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Engineering and harnessing coherent excitonic transport in organic nanostructures has recently been suggested
as a promising way towards improving manmade light-harvesting materials. However, realizing and testing the
dissipative system-environment models underlying these proposals is presently very challenging in supramolec-
ular materials. A promising alternative is to use simpler and highly tunable “quantum simulators” built from
programmable qubits, as recently achieved in a superconducting circuit by Potočnik et al. [A. Potočnik et al.,
Nat. Commun. 9, 904 (2018)]. We simulate the real-time dynamics of an exciton coupled to a quantum bath
as it moves through a network based on the quantum circuit of Potočnik et al. Using the numerically exact
hierarchical equations of motion to capture the open quantum system dynamics, we find that an ultrafast but
completely incoherent relaxation from a high-lying “bright” exciton into a doublet of closely spaced “dark”
excitons can spontaneously generate electronic coherences and oscillatory real-space motion across the network
(quantum beats). Importantly, we show that this behavior also survives when the environmental noise is classically
stochastic (effectively high temperature), as in present experiments. These predictions highlight the possibilities
of designing matched electronic and spectral noise structures for robust coherence generation that do not require
coherent excitation or cold environments.

DOI: 10.1103/PhysRevA.97.063823

I. INTRODUCTION

Creating and sustaining “long-lived” electronic coherences
in complex, multicomponent supramolecular systems has re-
cently been highlighted as an exciting route towards advanced
molecular nanodevices, with applications ranging from energy
harvesting to optomechanics and sensing [1,2]. In this context,
long lived refers to decoherence times of comparable duration
to the “functional” timescales of the system, which might,
for example, correspond to energy-transport times or charge
generation, in the case of photovoltaic light-harvesting struc-
tures [3–11]. However, many—if not all—reliable molecular
functions are driven in a thermodynamic direction by noisy
interactions between electronic degrees of freedom and their
thermal environments, so complete suppression of environ-
mental couplings—as is desirable for quantum computation—
is not a fruitful strategy for the multitude of applications
discussed in Refs. [1,2].

Instead, there has been an emerging interdisciplinary focus
on understanding how it may be possible to exploit the
nonperturbative and non-Markovian dynamics of structured
system-environment interactions in nanostructured systems
[3,4,9,12–22], with mounting theoretical evidence that a tran-
sient and correlated interplay of dissipative and coherent
dynamics may be advantageous for a wide range of ultrafast
optoelectronic processes. Indeed, although this essential idea
has an origin in studies of photosynthetic pigment-protein
complexes (PPCs), it is in rationally designed, organic func-
tional materials, such as DNA origami, polymer-fullerene

heterojunctions, carbon nanotubes, and molecular dimer sys-
tems, that the existence and potentially beneficial impacts
of electronic coherence and “noise-assisted” dynamics on
light-harvesting processes have been most cleanly and recently
demonstrated [23–29]. Examples of theoretically proposed
noise-assisted quantum phenomena and their potential appli-
cations are reviewed in Refs. [1,2,8].

Regardless of whether Nature got there first, or at all
[30], these latter studies underscore the new possibilities
arising from exploiting emerging nanofabrication techniques
to tune both the properties of photoexcited states (delocal-
ization, dipoles, energy spectrum) and their environments
to obtain novel optoelectronic materials based on tailored
system-environment interactions. Recently, Potočnik et al.
have demonstrated the first experimental “quantum simulator”
of an open quantum light-harvesting model built from trans-
mon qubits in a superconducting circuit (Fig. 1) [31]. Using
three individually tunable qubits coupled to a transmission
line (for photoexcitation) and a resonator (to detect emis-
sion), Potočnik et al. demonstrated the formation of robust,
delocalized photoexcited states with optical properties anal-
ogous to the Davydov-split (Frenkel) excitonic states found
in PPCs or J-aggregates [32,33]. These states are engineered,
as in photosynthetic antennae complexes, so that energy
absorbed by the highest-energy state is spatially directed by
dissipation towards the lowest-energy state [33,34], which is
proximate to a “reaction center” that transduces this incoming
energy (here, the resonator). Although impossible in any real
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(a) (b) (c)

FIG. 1. (a) A schematic representation of the superconducting quantum circuit used in Ref. [31] to simulate energy transport in a
photosynthetic light-harvesting array. Here, three qubits (Q1–Q3) act as chromophores with a tunable excitation energy εi and are coupled
together by nearest-neighbor capacitive interactions (white arrows). Qubits 1 and 2 are coupled identically to a transmission line which carries
the excitation and pump fields, while only emission in the resonator line is uniquely sensitive to the excitation of qubit 3. The flux lines are used
to tune εi , allowing the application of stochastic signals to mimic an arbitrary classical dephasing noise on the qubit (chromophore) system.
(b) The rescaled electronic couplings and detunings of the individual qubits and sites used in [31] and in this paper. (c) The resulting spectrum
of the bright |B〉 and dark |D±〉 eigenstates and the structured (peaked) spectral noise density investigated in the experiment and in this paper.

supramolecular structure, this setup also allows controllable
application of environmental dephasing noise of arbitrary
strength and spectral properties, which in the basis of de-
localized states (vide infra) leads to controllable incoherent
transitions between the single-particle excited states of the
network. This feature of the experiment makes it a near-ideal
platform for testing theories of open dynamics, and by varying
the noise coupling strength, it was demonstrated that the energy
transferred across the network was maximized at an optimal
value of the dephasing rate, precisely as predicted by recent
theories of “noise-assisted transport” (also known as ENAQT)
[35–38]. In further agreement, this optimal dephasing noise
strength was found to be of similar magnitude to the smallest
coherent coupling between the qubits, occurring at the “strong-
to-weak-coupling” transition point where the lowest-energy
delocalized eigenstates begin to collapse into effectively local-
ized on-site excitations with sequential hopping transport [31].

