θ (t )γωce
−ωct . (31)

As ωc is varied, the total time integral of the friction kernel, or
equivalently γ̃ (0) the kernel at zero frequency in the Fourier
domain, is being kept constant. The classical VACF can then
be derived from a Laplace transform of the classical GLE [34].
The result is

ψ (t ) = kBT

m
(p1e

s1|t | + p2e
s2|t |), (32)

where s1 and s2 are the solutions of

s2 + ωcs + γωc = 0, (33)

and

p1 = (s1 + ωc )

s1 − s2
; p2 = (s2 + ωc )

s2 − s1
. (34)

The normalized VACF is

φ(t ) = p1e
s1|t | + p2e

s2|t |, (35)

and therefore the recoil function is given by

t

|t |mY (t ) =
(

p1

s1
es1|t | + p2

s2
es2|t |

)
−

(
p1

s1
+ p2

s2

)
. (36)

Using the properties of quadratic roots, the constant term in
Y (t ) simplifies, giving

t

|t |mY (t ) =
(

p1

s1
es1|t | + p2

s2
es2|t |

)
+ 1

γ
. (37)

The limit of Y (t ) at large positive and negative times is
therefore independent of ωc. There is a connection between
the ωc-independence of the limits of Y (t ), and the ωc indepen-
dence of the classical diffusion coefficient D. The diffusion
coefficient is given by [42]

D =
∫ ∞

0
ψ (t ′) dt ′, (38)

but from the construction of Y (t ) as an accumulated phase
governed by the velocity correlation, it follows that

D = kBT Y (∞) . (39)

In other words, the classical diffusion coefficient governs the
long-time limit of the recoil function. The result is as general
as the relations (38) and (28), and therefore although it is neatly
illustrated by the exponential kernel, the result is not dependent
on any specific friction kernel.

FIG. 1. Analytical forms of the recoil function Y (t ) for ballistic
motion (blue dashed line) and different baths represented by the
friction kernel (31). One c.m.u. (approximately 0.1 atomic mass units)
is defined here as the mass unit consistent with a picosecond, Å,
meV system. The mass of the particle is 7.0 atomic mass units;
all else being equal, the size of the quantum recoil effect scales as
Y (t ) ∝ 1/m. The friction coefficient γ in γ (t ) = θ (t )γωce

−ωct was
taken as γ = 1.0 ps−1, a ballpark figure applicable to the diffusion
of adsorbates on metal surfaces. The key features of the curves with
varying ωc are a universal gradient at the origin, which matches the
result for ballistic motion, and a limit depending only on γ (not ωc)
as t → ±∞. Different values of ωc, shown in the legend, vary from
ωc 
 γ to ωc � γ . When ωc is very large such that the friction is
effectively Markovian, the recoil function transitions monotonically
between the limits (red solid curve). When ωc < 4γ the VACF φ(t )
acquires a cosine component and therefore oscillatory features are
present in Y (t ) (dot-dashed green curve).

Figure 1 shows the quantum recoil function Y (t ) for a
particle of mass 7.0 atomic mass units, subject to the expo-
nential friction kernel (31) with γ = 1.0 ps−1 and different
cutoff frequencies ωc, which include an essentially Markovian
example (ωc � γ ). Also shown is the γ = 0 result, corre-
sponding to the ballistic motion of the system particle. The
recoil function is always antisymmetric, due to its relationship
to the Fourier transform of a real function S(�K,ω). Y (t )
for ballistic motion is linear, with a gradient such that when
the complex ISF (20) is reconstructed, its representation in the
energy domain is simply the classical result but shifted by a
recoil energy Er = h̄2�K2/2m [26]. Comparing to the curves
in the presence of the bath shows that the gradient at the origin
is a universal property, independent of γ or ωc. The universality
can be understood on the basis that no matter how strong the
coupling to a bath, on a short-enough timescale the motion
of a classical particle will always appear ballistic, with the
bath imposing thermal initial conditions. The result therefore
applies regardless of either the detailed form, or the absolute
strength, of the friction kernel. Coupling to the bath leads to
a finite, ωc-independent plateau value Y (±∞) = ±1/mγ as
shown by Eq. (37). When memory effects are unimportant
the recoil function transitions smoothly between Y (−∞) and
Y (+∞) over a transition time governed by s1 and s2 which tend
to γ when γ � ωc. However, when ωc < 4γ , the decay rates
s1 and s2 take complex values which gives rise to oscillations
in φ(t ), ψ (t ), and Y (t ).
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FIG. 2. The recoil functions in Fig. 1 have been exponentiated at

