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In the regime of strong coupling between molecular excitons and confined optical modes, the intramolecular
degrees of freedom are profoundly affected, leading to a reduced vibrational dressing of polaritons compared
to bare electronically excited states. However, existing models only describe a single vibrational mode in each
molecule, while actual molecules possess a large number of vibrational degrees of freedom and additionally
interact with a continuous bath of phononic modes in the host medium in typical experiments. In this work, we
investigate a small ensemble of molecules with an arbitrary number of vibrational degrees of freedom under
strong coupling to a microcavity mode. We demonstrate that reduced vibrational dressing is still present in this
case, and show that the influence of the phononic environment on most electronic and photonic observables in the
lowest excited state can be predicted from just two collective parameters of the vibrational modes. Besides, we
explore vibrational features that can be addressed exclusively by our extended model and could be experimentally
tested. Our findings indicate that vibronic coupling is more efficiently suppressed for environments characterized
by low-frequency (sub-Ohmic) modes.

DOI: 10.1103/PhysRevB.98.165416

I. INTRODUCTION

When an ensemble of quantum emitters interacts with a
confined electromagnetic field (EM) mode, the system can
enter into the strong coupling regime, resulting in the for-
mation of light-matter quasiparticles known as polaritons,
which inherit properties from each constituent. In particu-
lar, organic molecules present favorable features to achieve
large couplings to optical modes at room temperature, due to
their tightly bound Frenkel excitons [1,2] with large dipole
moments. These properties offer an optimal experimental
platform for polariton lasing [3,4], enhanced exciton con-
ductivity [5], light harvesting [6], and suppression of photo-
bleaching in J aggregates [7]. The strong light-matter cou-
pling regime can be attained experimentally in a variety of
different setups, such as in microcavities filled with a large
number of molecules [8] or, more recently, in nanoscale
plasmonic resonators coupled to just a few molecules [9,10].

The formation of exciton-polaritons in inorganic semicon-
ductor microcavity systems [11] is known to decouple polari-
ton states from the phonons, which act uniquely on the matter
component. In this case, the bare exciton-phonon coupling is
already relatively weak and can be treated perturbatively by
means of an effective scattering rate for the extended inorganic
polariton states that enables to treat their nonequilibrium
dynamics with simple kinetic models [11–14]. For coupling
to acoustic phonons, the very steep dispersion (low density of
final scattering states) in the lower-polariton branch leads to
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a very effective decoupling from the phononic environment
and inefficient thermalization of polaritons [11–14]. The exis-
tence of spectrally resolved exciton-polaritons in the presence
of the phonons could also be addressed in simple models
of coupled damped harmonic oscillators that introduce the
effect of phononic dephasing on the formation of polariton
modes [11,15].

In contrast to inorganic systems, organic microcavities
have only recently emerged as a subject of investigation,
with several works predicting the reduction of vibrational
displacement (RVD) in exciton-polariton states compared to
bare-molecule excited states with significant implications in
the chemical reactivity of such molecules, such as polaritonic-
based catalysis of electron transfer [16] and photoisomeriza-
tion [17]. Unlike inorganic systems, organic materials dis-
play very strong and structured exciton-vibrational coupling
arising from the intramolecular modes of the chromophores.
Quantum correlation effects, such as polaron formation, must
be included, as must the role of non-negligible reorganization
energy and the possible impact of having comparable light-
matter and vibronic interactions in the real-time dynamics and
steady states. Approaches typically rely on the Holstein-Tavis-
Cummings (HTC) model, which describes a single EM mode
coupled to a collection of molecules with a single vibrational
mode each [16,18–21]. Nevertheless, actual molecules pos-
sess a large number of nuclear oscillation modes and, addi-
tionally, interact with a continuous bath of phononic modes
in the host solvent [22] or polymer matrix [23] in typical
experiments, which induces additional chemical changes [24].
In this case, the persistence of the RVD in polaritons is
unknown.
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FIG. 1. (a) Sketch of a molecular ensemble interacting with a
confined EM resonance (dashed region) and with the host envi-
ronment (gray circles). (b) Scheme illustrating the mapping of the
vibrational modes yielding the multichain Hamiltonian used in the
simulations, where the excitons interact with collective reaction
coordinates in the molecules.

In this work, we present a study of the lowest-energy
polaritonic state supported by a small ensemble of organic
molecules under strong coupling to an optical microcavity
mode, sketched in Fig. 1(a). Under the assumption that the
molecules are close to their mechanical equilibrium, we in-
clude the whole vibrational spectrum of nuclear and environ-
mental modes in our analysis, specified by the spectral density
Jv (ω). The level of modeling of the molecules, therefore, goes
beyond the HTC Hamiltonian, but still enables exploration
of the full many-body wave function employing canonical
bosonic operators and thus the toolbox from quantum optics.
Due to its mixed threefold photonic-excitonic-phononic char-
acter, this eigenstate is dubbed the lower polaron-polariton
(LPP), adopting the nomenclature in Ref. [25]. To treat
phononic and photonic processes in the molecules in the same
footing, and, at the same time, deal with an arbitrary number
of vibrations, we exploit a tensor network (TN) representation
of the system’s wave function that extends the widespread
matrix product states (MPS) for one-dimensional quantum
chains [26]. This means the LPP is retrieved by variational
minimization of the TN via the variational matrix product
state (VMPS) algorithm [27], which filters out the most rel-
evant components mixed in the state capturing their mutual
entanglement.

Our results show the robustness of RVD in the LPP wave
function beyond the HTC model, extending its validity to
arbitrary structured phononic baths. Moreover, the trend for
larger ensembles indicates the effective suppression of po-
laron formation in the thermodynamic limit. Intriguingly, we
observe that excitonic and photonic components are largely
independent of specific molecular details, and can be repro-
duced by an effective HTC model determined by two single-
molecule cumulative parameters. Specifically, these are the
reorganization energy � [28], associated with the reequilibra-
tion of the vibrational modes after electronic excitation, and
the mean phononic oscillation frequency �v that corresponds
to a collective reaction coordinate. Conversely, the LPP

vibrational properties are strongly molecule dependent and
thus shaped by Jv (ω).