Additionally, they also confirmed that energy transfer is
considerably more efficient when the spectral function of
the environment is strongly peaked around the energy dif-
ferences between the excitonic excited states. Such struc-
tured environmental spectral functions are characteristic of
molecular vibrations, and have become intensively studied in
open quantum system theory due to their multiscale linear
response functions (memory effects) and often nonperturba-
tive coupling to the excited states at specific frequencies.
These properties allow potentially qualitative and nonstation-
ary modifications of excited-state dynamics (cf. simple heat
baths) that have been connected to (transient) phenomena
such as violation of detailed balance, extension of electronic
coherence times, and vibronic mixing of electronic states
[3,4,7,16,18,19,21,22,26,39–41]. However, to describe the dis-
sipative dynamics of systems coupled to such environments
requires advanced numerical and analytical techniques, and
approaches ranging from many-body methods to advanced
master-equation formulations have recently been applied or
developed for this aim [12,17,42–55].

In this article, we explore the real-time dynamics of the
three-qubit model implemented by Potočnik et al, using the

numerically exact hierarchical equations of motion (HEOM)
technique [54,56–61] to address a number of theoretical ques-
tions that could be verified in a future time-resolved version of
the experiment. Specifically, we shall show that the setup of
Ref. [31] is an ideal platform to demonstrate the generation of
coherence by incoherent processes, in this case caused by the
noise-induced relaxation of a high-energy state into a closely
spaced doublet of lower-energy states. This is a timely topic,
as most observations of coherent optoelectronic phenomena
only appear under coherent excitation, whereas functional
light-harvesting devices are likely to operate under incoherent
illumination, i.e., sunlight [62,63]. Without access to excitation
sources that can generate electronic coherences, i.e., laser
pulses, future coherent devices must rely on transient internal
or intercomponent dynamics to induce wavelike phenomena.
The present work offers some insight into how this might be
obtained from an engineering of electronic eigenstates to match
a structured bath spectral density, highlighting the importance
of different energy scales in the problem. We also note that
another type of quantum simulator for light harvesting using
trapped ions has also recently been demonstrated [64].

Specifically, we use HEOM to prove that although dissi-
pative “population-to-coherence” processes are nonsecular in
nature, these often neglected transitions in the perturbative
Redfield theory can, following decay of the high-energy state,
generate long-lasting coherence between the lower-energy
eigenstates. We demonstrate that these quantum beats are a
manifestation of real-space coherent motions that could be
detectable in a superconducting circuit experiment. To make
further connections to general experimental conditions, we
also show that interactions with both quantum and classi-
cally stochastic fluctuating environments can generate these
coherent dynamics, and find that there is an optimal coupling
for coherence generation that lies in an intermediate-coupling
regime. The possible role of non-Markovianity in these phe-
nomena is also studied, as the structured spectral density we
consider has a longer correlation time than the incoherent
decay dynamics. However, while we explicitly demonstrate
that the use of HEOM is essential to account for the strong
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environmental memory effects (especially for classical noise),
the correlation between the generation of coherence and the
formal measure of non-Markovianity we use appears to be
weak.

The paper is organized as follows. Section II describes the
three-state model and the system-bath interaction. Qualitative
predictions and concepts emerging from the Redfield approach
are given in Sec. III with a presentation of the operational
HEOM equations. Section IV presents our numerical results
for a quantum or classical noise, and Sec. V provides some
discussion and perspectives for future investigations.

II. MODELS AND PARAMETERS

A. Electronic system

A virtue of the model “excitonic” Hamiltonian implemented
in Ref. [31] is that its dynamics, with typical timescales of
μs in superconducting circuits, remains unchanged when all
energetic parameters are rescaled to optical frequencies (factor
≈105). In light of this and in the interest of understanding
coherence generation in molecular systems, we will retain
the relative energy level and coupling structure of the qubits
in Ref. [31], but work at the time and frequency scales of
molecular optics and replace qubits with “sites” representing
chromophores.

The “electronic” system consists of three chromophoric
sites (two-level systems), but the active Hilbert space is con-
fined to the single excitation sector and therefore is described
by three states |n〉 (n = 1,2,3) corresponding to a single
localized excitation on site n. Following the qubit topology
of Fig. 1, the model Hamiltonian for the chromophore system
is given by

HS =
3∑

n=1

εn|n〉〈n| +
3∑

n=1

3∑
m�=n=1

Jnm|n〉〈m|. (1)

As in the experiment, the first two states (|1〉 and |2〉) are
tuned to degeneracy (ε1 = ε2 = 0) and strongly coupled by
a coherent coupling J12, while state |2〉 is weakly coupled
to a third state |3〉, through J23 = J12/10. J13 = 0, which is
an approximation very close to the experimental realization
[qubit 1 and qubit 3 are not physically close to each other; see
Fig. 1(a)]. The energy gap between the degenerate levels and
the lower state energy is equal to the first coupling ε3 = −J12.
Diagonalizing this simple Hamiltonian then leads to the eigen-
state spectrum shown in Fig. 1(c), which is characterized by a
single high-energy state and a low-lying doublet of states with
an energy splitting ≈2J12, approximately ten times smaller
than the mean doublet-to-high-energy state gap. Due to this
tuning of states, the eigenstates are highly delocalized over the
sites. The high-energy “bright” state is approximately given by
|B〉 = 1√

2
(|1〉 + |2〉), whereas the lower-energy “dark” states

are given by |D±〉 = 1
2 (|1〉 − |2〉) ± 1√

2
|3〉.

We remark that here, bright and dark refer to the coupling
of these states to the transmission line. As seen in Fig. 1(a),
sites 1 and 2 are close to the waveguide and both couple to
the excitation field with the same strength. Consequently, the
transition dipoles of these sites interfere constructively in the
|B〉 eigenstate, making this bright, while destructive interfer-

ence decouples the two dark states |D±〉 from the excitation
fields. Experimentally, this configuration is very useful as it
allows optical population of a single, well-defined state from
which transport then proceeds, while the nonemissive nature of
the dark states prevents radiative losses and noise which might
obscure the signatures of energy flow across the site network.
Beyond practical considerations, it has also been proposed that
using such dark states to reduce radiative losses could boost
the efficiency of “bioinspired” organic photovoltaics devices
[18,39,65–70]. Finally, the resonator is only coupled to state
|3〉, so only |D±〉 will emit into this channel. Experimentally,
it is this resonator emission that is used to quantify the energy
transfer from the |B〉 state. For clarity of discussion, we will not
explicitly model the coupling of the system to the excitation
and readout fields, but instead consider dynamics beginning
with a population prepared in the |B〉 state.