�K = 1.0 Å
−1

to give the complex factor exp [ 1
2 ih̄�K2Y (t )] which

appears in the ISF (20). The plot shows the imaginary part only. When
the exponent is not too large, the shape of Im{exp [ 1

2 ih̄�K2Y (t )]}
is very similar to the shape of Y (t ) itself, due to the linear small-
argument expansion of sin [ 1

2 h̄�K2Y (t )]. However, when the accu-
mulated phase becomes very large, extended oscillations are seen, as
shown by the result for ballistic motion (blue dashed curve).

Figure 2 shows the imaginary part of the complex factor
exp [ 1

2 ih̄�K2Y (t )] in the ISF (20), derived from the recoil
functions plotted in Fig. 1. In the damped examples, with
the numerical parameters chosen, the plotted imaginary part
has a similar form to the recoil function itself, since a small-
argument approximation applies sin [ 1

2 h̄�K2Y (t )]. However,
the ballistic example emphasises that when the accumulated
phase spans a large range, monotonic variations in Y (t ) lead
to oscillations in the complex factor entering the ISF. The
oscillations shown in the ballistic limit translate to a shift of
the scattering function in the energy domain.

An oscillatory imaginary signal (polarization) is routinely
seen in helium-3 surface spin echo measurements of surface
dynamics, the experimental context that provided the impetus
for the present investigation. However, the physical origin of
the imaginary oscillations is usually scattering from surface
phonons [43,44]. Additionally, based on the general result
(28) and the VACF for Langevin dynamics in a harmonic
well [45], the ISF associated with an isolated underdamped
bound adsorbate will exhibit an oscillatory imaginary part. The
oscillations described in Fig. 1 are related but do not originate
from the scattering center being permanently bound, since we
are discussing an unconfined particle. It has been described
classically how oscillations in GLE correlation functions can
arise from transient wells created by the bath coupling, an
effect known as solvent caging [46]. Therefore, the results
in Figure 1 describe how oscillations in the recoil function
Y (t ) come about for diffusion in a completely flat potential
energy landscape, as a result of the finite correlation time in the
fluctuating bath degrees of freedom. A confluence of the results
in the present work, models for surface phonon lineshapes [31]
and continuing experimental refinements for the efficient mea-
surement of imaginary polarization [47] and complete spectra
[48,49] could allow the experimental disentanglement of the
effects in future for suitable systems of low-mass adsorbates.

Although the separation of clean surface phonon effects and
effects due to adsorbate recoil would be a serious challenge,
the concept is at least feasible in helium scattering owing
to the large cross section for diffuse scattering from isolated
adsorbates [50]. The general concept that a coupling between
two distinct components of a surface system can be probed via
scattering from one component, is interestingly familiar in the
context of helium scattering and the electron-phonon interac-
tion [51]. The potential of detailed scattering measurements to
resolve details of the adsorbate/bath coupling is very significant
given the ongoing interest in separating out and quantifying
the different contributions to atomic-scale dissipation during
surface diffusion [52], where memory effects in dissipation are
likely to be indicative of the coupling being predominantly to
phononic rather than electronic degrees of freedom.

To relate our results to the broader context of non-
Markovian systems, we briefly draw attention to an alternative
mechanism by which oscillations in the imaginary part of
correlation functions appear due to the nature of system-
environment coupling. In the model considered throughout
the present article, the system co-ordinate is directly coupled
to a large number of bath modes. In the context of optical
spectra associated with two-state electronic transitions in dye
molecules in solution, the physical situation motivates a differ-
ent family of non-Markovian coupling models. A vibrational
solute mode is linearly coupled to the electronic states such that
it experiences a net force when the dye is in the excited state.
The solute mode is then coupled to a continuum of solvent
modes acting as the heat bath [53], allowing the vibrational
coordinate to relax to a new equilibrium displacement in the
electronic excited state that reduces the optical energy gap for
subsequent photon emission (Stokes shift) [54]. The solute
mode (special molecular mode) is taken to undergo quantum
Brownian motion subject to Langevin friction, and because
its motion is directly proportional to the instantaneous optical
transition energy, its correlation function g(t ) can be measured
by spectroscopic means. In broad analogy with the ISF for
quantum diffusion, the imaginary part of g(t ) leads to spectral
shifts that can be resolved at low temperature. If the imaginary
part of the correlation function is underdamped (has memory),
one may resolve a progression of vibronic sidebands, i.e.
see the quantum nature of the environment, but overdamped
motion leads to a continuous broadening of the spectral line
and a Stokes shift. At very high temperatures, the optical
correlation function becomes essentially real-valued (like the
classical ISF), and the Stokes shifts can no longer be resolved
in optical spectra described by the model above [54].