The paper is organized as follows: In Sec. II we first present
the model and introduce the TN based algorithm aimed to
target the LPP wave function. Namely, we analyze in Sec. III
the LPP eigenfrequency and the excitonic and photonic states
reduced populations as a function of vibronic coupling, in-
cluding the vibration-free polaritonic components mixed into
the state. In Sec. IV focus on the “spectrum” of vibrational
displacement as the spectral density is varied. Finally, in
Sec. V we test our conclusions for organic molecules with a
highly structured spectral density, using rhodamine 800 as a
test case.

II. MODEL AND METHODS

Our model includes a collection of N identical molecules,
containing a single exciton with frequency ωe and ladder
operators σ̂

(i)
± (i = 1, . . . , N ), placed within the volume of a

nanocavity or microcavity supporting a single dispersionless
EM mode (frequency ωO = ωe) and annihilation operator
â. The total Hamiltonian contains two different parts, as
schematically depicted in Fig. 1(b). First, the system S that
accounts for the excitons within the molecules, the cavity EM
mode, and their mutual coupling, measured by the collec-
tive Rabi frequency �R and treated within the rotating-wave
approximation (setting h̄ = 1)

ĤS = ωOâ†â +
N∑

i=1

ωeσ̂
(i)
+ σ̂

(i)
− + �R

2
√

N

N∑
i=1

(â†σ̂ (i)
− + σ̂

(i)
+ â).

(1)

We neglect interexcitonic interactions, which we assume
are screened out by the host environment. In the single-
excitation subspace, ĤS is exactly solvable. Its eigenstates are
two polaritons, upper (UP) and lower (LP), |±〉 = (â†|G〉 ±
|B〉)/

√
2, with frequencies ω± = ωO ± �R/2, which result

from the hybridization of the collective excitonic bright state
|B〉 = (

∑N
i=1 σ̂

(i)
+ |G〉)/

√
N with the cavity EM mode (here

|G〉 stands for the global vacuum state). In addition, there are
(N − 1) so-called dark states (DS), |d〉 ∈ D, which are purely
excitonic states of frequency ωe that are orthogonal to |B〉.

The second part of the Hamiltonian describes the vibra-
tional subspace E (i)

v containing a large number Mv of vi-
brational modes both inside the molecule and in the host
environment, and their elastic coupling to the excitons. The
kth vibrational mode is approximated by a harmonic oscillator
of frequency ωk (valid close to the equilibrium position)
with annihilation operator b̂

(i)
k and exciton-phonon coupling

strength λ
(i)
k :

Ĥv =
N∑

i=1

Mv∑
k=1

ω
(i)
k b̂

†(i)
k b̂

(i)
k +

N∑
i=1

Mv∑
k=1

λ
(i)
k

(
b̂

(i)
k + b̂

†(i)
k

)
σ̂

(i)
+ σ̂

(i)
− .

(2)

The properties of these modes, {ω(i)
k , λ

(i)
k }, are encoded in

the spectral density J (i)
v (ω) = Jv (ω) = π

∑Mv

k=1 λ2
kδ(ω − ωk ).

Here, the exciton-phonon coupling does not lead to nonra-
diative decay [24]. The coupling parameters λk describe the
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relative shifts of electronic potential surfaces between ground
and excited states. For the uncoupled molecules (�R = 0),
the total Hamiltonian ĤS + Ĥv becomes a sum of exactly
diagonalizable independent-boson models [29]. Namely, the
eigenexcitations or Lang-Firsov polarons can be visualized as
localized “phonon clouds” surrounding the excitons at each

molecule: |Di〉 = e−Ŝi |E〉, with Ŝi = σ̂
(i)
+ σ̂

(i)
−

∑
k

λ
(i)
k

ω
(i)
k

(b̂(i)
k −

b̂
(i)†
k ), where |E〉 = σ̂

(i)
+ |G〉.

For typical molecules, when Mv becomes large [or even
formally infinite when a continuum approximation for Jv (ω)
is used], most standard approaches of quantum optics to
calculate the eigenstates of the system fail, and even many
approximate methods become prohibitively expensive. For
instance, direct diagonalization of the total Hamiltonian is
unfeasible, even for N = 1. However, a VMPS algorithm
permits to calculate the full wave function including all de-
grees of freedom of either the time-evolved wave function
after excitation (analyzed in [30]) or the ground state within
the single electronic excitation subspace. This is precisely
the “lower polaron-polariton” [16,20,25] analyzed in the so-
called Holstein-Tavis-Cummings (HTC) model [16,20,21,25],
which deals with a single vibrational mode with frequency ωv

and vibronic coupling λv , i.e., JHTC(ω) = πλ2
vδ(ω − ωv ). In

particular, the Hamiltonian (2) extends the HTC to an arbitrary
number Mv of vibrational modes.

Here, we employ a tensor network state based approach
that is numerically exact as long as convergence is reached,
permitting a nonperturbative exploration of the quantum ef-
fects arising in the LPP. It does not rely on any specific
form of the spectral density and, in particular, can be used
both for discrete and continuous Jv (ω). To apply this method,
we perform an orthogonal mapping of the modes in the N

vibrational (green in Fig. 1) environments (E (i)
v ). We rely on

the chain transformation introduced in [31], which maps the
molecular Hamiltonian (2) for an exciton coupled to many
independent vibrations to an exciton coupled only to the first
site in a chain of coupled oscillators, leading to the vibrational
Hamiltonian Ĥ ′

v = ∑N
i=1 Ĥ

′(i)
v :

Ĥ
′(i)
v = �vĉ

(i)†
0 ĉ

(i)
0 + ησ̂

(i)
+ σ̂

(i)
−

(
ĉ

(i)
0 + ĉ

(i)†
0

)
+

Mv−1∑
l=1

ωlĉ
(i)†
l ĉ

(i)
l +

Mv−2∑
l=0

tl
(
ĉ

(i)†
l ĉ

(i)
l+1 + ĉ

(i)†
l+1ĉ

(i)
l

)
. (3)

This transformation results in the star coupling structure
for ĤS + Ĥ ′

v sketched in the right part of Fig. 1(b). The modes
are thus regrouped in chains with length L = Mv [32], with
only the first mode coupled to the exciton-photon subspace
S (red-blue). Namely, each exciton is coupled to a single
collective reaction mode defined by ηĉ0 = ∑

k λkb̂k [33–36],
with total amplitude

η =
√∫ ωc

0
Jv (ω)dω/π, (4)

which generalizes the vibronic coupling in the HTC model
(η = λv in this case) and average bath frequency

�v =
∫ ωc

0 ωJv (ω)dω∫ ωc

0 Jv (ω)dω
, (5)

which similarly generalizes ωv . All other chain modes become
connected through nearest-neighbor hopping interactions tl .
The discussion below shows an important quantity to char-
acterize the vibronic coupling in the system in the so-called
reorganization energy, given by

� = 1

π

∫ ωc

0

Jv (ω)

ω
dω, (6)

and directly linked with the Stokes (frequency) shift be-
tween maxima of emission and absorption spectra in organic
molecules, given by 2� [37,38].