B. System-bath interaction: Quantum and classically
stochastic environments

In the quantum simulator, noise is generated by applying a
stochastic signal along the flux lines that are used to tune the
excited-state energies of the individual qubits. This effectively
introduces site-selective, stochastic (Gaussian) noise that is
diagonal in the basis of the localized qubit excitations (pure
dephasing noise), but this noise is essentially classical in
nature (vide infra and see Sec. IV B). Nevertheless, this noise
is generated by a signal generator that can produce almost
arbitrary stochastic power spectra (see Sec. III A), providing
a versatile tool for probing dissipative quantum transport. In
order to connect with molecular systems, we will consider both
classical and quantum noise within a common framework in
which the environment is treated as a continuum of quantum
harmonic oscillators coupled linearly to the electronic system.
Following Ref. [31], we will consider the case of noise applied
to only one site of the network, i.e., site 2, so that the quantum
system-bath coupling is given by

HSB = SX = −|2〉〈2| 1√
2

∑
k

gk(ak + a
†
k), (2)

where S = |2〉〈2| is the system operator and the dis-
placement environmental operator is defined by X =
− 1√

2

∑
k gk(ak + a

†
k), where a

†
k,ak are the bosonic creation

and annihilation operators, respectively, of an oscillator of
frequency ωk that is coupled to state |2〉 with amplitude gk . The
Hamiltonian of the oscillator bath is HB = ∑

k ωka
†
kak (with

h̄ = 1). The system-bath coupling also leads to an energy shift
λ = −1/2

∑
k g2

k/ωk of state |2〉 (the reorganization energy)
that is added to the system Hamiltonian to define an effective
system Hamiltonian, HS,eff = HS + |2〉〈2|λ. The total system-
environment Hamiltonian becomes H = HS,eff + HSB + HB .
By diagonalizing HS,eff , all the eigenstates are coupled through
the environment by off-diagonal terms of the system coupling
operator in the eigenbasis set,

Vλ = U−1
λ SUλ. (3)

The reorganization energy is an indicator of the coupling
strength since it modifies the system coupling operator and
the energy gap among the eigenstates. We shall use a
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FIG. 2. Modulus of the normalized two-time bath correlation
function C(t − τ ) in a.u. with τ = 0 at room temperature (solid line)
and in the high-temperature limit used to simulate classical noise
where the correlation function becomes a real oscillatory function
(dots). Inset: Corresponding spectral density in arbitrary units. The
system-bath coupling strength and therefore the renormalization
energy or the η parameter are scanned by varying the p factor in
Eq. (6).

dimensionless parameter,

η = λ/EBD+ , (4)

giving the ratio between the renormalization energy and the
dissipation-free EBD+ energy gap [55].

Prior to excitation of state |B〉, we will always assume the
environment oscillators are in thermal equilibrium with respect
to their free Hamiltonian HB . With this common assumption,
the behavior of the reduced density matrix of the electronic
subsystem is completely characterized by the environment’s
spectral function J (ω) = ∑

k(g2
k/ωk)δ(ω − ωk) and its tem-

perature through the Bose function n(ω) = (eβω − 1)−1, where
β = 1/kBT and kB is the Boltzmann constant. Both appear
in the thermal two-time correlation function of the oscillator
displacements, which ultimately determines the dissipative
physics of the system (see below) [71]. The correlation function
is given by C(t − τ ) = TrB[ρBX(t)X(τ )], where ρB is the
equilibrium density matrix of the environment oscillators and
the time-dependent operators are in the Heisenberg picture
with respect to the Hamiltonian HB of the environmental
displacement operator X. This leads to

C(t − τ ) = 1

π

∫ +∞

−∞
dωJ (ω)n(ω)eiω(t−τ ). (5)

In the context of open system theory, the difference between
quantum and classical stochastic noise is most clearly seen in
C(t); the two-time correlation function for noncommuting op-
erators is complex valued, while for a classical scalar variable,
it is real. From Eq. (5) and the fact that J (−ω) = −J (ω), it
can be seen that C(t) becomes real in the limit of β → 0 (high-
temperature limit) and we shall later exploit this to extract
results about classical noise from our HEOM simulations. This
is further illustrated in Fig. 2 for the structured spectral density
that we will consider in our numerical results. The spectral
density here is a superohmic Lorentzian function,

J (ω) = pω3

�1(1,�1)�2(2,�2)
, (6)

where �k = [(ω + k)2 + �2
k ][(ω − k)2 + �2

k ].
The parameters are chosen to create a sharp spectral density

peaked at the energy gap EBD , as shown in the inset of Fig. 2.
The numerical values of the parametrization used are given
in Appendix B, with the p parameter being used as a scaling
factor that allows us to vary the reorganization energy of the
bath.

III. SIMULATION TECHNIQUES FOR OBTAINING AND
CHARACTERIZING REDUCED DENSITY MATRICES

A. Redfield equations

For open quantum systems, the principal object of in-
terest is the reduced density matrix of the system ρS(t) =
TrB[ρ(t)], where ρ(t) is the joint density matrix of the system-
environment state. In general, determining ρ(t) in order to
obtain ρS(t) is highly demanding; however, it is possible in
many cases to find approximations that greatly simplify this
task and which also provide very useful concepts and intuition
for discussing more complex open physics.