IV. CONCLUSION

Making use of a normal modes transformation, and re-
exponentiation result for a single normal mode, we have
derived analytical expressions for the intermediate scattering
function (ISF) of a quantum particle diffusing in a flat or
harmonic potential landscape, linearly interacting with a har-
monic bath. The results are presented in the form of an exact
relationship between the classical velocity autocorrelation,
and the real and imaginary parts of the exponent of the
ISF. The results are valid for arbitrary memory friction and
therefore extend previous work carried out in the quantum
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Langevin framework where the imaginary part of the ISF
exponent was calculated in a Markovian limit. The results
allow a straightforward reference calculation of the quantum
ISF for arbitrarily strong and non-Markovian friction, which
could be used to benchmark more general but approximate
methods for calculating quantum correlation functions. We
have provided detailed results in closed form for the special
case of unconfined diffusion subject to a memory friction
kernel of overall strength γ , decaying exponentially in time
with a rate ωc that quantifies memory effects. The detailed
behavior of the imaginary part of the exponent of the ISF
depends on both γ and ωc. However, the long time limit is
independent of ωc, and the short-time behavior is independent
of both γ and ωc, consistent with universal ballistic behavior
on a short enough time scale.
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APPENDIX: NORMAL MODES TRANSFORMATION

We provide, for convenient reference, some brief additional
details on the steps leading from the form of the Hamiltonian
in Eqs. (1) to (11), from the perspective of co-ordinates
and momenta. The presentation here is nothing new, but
is included for clarity and to explain the transformation in
the prevailing framework and notation of the main text. As
stressed in the main text, there is no need to actually carry
out the transformation described here: to justify the derivation
of the central results of the article, it is sufficient that the
transformation is legitimate and can be carried out in principle.

The Hamiltonian of Eq. (1) can be written as a quadratic
form over the co-ordinate and momentum operators. Write all
the co-ordinates of the global system as a column vector x in
which the first element of the vector is the system co-ordinate
x, and the rest are the xα . Define p in the analogous way with
the corresponding momenta. Then, the Hamiltonian 1 can be
expressed as

H = 1

2m
pT p + 1

2
xT Vx, (A1)

where m is still the particle mass, and V is a real symmetric
matrix. We have assumed that the mass of every bath oscillator
mode is the same as the particle mass, which according to
arguments in the main text leads to no loss of generality.

Given that V is real and symmetric, there exists an orthog-
onal matrix O such that OT VO = D where D is diagonal.
Let y be a column vector representing a set of operators yk ,
constructed from x by a linear transformation

y = Ox. (A2)

Define analogously for the momentum operators

q = Op (A3)

representing a set of operators qk . Then the Hamiltonian can
be written as

H = 1

2m
qT q + 1

2
yT Dy. (A4)

Since D is diagonal, H is simply the sum of independent
oscillator Hamiltonians, as given by Eq. (11), as long as the
collections of operators {yk} and {qk} satisfy the commutation
relations defining them as independent co-ordinate and mo-
mentum operators:

[yk, yl] = [qk, ql] = 0, (A5)

and

[yk, ql] = ih̄δk,l, (A6)

where δkl is the Kronecker delta symbol. It is straightforward
to show that if the original sets of operators represented
by x and p obeyed the correct commutation relations for
independent degrees of freedom, then so do {yk} and {qk}.
The relations (A5) are trivially satisfied because linear combi-
nations of commuting operators also commute. The position-
momentum commutators (A6) can be found by writing out
the linear transformations (A2) and (A3) as yk = Ok,axa and
pk = Ok,axa assuming the summation convention. Then, the
commutators can be worked out as

[yk, ql] = Ok,aOb,l[xa, pb] = ih̄Ok,aOb,lδa,b = ih̄Ok,aOa,l .

(A7)

The defining property of an orthogonal matrix is that OOT = I,
or Ok,aOa,l = δk,l , and therefore the commutators [yk, ql]
satisfy the required relation (A6).
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