The star Hamiltonian (3) permits direct implementation of
the VMPS algorithm. To this end, the LPP wave function
|ψ−〉 is represented by a tensor network with maximum bond
dimensions D, which directly mimics the coupling structure
in the star Hamiltonian [Fig. 1(b)], making the representation
numerically efficient. This procedure, coupled with a varia-
tional approach to calculate the LPP, leads to a multichain
variant of the density matrix renormalization group algorithm
(DMRG) for 1D quantum lattices [39]. When continuous
vibrational spectra are taken into account, the formally infinite
phononic chains are truncated at length L, which must be
chosen large enough to reach convergence. A more detailed
discussion can be found in the Appendices A 1 and A 2.

We present results for a maximum of N = 5 molecules.
For large molecular ensembles, a severe memory bottleneck
occurs if the system S is stored in a single root tensor leading
to exponential scaling in N . However, as shown in [40,41], it
would be possible to restore the efficiency of the numerical
method while maintaining precision, by further decomposing
the root node into a tree TN, where each final branch repre-
sents an exciton or the cavity photon and is coupled to a single
chain. Developing a suitably efficient tree model requires an
explicit analysis of “entanglement topology” of the state, an
idea that has recently been implemented to allow the simula-
tion of multienvironment linear vibronic models constructed
from ab initio parametrizations of small molecules [42]. We
here focus on the intrinsic properties of the ground state
within the single excitation subspace alone but note that
the same approach also allows efficient simulation of the
polariton time evolution, which provides insight on the highly
nontrivial dissipative processes into the LPP and their impact
on the spectral linewidths in linear response [30]. To further
ameliorate memory issues for large chain mode occupations,
we employ an optimal boson basis for the chain tensors [43],
which can be determined on the fly via VMPS [44]. A more
detailed description of the theoretical approach can be found
in [44].

A. Holstein-Tavis-Cummings limit

In order to connect our study with the cases available in
the literature, we start by briefly revisiting the HTC model,
first introduced by Kirton et al. [18], which can be solved by
various methods, including direct numerical diagonalization
and via variational Ansätze [16,21,25]. Vibronic coupling
is parametrized by the reorganization energy � = λ2

v/ωv ,
obtained from Eq. (6). In Figs. 2 and 3 we show the eigenen-
ergies of the system for N = 1 and 2 molecules, with a
single electronic/optical excitation in the system at maximum.
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FIG. 2. (a) Photonic components in the eigenspectrum of the
HTC model for a single molecule as a function of the ra-
tio between Rabi frequency �R and vibrational frequency ωv .
(b) Vibrational component. Dashed purple lines indicate the upper
and lower vibration-free polariton energies. The energy origin is set
at ωe = ωO = 0.

The coexistence of vibronic and photonic couplings results
in an involved eigenspectrum where states are characterized
by a triple mixture of vibrational, photonic, and excitonic
states [16,45]. In these figures, the color scale is used for
displaying the cavity and vibrational populations 〈â†â〉 and
〈b̂†b̂〉 = ∑

i〈b̂(i)†b̂(i)〉, respectively.
For a single molecule, the “vibration-free” eigenstates

(i.e., for � = 0) system are precisely the polaritons de-
scribed in left panels of Fig. 2, together with their vibra-
tional sidebands corresponding to excited molecular phonons.
The energies of these states are, therefore, ω±

n = ω± + nωv ,
n ∈ N. Conversely, if there is no coupling with the cavity
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FIG. 3. (a) Photonic components in the eigenspectrum of the
HTC model for two molecules as a function of the ratio between Rabi
frequency �R and vibrational frequency ωv . (b) Total vibrational
components 〈b̂†b̂〉 = N〈b̂(i )†b̂(i )〉. Dashed purple lines indicate the
upper and lower vibration-free polariton and excitonic dark-state
energies. The energy origin is set at ωe = ωO = 0, and we consider
ωv = 0.2 eV.

mode (limit �R = 0), vibronic coupling results in the for-
mation of a polaron with energy ωe − �. For intermediate
energy scales (right panels), the ground state in the single-
excitation space (LPP) has a partially polaritonic nature [25].
In Fig. 2(a), higher-energy polaritonic sidebands display anti-
crossings caused by vibronic interaction when resonance con-
ditions are met. This is confirmed by the fact that eigenstates
do not have a well-defined phonon number in the vicinities of
the split regions [see Fig. 2(b)]. Also, for large �, the photonic
nature of the states becomes transferred to higher-energy
excitations as it becomes increasingly unfavorable to form
hybrid light-matter quasiparticles in the system, while for
higher �R the states contain a greater fraction of the “original”
polaritons. As a minimum extension to the collective behavior
of the system, we analyze in the following a molecular dimer
within the HTC model. In this case, the presence of one
dark excitonic state |d〉 = (σ̂ (1)

+ − σ̂
(2)
+ )|G〉/√2 besides vibra-

tional sidebands (frequencies ωn
d = ωe + nωv , n ∈ N) is also

present in the vibration-free eigenstates displayed in the left
panels of Fig. 3. Vibronic interaction results in a larger shift
of dark states as compared to polaritons, as inferred from the
right panels in Fig. 3. Eigenenergies present actual crossings
in addition to anticrossings, leading to a much richer structure
of eigenstates than for N = 1 [45]. Comparing the vibrational
components in Fig. 3(b) with those of Fig. 2(b) above, a slight
reduction of the vibrational dressing (RVD) in the LPP is
noticed, close to the threshold at which reorganization energy
and Rabi frequency become comparable (i.e., when �R � �).

In particular, numerical and variational solutions for larger
N display scaling of this phenomenon as 1/N [16,17,21]. In
the thermodynamic limit, therefore, the LPP becomes closer
to the bare LP, and polaron formation is suppressed. A key
observation is that RVD is not observed for the whole ladder
of eigenstates, resulting in strong vibronic effects arising in
the excited states (for example, in the dynamics triggered by a
high-frequency pulsed excitation). One direct consequence of
polaron decoupling is the eventual suppression of the reorga-
nization energy of excited electrons, which, as first pointed out
by Herrera and Spano in [16], could be exploited to enhance
electron transfer reaction rates.