For the case of weak coupling (second-order perturbation
theory with respect to system-bath coupling) leading to a broad
spectral function characterized by a cutoff frequency ωc that is
much larger than any energy difference in the system Hamilto-
nian HS,eff , the dynamics of ρS(t) are often well described by
the Bloch-Redfield theory. Detailed derivations of the Bloch-
Redfield master equation can be found in Refs. [71,72]; here we
shall simply state the results of immediate consequence for our
results and discussion. Following the Born-Markov approxi-
mation, the equation of motion for the reduced density matrix in
the interaction picture, ρ̃S(t) = e−iHS,eff t ρS(t)e+iHS,eff t , is given
by the time-local master equation

˙̃ρnm(t) =
∑
j,k

Rnmjkρ̃jk(t)ei(Enm−Ejk )t , (7)

where ρnm = 〈En|ρ|Em〉, and |Em〉 is the mth eigenstate of
HS,eff with energy Em, which we number in order of ascending
energy. This form, containing explicit time dependence, is
often referred to as the nonsecular Bloch-Redfield equation,
distinguishing it from the secular Bloch-Redfield equations,
which are obtained from Eq. (7) by only retaining terms in the
right-hand side summation for which Enm − Ejk = 0, where
Enm = En − Em. This last approximation is normally justi-
fied when the energy differences between different transition
energies, Enm − Ejk 	 R−1

nnjk,∀n,m,i,j , so that on the typical
timescales on which the density matrix evolves under the action
of the Redfield tensor Rnmjk , the highly oscillatory terms with
Enm − Ejk �= 0 average to zero. When this is indeed valid, the
secular Bloch-Redfield equations have a particularly simple
form, as population (diagonal) and coherence (off-diagonal)
terms of ρS are completely decoupled. The populations then
obey a Pauli (kinetic) master equation, while any coherences
present in the initial condition independently and exponentially
decay to zero. Crucially, there are no terms in the secular
Bloch-Redfield (SBR) equations that allow for the ex nihilo
generation of coherences.

However, nonsecular terms can create dynamical coupling
between populations and coherences, as has been widely
discussed in the context of ultrafast spectroscopies. The
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significance of these terms has also recently been highlighted
in a number of papers, showing that their inclusion often
provides a more accurate description when compared with
more advanced numerical treatments of open quantum systems
[73]. Interestingly, well-known problems related to the poten-
tial lack of positivity of reduced density matrices under BR
evolution have also been shown to arise from problems related
to the failure of the Born-Markov assumption, rather than the
structure of the master equations when nonsecular terms are
included [74].

B. Nonsecular generation of spontaneous coherence
via incoherent decay

Of particular relevance for our three-level model is the struc-
ture of the population-to-coherence elements of the Redfield
tensor Rnmii = R∗

mnii , especially the term RD+D−BB , which
describes the generation of coherence by a population in the
initially excited state |B〉. This is given by

RD+D−BB = πV ∗
D+BVD−BJ (EBD+ )[n(EBD+) + 1]

+πV ∗
D+BVD−BJ (EBD− )[n(EBD−) + 1]. (8)

Comparing this to the incoherent decay rate from state |B〉 to
the lower-energy doublet of states (population-to-population
transfer),

RD+D+BB = 2π |VBD+|2J (EBD+ )[n(EBD+) + 1)], (9)

RD−D−BB = 2π |VBD−|2J (EBD− )[n(EBD−) + 1)], (10)

we can see that if J (ED±B),n(EBD± ) and matrix elements VD±B

are equal, then RD+D+BB = RD−D−BB = RD+D−BB . For this
case, and in the absence of the time dependence associated
with the term RD+D−BB in Eq. (7), the incoherent decay of
state B would create population and coherence in the lower
doublet at an equal rate, i.e., it would tend to generate a
coherent superposition of the lower doublet states. Indeed, if
the decay of the |B〉 state is much faster than the oscillation
period (set by ED+D−), one would expect the relaxation to occur
into a pure superposition state of |ψ〉 ≈ |D+〉 ± |D−〉 (with
phase depending on the sign of the matrix elements). If the
decay is much slower than the oscillatory period, the coherence
generation will be negligible, leading to an incoherent mixture
of (approximately equal) populations in the doublets.

Within the scope of BR theory, the eigenstate level scheme
and spectral density that we consider enables the conditions
for coherence generation to be almost perfectly met, at least
for small reorganization energy, when the model parameters
remain close to those predicted by the eigenstates of HS . First,
the matrix elements for the transition between the |B〉 state
and the doublets |D±〉 induced by the spatially local operator
Vλ (3) are almost equal due to the real-space delocalization
of the states and the large energy gap between the |B〉 and
|D±〉 manifolds (their fractional difference is no more than
≈J23/J12 � 1). Second, by applying a spectral function that
is symmetric and peaked at an energy 1

2 (EBD+ + EBD−), we
obtain equality of J (ED±B). Third, by working at a temperature
such that βEBD± 	 1 or βEBD± � 1, all relevant elements
of the Redfield tensor approach equality. This only leaves
the condition that the transition rates for decay of the |B〉

state should be faster than the period of coherent oscillations
in the |D±〉 states. This can be controlled by varying the
coupling strength to the environment, although we note that
obtaining this condition violates the standard application of
the Markov approximation, additionally motivating our use of
nonperturbative HEOM methods (see below).

Finally, we note that the same qualitative analysis can be
applied to coherences generated between the |B〉 and |D±〉
states due to decay of the |B〉 state. However, the relevant
oscillatory time period to compare to the decay rate is now set
by the bright-dark state splitting EBD , which is ten times larger
than ED+D− . It could therefore be possible to find a parameter
space in which large interdoublet coherence is generated
without any significant coherence generation between the
bright and dark states. This scenario defines what we mean
by coherence generation arising from incoherent relaxation.