III. EXCITONIC AND PHOTONIC FEATURES OF THE LPP

The spectral density in organic materials depends strongly
on the molecules and the host matrix. In order to ob-
tain general conclusions, we thus first study the effect of
many-mode vibrational dressing on polaritons using a stan-
dard parametrization of low-frequency vibrational modes, the
Leggett-type spectral density1

Jv (ω) = 2παω1−s
c ωsθ (ωc − ω), s > 0 (7)

where ωc corresponds to a cutoff energy, α describes the
overall strength of the exciton-phonon coupling, and the ex-
ponent s determines the shape of the spectral density, with
s = 1 giving a so-called Ohmic spectral density, while s < 1

1Spectral densities of this type have been studied thoroughly in
the simplest example of quantum dissipation model, the spin-boson
model. See [48] and [46] for further details.
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FIG. 4. (a) Functional forms adopted for the LPP calculation and
(b) reduced populations over subsystem S in the LPP as a function
of the coupling strength to the reaction coordinate η. Here, different
curves correspond to the different spectral densities in (a), depicting
in the upper and lower windows of (b) the cases for Rabi frequency
shown.

and s > 1 correspond to sub- or super-Ohmic densities, re-
spectively. The cutoff ωc implies that fast modes ωk > ωc

are reabsorbed in the coupling constants through the adi-
abatic approximation [46]. It is interesting to note for the
following discussion that, within the single-molecule limit, a
regime recently reported in plasmonic nanocavities [10,47],
the Hamiltonian (2) can be mapped precisely to the well-
known spin-boson model (SBM) [46,48] by a shift of the
vibrational mode origin, as shown in Appendix B.

In this section, we study the influence of vibrational dress-
ing on the excitonic and photonic properties of the LPP. We
focus on Leggett-type spectral densities [Eq. (7)] with s =
0.5, 1, and 2 [shown in Fig. 4(a)]. For ease of reference,
we will compare the results with those obtained from the
HTC model. The cutoff frequency ωc is tuned to maintain
the reaction coordinate frequency constant and equal to that
of the reference HTC model �v = ωc(1 + s)/(2 + s) (= ωv

in the HTC). We consider an anthracenelike molecule having
a vibrational spacing of �v = 0.2 eV, and unless otherwise
stated, we assume an ensemble containing N = 5 molecules.

In order to investigate the interplay between exciton-
photon and exciton-phonon interactions without dealing with
the full many-body state, we trace out the vibrational modes
to calculate the reduced density matrix ρ̂S = TrEv

{|ψ−〉〈ψ−|}.
As Fig. 4(b) shows, the LPP state becomes more excitonic as
the coupling amplitude to the reaction coordinate η [Eq. (4)]
grows, with a more substantial photonic character in a given
molecule if the Rabi frequency �R is larger. Such behavior
signals the tradeoff between vibrational and photonic coupling

scales. Nevertheless, the different curves for different Jv (ω)
clearly indicate that the vibrational influence on the system is
not solely determined by the reaction coordinate in the organic
molecules. Instead, the remaining “dark” vibrational com-
binations produce changes that are not captured adequately
by η.

These results motivate us to consider the reorganization
energy �, defined by Eq. (6) and given by � = 2αωc/s

for Leggett-type Jv (ω), as a measure of the global influence
of the whole set of phononic modes on the system. We
next proceed to include the LPP eigenfrequency ωψ− in the
discussion. In particular, the values of the shift ωψ− − ω−
(the bare LP frequency to disregard the linear energy shift
by the Rabi frequency in the discussion) as a function of the
reorganization energy can be read from Fig. 5(a). The LPP
eigenenergy undergoes a monotonic red-shift as a result of
the increased vibrational dressing in electronic and photonic
components. Mirroring the results for the HTC model, the
slope of the curves differs at either side of the crossover at
� � �R/2, being steeper at the large � region [21]. Accom-
panying this trend, the total photonic (excitonic) fractions of
the LPP (diagonal elements in ρ̂S ) are decreasing (increasing)
very similar functions of the reorganization energy [Fig. 5(b)].
Additional insight into the LPP internal structure is gained
by considering the weights of the vibration-free eigenstates
(� = 0) that are mixed into the LPP by the vibronic coupling.
As expected, Fig. 5(c) reveals that |ψ−〉 is constituted by
major contributions from the bare LP (|−〉) and dark states
(|d〉 ∈ D), with some small fraction of the UP (|+〉). In
particular, in the flatter region where � � �R/2 the LPP is
well approximated by the bare lower polariton with frequency
ωψ− � ω− = ωe − �R/2.

The results above suggest that in real space the limit at
large Rabi frequencies corresponds to a LPP that is a spatially
delocalized state over the ensemble, with nearly no molecular
phonon excitation. In the opposite large Stokes-shift limit, the
LPP becomes closer to spatially localized polarons, with a
LPP-LP shift of −� [irrespective of Jv (ω)], and no photonic
component. The tradeoff between the two effects leads to a
relocation of the contribution ρ−−, into the dark excitonic
states ρD,D, with eventual crossover at the large Stokes-shift
limit, mirroring results for the HTC model in the previous
section. To further corroborate the existence of the previous
extremes we calculate the bipartite entanglement between S
and E , measured by the partial von Neumann entropy S(ρ̂S ) =
−Tr(ρ̂S log ρ̂S ). As we observe in Fig. 5(d), correlations in
the LPP, absent at � = 0, build up for increasing Stokes shift
as vibrational states become more mixed with excitons (and
indirectly the cavity photon). For large �, the formation of
polarons entails the saturation of the entanglement entropy
at the value S(ρ̂S ) � log N corresponding to N excitons
maximally mixed with the vibrational modes.

In the halfway of the polaritonic and polaronic limits,
where neither �R nor Jv (ω) are negligible, state |ψ−〉
possesses a threefold excitonic-photonic-polaronic character.
Even in this region, observables acting within the system
S , present only quantitative changes depending on the
vibrational spectrum of the molecules. A direct consequence
is the emergence of an RVD effect when comparing the LPP
with uncoupled excitons, arising from an increased Rabi
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FIG. 5. (a) Energy shift with respect to the bare LP (� = 0), (b) exciton/photon fractions (c), vibration-free components in the LPP, and
(d) von Neumann entropy of the photonic-excitonic and vibrational states bipartition, as a function of reorganization energy. In these panels,
upper panels depict the case �R = �v and �R = 10�v = 2 eV for the lower panels.

frequency (lower panels in Fig. 5). In this way, shallower
curves in Figs. 5(a)–5(c) indicate a larger resemblance
with the LP in frequency, populations, and light-matter
coherences, respectively, while the entanglement entropy
S(ρ̂S ) diminishes in Fig. 5(d) as �R is augmented due to
decoupling from vibrations. In our simulations, we also
observed similar effects for a fixed Rabi frequency and
growing ensemble size N . The increasing suppression of
the vibrational dressing could suggest the onset of polaron
decoupling in the limit N 	 1, similar to the one reported
for a single mode as observed above [16,21]. From the point
of view of chemistry, similar results have been obtained
without canonical quantization of molecular vibrations,
generalizing our conclusions to arbitrary electronic potential
energy surfaces far from equilibrium (e.g., in chemical
reactions) [17,49]. In this case, the so-called “collective
protection” (the extended version of the RVD) has been
shown in the thermodynamic limit, by means of suppressed
displacements in the polaritonic (nuclear-coordinate-
resolved) surfaces. Lower-polariton and ground-state
(vacuum) electronic surfaces thus become identical, with
a critical impact on photoisomerization reactions.

The results above reveal the robustness of the RVD, which
does not rely on the fine molecular/host details encoded in
Jv (ω). Instead, the LPP for molecules close to the equilibrium
is accurately characterized by the coupling to a reaction coor-
dinate with frequency �v while the global effect of the vibra-
tional modes enters through the full reorganization energy �.

These features can therefore be understood within an effective
HTC model, with phonon frequency chosen according to the
experimental reaction coordinate frequency and Stokes shift.

The case of polaritons formed from molecules with large
Stokes shift has been recently reported, showing that emission
from the hybrid polaritons is suppressed and instead occurs
from the bare molecules [50]. In this limit, it is more en-
ergetically favorable for an exciton to form a polaron rather
than hybridize with a photon, as shown by diagonalization of
ĤS + Ĥv . Although TN based approaches to target excited
states have been devised [51], we exploit aforementioned
similarities to further visualize the photonic properties of a
simpler HTC model with N = 2 (see Fig. 6). In this manner,
we observe that the quasiparticle weight of the vibration-
free polariton Zψn

= ||〈ψ−|ψn〉||2 indeed “climbs up” to the
excited states as � is increased, a fingerprint of polaritons
at higher energies (see Fig. 6). This can be understood as
a consequence of the fact that transitions within the Franck-
Condon region (and thus with non-negligible dipole moment)
occur to vibrationally excited states for large exciton-phonon
coupling.

Finally, we noticed quantitative differences as molecular
details were varied, which are particularly prominent in the
region � � �R/2, where maximum mixing between purely
polaritonic and polaronic states is observed, and when the
vibrational spectrum in the molecules is dominated by slow
modes [sub-Ohmic Jv (ω)]. While exciton/photon properties
have been shown to be universal, the impact of light-matter
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FIG. 6. Excitation spectrum |ψn〉 of ĤS + Ĥv for a HTC model
with N = 2 molecules and �R = 0.2 eV. The color scale indicates
the overlap with the bare LP Zψn

with increasing saturation.

coupling on different molecular vibrations is averaged out
in ρ̂S . These nontrivial features motivate further analysis
of the intrinsic vibrational properties in the LPP state, by
first calculating a quasiparticle weight Zψ− = ‖〈ψ−|−〉‖2 that
indicates how close the LPP is to the vibration-free LP, shown
in Fig. 7. Increased overlaps signal the RVD at large Rabi
frequencies and exponents s. It should be noted that Zψ−
includes only the overlap with the vibrational vacua |0〉E (i)

v
,

in contrast with the population ρ−−, reduced over the whole
environment. Therefore, when Figs. 5(c) and Fig. 7 are com-
pared, a more polaronic character of the LPP is noticed with
larger vibrational dressing for sub-Ohmic Jv (ω). However,
as we show in Fig. 5(a), the energy shifts associated with
sub-Ohmic baths are actually weaker than in super-Ohmic
and single-mode environments, indicating that the RVD is
strongest for sub-Ohmic baths. We shall elucidate the origin of
this effect, related to the dominance of slow vibrational modes
in sub-Ohmic environments, in the next section by further
exploring the many-body vibrational properties of the LPP
state.
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FIG. 7. Overlap of the LPP wave function with the vibration-free
polariton |−〉 for �R = 0.2 eV (upper panel) and �R = 2 eV (lower
panel) for the HTC and Jv (ω) in the form (7).

IV. VIBRATIONAL FEATURES OF THE LPP

Our VMPS approach enables access to the full many-body
vibrational component of the LPP wave function, which can
be exploited to resolve phononic features in frequency space
that are disregarded in the HTC model. In this section we show
how vibrational observables are shaped by the specific shape
of Jv (ω). To this end, we analyze the frequency-resolved
vibrational displacement in the LPP state for the electronically
excited molecule i. For further insight we split this observable
into conditional displacement contributions arising from each
system state |nS〉 ∈ S mixed into the LPP,

Xi,nS (ωk,�R,�) = |〈ψ−|P̂nS

(
b̂

(i)
k + b̂

(i)†
k

)|ψ−〉|
ρnS ,nS

, (8)

which includes a projector over system states P̂nS . Here, we
normalized by the corresponding system-state population to
discern situations where the state fraction is vanishingly small.
In practice, the calculation of Eq. (8) requires reverting the
chain mapping for the ĉ

(i)
l modes.

The displacement spectra in Fig. 8 explicitly show the
RVD of electronically excited molecules in the LPP, with de-
creased vibrational displacement Xi,ei

from the bare-molecule
value Xi,ei

(ωk,�R = 0) = λ2
k/ω

2
k , when �R is increased [see

Fig. 8(a)] and a more substantial suppression at low frequen-
cies and smaller s.