C. HEOM

We recall here the derivation already presented in previous
works [54,56–61] and give, for the purpose of completeness,
the main equations. For the efficiency of the HEOM algorithm,
the spectral density is parametrized so that the two-time
bath correlation function is expressed as a sum of complex
exponential functions [75],

C(t − τ ) =
ncor∑
k=1

αke
iγk (t−τ ). (11)

Explicit expressions of the αk and γk by the analytical inte-
gration of Eq. (5) with the superohmic parametrization of the
spectral density (6) can be found in the appendix of Ref. [76].
ncor is the sum of the four terms coming from the four simple
poles in the upper complex plane and, in principle, an infinite
number of terms related to the poles (Matsubara frequencies) of
the Bose function on the imaginary axis νj . In practice, we find
that the number of Matsubara terms remains small (about 10)
at and above room temperature for the model under study. The
complex conjugate of the correlation function can be expressed
by keeping the same coefficientsγk in the exponential functions
with modified coefficients α̃k according to

C∗(t − τ ) =
ncor∑
k=1

α̃ke
iγk (t−τ ), (12)

with α̃1 = α∗
2 , α̃2 = α∗

1 , α̃3 = α∗
4 , α̃4 = α∗

3 , and α̃j,matsu =
αj,matsu, where the αm with m = 1,4 are related to the four
poles of the superohmic Lorentzian function and αj,matsu refer
to the Matsubara terms [77].

By assuming an initial factorization of the total density
matrix, the time evolution of the reduced density matrix, in
interaction representation ρ̃S(t), is given by

ρ̃S(t) = TrB

[
e
∫ t

0 dτL(τ )ρ
eq

B ρ̃S(0)
]

= e
∫ t

0 dτ
∫ τ

0 dt ′TrB[L(τ )L(t ′)ρeq

B ]ρ̃S(0), (13)

where L(t)� = − i
h̄

[S(t)X(t),�] is the Liouvillian of the system-
bath interaction with the system coupling operator in inter-
action representation, S(t) = eiĤS,eff t Ŝe−iĤS,eff t , and the bath
operator as given above. Expressions (11) and (12) forC(t − τ )
and C∗(t − τ ) correspond to the relaxation of ncor effective
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bath modes. Each set of the corresponding occupation numbers
is represented by a collective index n = {n1, . . . ,nncor } and is
associated to an auxiliary density matrix. The master equation
is then written as a time-local hierarchical system of coupled
equations among the auxiliary operators. Each matrix can
communicate only with the superior and inferior level in the
hierarchy for which one occupation number is varied by one
unity, n±

k = {n1, . . . ,nk±, . . . ,nncor },
•
ρn (t) = i

ncor∑
k=1

nkγkρn(t) − i

[
S(t),

ncor∑
k=1

ρn+
k
(t)

]

− i

ncor∑
k=1

nk

[
αkS(t)ρn−

k
− α̃kρn−

k
S(t)

]
. (14)

In this hierarchy of auxiliary density matrices, the system
density matrix is given by the top row, i.e., for n = {0, . . . ,0},
hence ρ̃S(t) = ρ{0,...,0}(t). The level of the hierarchy is chosen
until convergence is reached for the system density matrix. As
previously stated, it can be seen that the equations of motion
that determine the reduced density matrix of the system are
completely determined by the expansion coefficients of the
correlation functions C(t) and C∗(t) that appear in Eqs. (11)
and (12), and which are ultimately determined by the environ-
ment spectral function and temperature.

The HEOM equations are efficient to go beyond the
second-order perturbative regime of the Redfield equations
even if the Markovian approximation could still be valid at
higher orders. However, stronger couplings are often linked to
non-Markovian dynamics. The signature of non-Markovian
behavior for strong system-bath coupling is analyzed in
Appendix A, where we also illustrate convergence of HEOM
equations and compare numerically exact HEOM simulations
with Redfield results.

IV. RESULTS

A. Quantum noise

In each simulation, the initial state is the bright eigenstate
|B〉 and the bath is at room temperature, T = 298 K, which
corresponds to quantum noise for our spectral density, as
the peak frequency  ≈ 5 kBT . We note, however, that this
temperature gives an energy scale kBT /ED+D− ≈ 3, which
would be expected to drive equal (mixed) populations of
the doublet population and rapid coherence loss. From the
analysis based on the Redfield theory, we first examine the
evolution of the main tensor elements to predict the best
range of the η parameter [Eq. (4)] to create the expected
long-lived superposed state in the doublet. The three main
tensor elements of the “downhill” transitions at T = 298 K,
RD+D+BB, RD−D−BB, RD+D−BB , are displayed in Fig. 3 as a
function of the η parameter by accounting for the variation of
the coupling Vλ [Eq. (3)] and of the eigenenergy gap induced
by the renormalization energy. The best expected domain for
the coherence creation appears to be around η = 0.015, which
corresponds here to a renormalization of about 15 cm−1. This
value provides the largest decay rate while maintaining equal-
ity of the three relevant Redfield tensor terms. The reverse rates,
RBBD−D− , RBBD+D− , remain negligible at room temperature
due to detailed balance, potentially extending the lifetime of
any decay-generated coherent states. Simulation with HEOM

FIG. 3. Main Redfield tensor elements for population-to-
population or population-to-coherence transfer as a function of the
coupling η parameter in Eq. (4).

will allow us to probe stronger couplings beyond the perturba-
tive regime and examine the stability of the process.

Figure 4 shows the population evolution [i.e., the diag-
onal elements of ρS(t)] in the |B〉 state (solid lines) and
in the doublet |D+〉 (dashed lines) and |D−〉 (dotted lines)
for different coupling regimes. In the perturbative regime
[Fig. 4(a)], the decay is monotonous while for the strong-
coupling case [Fig. 4(b)], oscillations occur which are related to

FIG. 4. Population evolution of the bright state |B〉 (solid lines)
and of the dark doublet |D+〉 (dotted lines) and |D−〉 (dashed lines)
for different coupling strengths. (a) Weak system-bath coupling η =
0.001 (blue) and η = 0.01 (red); (b) strong coupling η = 0.04 (pink)
and η = 0.16 (black).
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FIG. 5. Isovalue contours in the modulus of the coherence be-
tween the doublet states ρD+D− (t) for different η parameters [Eq. (4)]
at T = 298 K.

quasireversible energy exchange between the system and the
environment, as the coupling strength exceeds the linewidth
of the spectral function (strong-coupling cavity limit). These
latter dynamics lead to features in the measure of non-
Markovianity that we present in Appendix A, as predicted
in Ref. [78]. The possible creation of a superposition state
is suggested by the simultaneous growing of population in the
|D±〉 doublet states, although this could also arise without gen-
erating any coherence in the doublet. Close to the best expected
coupling regime for η = 0.01 (red curves), the populations rise
monotonically and plateau to equilibrium values expected from
the Boltzmann distribution at this temperature. The populations

FIG. 6. (a) Modulus of the coherence between the doublet states
ρD+D− (t) for different η parameters. (b) Purity of the system matrix
density Tr[ρ2

S(t)] for the same η. Dotted line: η = 0.16; dash-dotted
line: η = 0.04; solid line: η = 0.01; short-dashed line: η = 10−3;
long-dashed line: η = 10−4.