The microcavity mode induces a “crosstalk” between
otherwise disconnected molecules (note that we neglected
dipole-dipole interactions). This results in a finite contribution
of phononic displacement in a given molecule, caused by
electronically excited states residing in others, Xi,ej �=i

[see
Fig. 8(b)], and also a “molecule-induced” vibrational dis-
placement in the cavity state measured by Xi,1. Although these
contributions are suppressed for low frequencies at large �R ,
in a similar way to the “local” quantity Xi,ei

, they slightly
augment in a counterintuitive way for larger frequencies.
Nonlocal and cavity-mode vibrational dressing present very
similar trends, while the second is less sensitive to the Rabi
frequency �R [see Fig. 8(c)]. Moreover, an analysis varying
the ensemble size at large �R for N = 1–5 (not shown)
suggests the local vibrational displacement Xi,ei

scales for the
whole frequency spectrum as 1/N . These results generalize
the scaling predicted by the variational Ansatz solution for the
HTC [21], which is related with the prefactor 1/

√
N in the

coupling between bare electronic states in the LPP. Nonlocal
and cavity-projected vibrational dressing also appear to follow
a universal trend of 1/N in the cases analyzed here. There-
fore, despite the indirect connection of molecular vibrations
through the cavity in strong coupling, vibrational dressing
is collectively suppressed. At moderate Rabi frequency, the
situation is different, and the reduction with N depends
nonanalytically on �R and �. Although a full analysis is
beyond the scope of this contribution, we note that the related
SBM possesses a set of quantum phase transitions for Ohmic
and sub-Ohmic baths in which strong polaronic dressing
completely suppresses tunneling dynamics. For sub-Ohmic
baths, the critical coupling is a function of quantities related
to �R and � (see Appendix B) [48,52], and the ground state
contains complex superpositions of displaced oscillator states
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FIG. 8. Absolute displacement spectrum of the phononic modes for a molecule i, projected on (a) the electronic state of the excited
molecule, the electronic state of the unexcited molecule (b), and the cavity photon (c). In these panels, we considered �v = 0.2 eV, � = 0.1 eV,
and N = 5. The limit �R → 0 is displayed in dashed-dotted lines.

[52], which may be relevant for the physics of intermediate
Rabi couplings.

As for the bare molecules, this observable is extremely
sensitive to the molecular species supporting the LPP, even
when the Stokes shift is kept constant. Additional insight into
the strength of the RVD effect for a given molecular ensemble
is given by the ratio

R(ωk ) = Xi,ei
(ωk,�

′
R,�)

Xi,ei
(ωk,�R,�)

, (9)

where �′
R > �R are two Rabi frequencies. Intriguingly, as

shown in Fig. 9, the ratio R is mostly independent of the
power law in Jv (ω), unveiling another universal characteristic
of the model. Therefore, although the LPP is more polaronic
for lower s, the suppression at low frequencies is increased
in absolute terms in such a way that the relative suppression
spectrum is molecule independent.

Exploiting the similarities with the SBM for a single
molecule, as discussed in Appendix B, the intrinsic frequency
dependence of R follows from the variational polaron theory
for the SBM (N = 1) with “bias” δ = −� (provided that
ωe = ωO). For large �R and small �, bias effects caused by
the vibrational reorganization energy become irrelevant. The
slow modes are antiadiabatic from the perspective of the Rabi
oscillations. Hence, they cannot readjust their displacements
rapidly enough to track the formation of polaritons arising
from light-matter coupling [32], and are unable to maximize
the vibrational dressing of the electronic states. Vibrational
and photonic processes are hence “decoupled” and R de-
creases monotonically with the frequency. This picture agrees
with the smaller energy shifts for Ohmic and sub-Ohmic spec-
tral densities, corresponding to “slow baths” [see red and blue
curves in Figs. 8(a) and 4(a)]. Conversely, larger exponents s

correspond to spectral densities where high-frequency modes
are dominant. In particular, these modes are adiabatic from the
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FIG. 9. Ratio R between displacement at �′
R = 2 eV and lower Rabi frequency displacements, for the SBM at N = 1 (a), (b), and

N = 5 (c), (d). The case � = 0.01 eV is shown in left panel [(a), (c)] while � = 0.1 eV is depicted in the right [(b), (d)]. Two distant
power laws s = 0.5 and 2 are shown.
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FIG. 10. Reduced observables for the LPP supported by a dimer of Rhod800 molecules. The total reorganization energy for the modes that
are considered is � = 0.112 eV (here ω� = ω − �). The numerical first moment of the spectral density JRhod800(ω), depicted in (a), reveals a
value of �v = 0.154 eV.

S subsystem perspective and lead to larger frequency shifts
and phononic displacements. Besides, such effects could in-
duce renormalization of the coupling parameters, which could
be observed for instance in a reduced Rabi splitting in linear
response spectrum.

The results for N = 5 molecules displayed in Fig. 9 (lower
panels) show a more significant suppression of vibrational
displacement compared with the SBM. In this case, RVD
occurs by the additive contribution of the light-matter cou-
pling, described above, and ensemble effects such as the
“collective protection” due to each molecule in the polariton
state staying mostly in its ground state [17]. Intriguingly, a
global minimum in R is observed for a finite ωk ∼ O(�R ),
suggesting nontrivial bias effects due to non-negligible reor-
ganization energy � [52]. Indeed, it has recently been shown
that the very large displacements associated with the strongly
coupled slow modes in the sub-Ohmic spin-boson model
may develop over very long timescales when the system is
biased and then prepared out of equilibrium, i.e., by laser
excitation [53,54]. This creates an effective time-dependent
bias which, as our static results suggest, could dynamically
alter polaritonic properties in real time and generate strongly
non-Markovian dynamics that might be detectable in time-
resolved microcavity experiments.

The results outlined in this section clearly suggest that the
HTC model is insufficient to address the nontrivial vibrational
features arising for different molecular systems [Jv (ω)] in
the LPP, but that instead it is necessary to take into account
the vibrational structure of the molecule. Nevertheless, we
have shown that the relative effect of RVD is somewhat

irrespective of the spectral density of molecular phonons but
is mostly determined by the reaction coordinate frequency and
the reorganization energy.

Up to now, we have considered smooth vibrational spectral
densities. In the following, we show how these ideas can
be tested in a molecule with highly structured vibrational
features that recreates the conditions found in realistic organic
microcavities.

V. RHODAMINE 800 MOLECULE

In typical organic molecules, aside from simple power-law
spectra at low frequencies, more complicated features may
arise at high (typically mid-infrared) frequencies, as observed
in, e.g., infrared and Raman spectroscopy where many sharp
vibrational resonances are present. In the following, we con-
sider the rhodamine 800 perchlorate molecular compound
[sketched in Fig. 10(b)], which constitutes a common choice
for a laser gain media and strong coupling experiments [55].
In this case, the phononic information necessary to “feed”
Jv (ω) is known from vibrational spectroscopy [56]. In par-
ticular, the data from three-pulse photon echo peak shift
(3PEPS) experiments at room temperature (in Fourier space)
can be interpolated to give an accurate approximation for the
low-frequency part J lf

v (ω) [57]. Regarding the high-frequency
modes, denoted as �k , we consider that each oscillator is
broadened by an amount of � � �k due to the interaction
with a background Ohmic bath of vibrations accounting for
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FIG. 11. (a) Displacement spectrum for the LPP supported by a dimer of Rhod800 molecules, projected on the electronically excited
molecule. (b) Ratio between the displacement of the electronically excited molecule at �′

R = 1.5 eV and the cases depicted in (a). The
remaining parameters are fixed according to Fig. 10 caption.

vibrational dephasing and decay [33], by taking

J hf
v (ω,�k, fk,�) = fkω(

�2
k − ω2

)2 + (�ω)2
, (10)

where � measures the mode broadening and fk is pro-
portional to vibronic coupling to mode k. First, we com-
pared the S populations of a dimer of Rhod800, with spec-
tral density JRhod800(ω) = J lf

v (ω) + ∑
k∈hf J hf

v (ω,�k, fk,�),
shown in Fig. 10(a), with a HTC model with parameters
�Rhod800

v ,�Rhod800 estimated from the experimental spectral
density. Strikingly, despite the involved resonant structure of
JRhod800(ω), the energy shift and the reduced density matrix
observables present a smooth behavior as the Rabi frequency
�R is varied (Fig. 10), which mimics the HTC model. This
predicts that the probing of excitonic and photonic charac-
teristics of the LPP supported by an ensemble of arbitrarily
complex molecules, close to the mechanical equilibrium, only
requires the experimental knowledge of few collective quanti-
ties.

However, in agreement with the conclusions drawn for
the polynomial spectral densities in Eq. (7), the vibrational
features cannot be described by the HTC model but are
profoundly dominated by the vibrational structure of the
molecule and the host medium, encoded in Jv (ω). Phononic
displacements of the exciton component of the LPP in
Fig. 11(a) mirror the resonant structures in JRhod800(ω). Nev-
ertheless, the relative suppression R is surprisingly smooth
[see Fig. 11(b)]. In agreement with our previous results, it is
controlled by just the reaction coordinate frequency �v and
the reorganization energy � instead of details in Jv (ω).

VI. CONCLUSION

In this work, we have investigated a microscopic the-
ory that goes beyond current models for the lower polaron-
polariton in organic microcavities by introducing the whole
phononic spectrum. In order to treat the problem numerically,
we employed a quasiexact VMPS algorithm, able to handle
the full Hamiltonian including multimode and many molecule
effects. We have demonstrated that the RVD of polaritons
compared to bare electronic states is a universal feature of
strongly coupled organic microcavities that does not depend

on the details of the vibrational structure. In this way, different
distributions of intramolecular or extramolecular vibrational
modes lead to similar excitonic and photonic properties of
the LPP wave function, where only the bath component is
appreciably altered.

Our findings show unambiguously how, despite the in-
volved phononic spectrum in organic molecules, a large extent
of features in the LPP can still be emulated by the HTC model.
The universal character of the results is not expected to be
present in the time evolution of the exciton-photonic system, a
problem that has attracted interest lately due to the experimen-
tal advances achieving exotic organic polariton dynamics [58]
and nonequilibrium BEC in the strong coupling regime [59].
As we show in [30], the nonequilibrium description of the
bath modes is crucial to determine the time-evolution route
followed by the system arising from details in Jv (ω) [60].

However, there is still a long way to go regarding experi-
ments to obtain conclusive evidence of changes in chemical
processes or electronic energy transfer in electronic strong
coupling. The model presented and explored here seeks to
generalize the most simple descriptions of the problem, while
future prospects along these lines would go towards extended
approaches, that are able to introduce multidimensional fea-
tures in the recent field of polaritonic chemistry.
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APPENDIX A: TENSOR NETWORK BASED APPROACH

In this appendix, we outline the numerical approach to
target the optimal LPP |ψ−〉. We state only what is necessary
to understand this work, referring to the reader to complete
reviews to the topic [26,61].
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FIG. 12. (a) Sketch of the star TN for the case N = 3, Mv = 5 that is used to represent the LPP. Here, each of the squares signifies a
tensor, that is contracted with the tensor to which its legs are connected. Arrows depict a possible order at which the tensors are optimized in
the algorithm. The open legs represent the local Hilbert space at each of the sites, which is contracted with the Hamiltonian Ĥ = ĤS + Ĥv to
state the minimization problem. To carry out this minimization, it is instrumental to represent the state in mixed canonical form compute the
contractions depicted in (b). Here, we use a similar notation for the tensors as in the [63].

The numerical approach is based on the two following
ideas: (i) Representation of |ψ−〉 as a multichain TN, mim-
icking the structure in the star Hamiltonian Fig. 1 that can be
employed to implement the (ii) variational principle

|ψ−〉 = min
|ψ〉∈MTN

〈ψ |ĤS + Ĥv|ψ〉
〈ψ |ψ〉 , (A1)

within the TN submanifold of the total Hilbert space (MTN ⊂
HS ⊗ HEv

) that leads to the star-DMRG algorithm employed
in the work.

1. Star TN structure

The DMRG algorithm works especially well targeting
ground states in one-dimensional systems. The orthogonal
mapping of the vibrational modes, leading to the star Hamil-
tonian introduced in the main text, constitutes a convenient
starting point for the application of this numerical method. We
consider the expansion of the LPP in the single exciton-photon
subspace, which exploits the Fock states |n(i)

l 〉 ∈ E (i)
v for the

lth site at chain i, i.e.,

|ψ−〉 =
N+1∑
nS=1

N∑
i=1

∑
n(i)

�nS ,n(i) |nS〉 ⊗ |n(i)〉, (A2)

where the array n(i) = (n(i)
0 , . . . , n

(i)
L−2) encompasses the Fock

numbers at each of the chains. This state admits a representa-
tion as a TN. In this case the complex (Mv + 1)th-order tensor
�nS ,n(1),...,n(N ) is decomposed into a product of rectangular ma-
trices with site-dependent dimensions dl under the following
setting: each of the excitations of a given bosonic site and

chain n
(i)
l ∈ (0, 1, . . . ,∞) is assigned to a matrix A

n
(i)
l

dl−1,dl
∈

CDl−1×Dl , while each of the system degrees of freedom corre-
sponds to A

nS
1,d1

∈ C1×DS . Inherited from the star Hamiltonian

depicted Fig. 1, the most natural TN representation of |ψ−〉
that enables to reduce the minimization Eq. (A1) to a single-
site problem, in the way described in Appendix A 2, is given
by

|ψ−〉 =
N+1∑
nS=1

AnS

N∑
i=1

∑
ni

(
An

(i)
0 . . . An

(i)
Mv−1

)|nS〉 ⊗ |n(i)〉.