FIG. 7. (a) Coherence ρD+D− (t) (solid blue line: real part; blue
dashed line: imaginary part) for η = 0.01. All the other coherences
are in black lines. (b) Zoom of the real part of the coherences ρBD− (t)
(red line) and ρBD+ (t) (black line).

of the two doublet states show oscillatory behavior in the strong
regime η = 0.16 (black curves), with a period and duration
much longer than the oscillations seen in the decay of the bright
state. We will return to this nonperturbative effect in Sec. IV B.

The critical observable, i.e., the modulus of the coherence
|ρD+D− (t)| between the doublet states, may be seen in Fig. 5
as contour plots in a time and η parameter map or in Fig. 6(a)
for some selected couplings. The amplitude of the created
coherence shows a clear dependence on the system-bath
coupling. In the optimal situation corresponding to values
near η = 0.015, as predicted by the Redfield analysis, the
coherence modulus reaches very close to the maximum
possible value of 0.5 in about 100 fs and remains stable
for more than 1 ps. For very weak coupling, a coherence is
observed but its amplitude remains below 0.1. For the strong
coupling, the early dynamics leads to a high amplitude around
0.5, but due to the bath interaction the asymptotic value
stabilizes below the optimal coherence.

The purity of the system density matrix Tr[ρ2
S(t)] is given in

Fig. 6(b). In the weak-coupling cases (η = 10−4 or 10−3), the
purity is mainly determined by the mixed state with the initial
state which is not yet relaxed. The purity confirms that the
most favorable situation is the moderate-coupling case around
η = 0.01, where the asymptotic purity is well above the purity
of a Boltzmann mixture at room temperature (≈0.5) and shows
that incoherent relaxation produces a superposition state in the
doublet with relatively little entropy generation.

Figure 7(a) illustrates the stability of the created coherence
ρD+D−(t) for a favorable case with η = 0.01 and the difference
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FIG. 8. Populations in the real-space site basis of the coupled
network for coupling to quantum noise (η = 0.01).

with the other coherences ρBD−(t) or ρBD+ (t). As shown in
Fig. 7(b), the latter completely disappears after 500 fs and
their amplitudes never exceed 0.015 so they are smaller by
more than one order of magnitude. As previously discussed,
this establishes that the coherence generation arises from an
incoherent decay.

These beats could potentially be detected in an experimental
setup similar to Ref. [31]. The rapid relaxation effectively pre-
pares a nearly pure superposition state that coherently evolves
over a subsequent time t as |ψ(t)〉 ≈ 1√

2
(e−iED+ t |D+〉 +

e−iED− t |D−〉). Expanding this state in the site basis and noting
that |D+〉 + |D−〉 = |1〉 − |2〉 and |D+〉 − |D−〉 = |3〉, it can
be easily seen that the evolution of the wave-function phases
leads to oscillatory real-space motion of the excitation between
sites 1, 2, and 3. This is illustrated in Fig. 8, where a periodic and
near-unity population of site 3 with frequency ED+D− can be
seen. As the resonator emission only arises from the population
of site 3, oscillations in its population should be observable as
a periodic modulation in the resonator signal at a frequency
ED+D− .

The stability of the coherence creation via the incoherent
decay was checked with respect to the shape of the spectral
density. We compare the sharp spectral density with a broader
one (the parameters are given in the Appendix). They are
schematized in the inset of Fig. 9. The renormalization energy
is calibrated to be nearly equal in both cases. Figure 9(a)
presents the population evolution in the |B〉 and |D±〉 doublet
for η = 0.01. The decay is slower in the broad peak case,
but the population in the two doublet states is still growing
simultaneously. As shown in Fig. 9(b), the coherence ρD−D+(t)
presents a similar profile in both coupling schemes. We note
that this example serves to show that the coherence generation
is a result of the coupling matrix elements and transitions rates
(thus appearing at the level of the master equation), and do not
arise from vibronic mixing effects that require a strong cou-
pling to a resonant and sharp (underdamped) vibrational mode
at the Hamiltonian level. This suggests that the conditions for
noise engineering, both in quantum simulators and physical
realizations, that are required for noise-driven coherence are,
in fact, rather lenient.

While we have shown in this section that it is possible to find
a parameter regime where quantum noise can lead to coherence
generation via incoherent relaxation, the longevity of the
resulting, near-perfect superposition states is perhaps not so

FIG. 9. Comparison of the population evolution and of the co-
herence ρD−D+ (t) in the doublet states for the two spectral densities
shown in the inset. The renormalization energies correspond to η =
0.01. Thin peak: red curves; broad peak: blue curves. (a) Population
in the bright state |B〉 (solid line) and the dark states |D−〉 (dotted
line) and |D+〉 (dashed line). (b) Real part of the coherence ρD−D+ (t)
(thin peak: solid line; broad peak: dashed line) and imaginary parts
(thin peak: red dots; broad peak: blue dots).

surprising. Due to the absence of incoherent transitions back to
the high-energy bright state, the only mechanisms of dephasing
in the doublet are due to intradoublet relaxation and/or pure
dephasing. For both the peaked and broad spectral densities
that we have used, the spectral weight at the energy gap ED+D−
is extremely small and pure dephasing vanishes at long times
[4,7], making the doublet state effectively decoupled from the
environment. As we shall show, this situation changes dramat-
ically in the experimentally relevant case of classical noise.