(A3)

The order in which the A matrices occur in the product,
sketched in Fig. 12(a), mimics how the sites are connected in
the Hamiltonian (3). Instead, here the system tensors (site 0)
corresponding to the 0th site are contracted with the boson
tensor at each of the 1st sites. To account for bosonic degrees
of freedom, a decomposition of the bath modes in terms of
an optimal boson basis (OBB) is considered [43,44]. The aux-
iliary indexes that are contracted via the matrix product dl ∈
(1, 2, . . . , Dl ) are known as bond dimensions. They embody
the entanglement content of the state; higher bond dimensions
signify more entanglement [26], such that for sufficiently high
Dl the form (A3) can represent any quantum state in the
Hilbert space.

The major power of TN based approaches relies on the
efficient computer representation of the site tensors A. In
practice, this “compression” is achieved by successive iter-
ations of singular value decompositions and truncation of
the states with small singular values, corresponding to the
Schmidt coefficients [61]. This protocol reduces the maxi-
mum bond dimensions, enabling to restrict the possible states
to a submanifold MTN ⊂ HS ⊗ HEv

that comprises the low-
lying many-body states of the system.

2. Star DMRG algorithm

Employing the star TN representation (A3) in conjunc-
tion with the star Hamiltonian, the minimization problem
(A1), limited to the manifold MTN, can be performed by a
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DMRG-sweeping procedure, which optimizes one matrix at a
time while keeping all others fixed, then optimizing the neigh-
boring matrix, and so forth, until convergence is achieved. The
basic steps of the algorithm employed, based on sequential
1D DRMG [61] sweeps along the chain, are sketched in
Fig. 12(a).

To allow for fast contractions we keep the state in a
mixed canonical form, enabling to benefit from orthogonality
conditions as shown in [62]. Such representation reduces each
DMRG step as a linear eigenvalue (optimization) problem
for a single-site tensor (either Al or the OBB matrices)
with the effective Hamiltonians shown in Fig. 12(b). More
details about the numerical implementation can be found in
[44].

Finally, regarding the convergence of the DMRG algo-
rithm for dense spectra where Mv 	 1, it is important to
notice that for gapless finite-bandwidth Jv (ω), it has been
shown [64] the chain becomes asymptotically homogeneous,
such that ωl	1 → ωc/2 and tl	1 → ωc/4, respectively. The
translational-invariant slice of the chain can be diagonalized
in “chain momentum” space, giving rise to a cosine energy
dispersion band ∼ωc(1 − cos πq ) with a minimum at zero
energy. Thus, there is no net contribution of these sites to the
LPP energy, and the truncated chain approximation consid-
ered in this work is fulfilled.

APPENDIX B: SINGLE-MOLECULE MULTIMODE LIMIT

One interesting case of the Hamiltonian under study is the
single-molecule limit. In particular, single-molecule strong
coupling has been recently reported in plasmonic nanocavi-
ties [10,47]. Within the single electronic/photonic excitation
subspace, this case can be mapped exactly to the well-known
spin boson model (SBM) [46,48] by a shift of the vibra-
tional mode origin in the original Hamiltonian (1) before per-
forming the chain transformation. After this shift, described
by Ĥ shift

v = eĈĤve
−Ĉ with Ĉ = ∑

k λk (b̂k − b̂
†
k )/(2ωk ), the

light-matter coupling can be expressed through the dynamics
of a quasispin �̂− = |e〉〈1| coupled to a bath of bosons,

governed by the Hamiltonian ĤSBM = ĤS + Ĥ shift
v :

ĤSBM = δ

2
�̂z + g

2
�̂x +

∑
k

[
ωkn̂k + λk

2
�̂z(b̂k + b̂

†
k )

]
.

(B1)

Here, we have have introduced |e〉 = σ̂+|G〉 and |1〉 = â†|G〉
as shortcuts for the excitonic and photonic states in the single-
excitation subspace, respectively.

The SBM constitutes one of the minimal models to study
quantum dissipation in solid-state and organic systems, e.g.,
decoherence of quantum oscillations in qubits [65,66], im-
purity moments coupled to bulk magnetic fluctuations [67],
and electron transfer in biological molecules [68]. Here, the
detuning between the cavity and the zero-phonon line δ =
ωe − � − ωO plays the role of a bias, where the reorganiza-
tion energy follows from Eq. (6).

The light-matter coupling g favors the mixing of the molec-
ular exciton and the photon, similarly to the HTC model
analyzed in the previous section, whereas the spin-bath inter-
action dresses them with vibrational modes, destroying light-
matter coherence. In the unbiased case, i.e., when the cavity
is resonant with the zero-phonon line ωO = ωe − �, the
Hamiltonian becomes parity symmetric under the exchange
|e〉 ⇔ |1〉. This symmetry is known to be spontaneously
broken when the vibrational coupling becomes larger than a
critical value for sub-Ohmic and Ohmic Jv (ω), leading to a
quantum phase transition in which the ground state is a fully
polarized spin state [69]. Translated to the present case, this
would signify a vibrationally driven localization phenomenon
in either excitonic or photonic states, precluding the formation
of polaritons at the single-molecule limit. However, it is ques-
tionable whether traces of this transition could be observed
in nanocavity systems capable of significant light-matter cou-
pling in the single-molecule case [10,70], especially consider-
ing that we are here neglecting the nonradiative and radiative
losses associated with such systems. We thus have focused
on the many-molecule case (N > 1) at zero detuning ωe =
ωO , corresponding to the most common experimental setups,
while using the analogy to the SBM to make connections to
the existing literature.
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