B. Classical stochastic noise

At the limit of very high temperature, the bath correlation
function becomes real and therefore corresponds to a colored
classically stochastic noise (see Fig. 2). This suggests that it
should be possible to simulate the effects of stochastic noise,
including any non-Markovianity, by making the simulation
“temperature” much larger than the other intrinsic energy
scales of the system and bath, while rescaling the coupling
to the bath to maintain physically reasonable transition rates.
In the Golden Rule approximation, the decay rates depend
on J (ω)[n(ω) + 1], which becomes J (ω)kBT /ω at the high-
temperature limit. In order to keep the transition rates at
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similar values to those in Sec. IV A (which also maintains
the significance of our parameter η), we set an artificially
high temperature (103 K) while simultaneously dividing the
renormalization energy by a factor of kBT . We note that
this procedure captures the essential “infinite temperature”
property of classically stochastic noise: the up and down
transition rates are now effectively equal so that any coherence
created by relaxation is now subject to potentially strong
dephasing noise arising from the rapid transitions that drive
the system towards the maximally mixed Boltzmann state.

Figure 10(a) presents the population evolution for different
η parameters. The case η = 0.01 (red curves) may be compared
with the quantum noise case (see Fig. 4) where this coupling
range gave optimal generation of the doublet state. With a clas-
sical noise case, the superposition is still created on ultrafast
timescales, but the peak coherence amplitude is smaller (0.3)
and coherence is completely destroyed after just 0.1 ps, as seen
in Fig. 10(b) (red curves). This dephasing time is much faster
than the period of coherent oscillations in the dark doublet, so
no beating can be resolved in the time domain. Reducing the
coupling by an order of magnitude leads to large-amplitude
coherence generation within ∼200 fs, but the dephasing rate
is now slower than the beating period, allowing about 2–3
cycles of beating to be observed over about 1 ps. For very weak
coupling η = 10−4 (blue curves), the population decay is very

FIG. 10. (a) Population evolution of the bright state |B〉 (solid
lines) and in the dark doublet |D−〉 (dotted line) and |D+〉 (dashed line)
for three coupling parameters : η = 10−2 (red), η = 10−3 (green), and
η = 10−4 (blue). (b) Real part (solid line) and imaginary part (dotted
line) of the coherence between the doublet state ρD−D5 (t) for the
different parameters η.

slow, but a coherence of weak amplitude (<0.1) is created and
maintained during the entire decay (about 2 ps) of the system
to thermal equilibrium.

We therefore confirm that the noise-induced generation of
coherences survives in the case of classically stochastic noise
and, although it is much more fragile, as seen in Fig. 10, there is
a parameter regime where it is possible to resolve the quantum
oscillations in the temporal domain.

Compared to the quantum (cold) case, we note the following
differences in coherence generation that may be relevant
for future experiments in superconducting quantum circuits
and/or molecular array architectures. First, the near equality of
upward and downward transition rates creates a competition
between the fast relaxation needed to generate coherence
and the dephasing that arises from the uphill transitions. As
shown above, in order to resolve the beats, a compromise
must be struck between the maximum possible amplitude of
the coherence and the lifetime of the oscillations. The opti-
mum point will depend on the method of detection and the
leveraging between acceptable signal-to-noise (favoring large
amplitude) and the available time and frequency resolution.
Second, at larger coupling strengths, oscillations are also seen
in the populations of the eigenstates which are damped on
the same timescale as the corresponding coherences. Unlike
the quantum case, these oscillations are not due to reversible
energy exchange with the environment, but result from the
coherent real-space motion of the excitation in the doublet
states. Again, an approximate but intuitive understanding can
be obtained from the structure of the Redfield equations.

Due to the choice of coupling to the environment (local
coupling to site 2), the rapid initial nonsecular relaxation in
the regime of coherence generation (relaxing to a superposition
state) can also be seen as a relaxation of the bright state into
the nonstationary dark state |D〉 = 1√

2
(|D+〉 + |D−〉). As all

the uphill rates are also the same, subsequent relaxation back
to the bright state only arises when this nonstationary state
is populated. However, due to the coherent evolution of the
|D〉 state, excitations move in real space to site 3, which
is not coupled to the environment, so that the population in
the doublet states is temporarily unable to make any uphill
transitions. As the oscillatory quantum beats return population
to the |D〉 state, the uphill transitions become allowed again,
depopulating the dark doublet states in a periodic way. These
motion-induced modulations of the uphill transition rate are
the origin of the eigenstate population oscillations seen in
Fig. 10(a).

Interestingly, this modulation of the transition rates effec-
tively results in a transient and periodic violation of detailed
balance [69,79], as the suppression of the upward transitions
leads to an “overshoot” of population transfer from the bright
state, as if the bath were (temporally) at a much lower temper-
ature. This effect is most prominent for the intermediate cou-
pling (η = 0.01), where the coherence is both large enough and
long-lasting enough to allow a few near-complete oscillations
of the excitation between sites 1, 2, and 3. This interpretation
is confirmed by looking at the populations in the site basis for
this coupling, as shown in Fig. 11. Comparing to Fig. 10(a), we
see that the eigenstate oscillations occur at precisely the times
when site 3 is maximally populated and uphill transitions are
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FIG. 11. Populations in the real-space site basis of the coupled
network for coupling to classical noise (η = 0.001).

suppressed. Experimentally, these coherent modulations of the
bright state decay would be detectable through the emission in
the transmission and excitation waveguide and would be in
antiphase with modulations in the resonator signal. Indeed,
because these coherent dynamics directly affect the eigenstate
populations, it is likely that they will be even easier to detect
for the oscillations in the eigenstate coherences that appear in
the regime quantum dissipation. We note that this effect is also
responsible for the oscillations in the modulus of the coherence
that can be seen in Fig. 12.

For completeness, we finally comment on the nature of the
population oscillations in the quantum case of Fig. 4. These
arise from a completely different physics, and the oscillations
only occur between the doublet states at strong coupling. This
is due to the increasing relevance of the reorganization energy,
compared to the electronic couplings and detunings between
the sites of the network. Again, due to the coupling of the bath
to just site 2, this has the effect of detuning that site so that the
effective eigenstates in the lower doublet no longer correspond
to the fully delocalized states |D+〉 and |D−〉. The increasing
amplitude of the oscillations that we observe with stronger
coupling are essentially related to the increasing misalignment
of the measurement and effective eigenstate basis. It is clear
that a nonstationary state of these eigenstates is still prepared
by the rapid relaxation of the bright state, but the “quality”
of the superpositions that are formed degrades with increasing
coupling strength. This degradation is already suggested by the

FIG. 12. Isovalue contours in the modulus of the coherence be-
tween the doublet states ρD+D− (t) for different η parameters [Eq. (4)]
at T = 10 000 K.

trends in the Redfield rates shown in Fig. 3, and confirmed by
the decreasing purity of the system after relaxation in Fig. 6.
This strong-coupling effect does not occur in the classical case,
as the rescaling of the system-bath coupling needed to take the
high-temperature limit means that the reorganization energy is
always negligible compared to the system parameters.

V. CONCLUSIONS

In this article, we have demonstrated that the system of
bright and dark excitons realized in the qubit architecture of
Ref. [31] possesses near-ideal properties with respect to the
nonsecular processes that allow incoherent dynamics to gen-
erate coherent wavelike motion. By using the nonperturbative
HEOM technique, we have verified that under conditions of
classical noise, it should be possible to experimentally resolve
these coherent dynamics through the related oscillatory motion
across the network in real space, although the effectively
high (“infinite”) temperature of the classical stochastic bath
leads to strong dephasing via incoherent “uphill” population
transitions from the dark manifold. Nevertheless, a previously
unanticipated prediction arises from this fact and is seen in our
simulations: the periodic violation of detailed balance caused
by the suppression of uphill transitions as the excitation moves
coherently away from the site-local source of the noise. At
the same time, the existence of resolved quantum oscillations
also appears to be sensitive to the correlation time of the
environment, with nonperturbative theories showing stronger
coherent dynamics at the same coupling strength as a simple
Redfield approach. The differences persist over the correlation
time of the environment, and it may be possible that this is
related to the finite “switch on” time of the rapid transitions that
are present from t = 0 in the Markovian theory. Although, in
general, these effects do not correlate with any obvious feature
in the measure of non-Markovianity, it is clear that “memory”
or temporally nonlocal effects constitute another handle by
which coherent energy transfer might be manipulated. Indeed,
the real-time switch from a weaker to stronger dissipative
coupling might be more generally important for coherent real-
space motion, as suggested for quasicoherent charge separation
in organic bulk heterojunctions [1,28,80,81].

In the case of quantum noise, which might be realized by
using the multilevel nature of superconducting qubits to sim-
ulate a quantum harmonic oscillator [82], the longevity of the
superposition states is only limited by the form of the spectral
density and the strength of interactions at the small energy
gap between the dark doublet of states, or at zero frequency
(pure dephasing). Spectral functions that vanish rapidly at low
frequencies while having large amplitudes at the much larger
bright-dark energy gap would therefore be advantageous for
coherence generation. However, the coherent dynamics are
suppressed at very strong coupling—regardless of the shape
of the spectral density—by the growing reorganization energy
of the environment, which detunes and localizes the low-
lying excitations. Finally, our physical understanding of the
numerical results has often relied on predictions from Redfield
theory that arise from the site-local noise in our model. Given
the capabilities of present simulators to apply site-specific
noises, it would be very interesting in the future to consider how
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applying different spatial and spectral correlations to noises im-
pacts coherent dynamics in quantum energy transfer networks.
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APPENDIX A: NON-MARKOVIANITY ANALYSIS

We briefly discuss the non-Markovianity of the dynam-
ics for some coupling ranges. Numerous non-Markovianity
witnesses have been proposed in the literature [83–85], but
here we consider only the volume of accessible states in
the generalized Bloch sphere [78]. Equations (14) define a
time-local dynamical map ρS(t) = φt [ρS(0)] which may be
expressed in an operator basis set {Gm} for the Liouville space
of dimension d2 by a generalization of the Pauli matrices for
d = 3. The expansion of the matrix density in this basis leads to
the Bloch representation of the system. In matrix form, the map
reads Fm,n(t) = Tr(Gmφt [Gn]) and the volume of accessible
states in the Bloch sphere can be obtained from the determinant
of this matrix,

V (t) = det(F). (A1)

A nonmonotonous decrease of this volume is a signature on a
non-Markovian backflow from the bath to the system. This is
illustrated in Fig. 13 by the volume of the accessible states in the
Bloch sphere for different η parameters. For instance, bumps
in the volume are obtained for the strong-coupling case η =
0.16 (solid line). This justifies that dynamics must be treated
beyond the Redfield approximation and probably beyond the
second-order regime. The perturbative regime for η < 0.02
leads to a smooth evolution of the population (see Fig. 4 or 10).
On the contrary, oscillations are observed during the decay
of the bright state for stronger coupling. This behavior may

FIG. 13. Volume of the accessible state V (t). Solid line: η = 0.16;
dashed line: η = 0.04; dash-dotted line: η = 0.01.

FIG. 14. Convergence of the real part of the coherence ρD−D+ (t)
with respect to the level L of the hierarchy corresponding to order 2L

in perturbation for the case η = 0.16.

be related to some non-Markovian effects characterized by
backflow from the environment to the system.

The level of HEOM hierarchy ensuring convergence of
the simulation depends on the strength of the system-bath
coupling. Level L in the hierarchy corresponds to order 2L in
the perturbation approach. Convergence is checked in Fig. 14
by analyzing the coherence that always converges more slowly
than the populations. The cases with η � 0.02 remain in the
perturbative regime. On the contrary, for the case η = 0.16,
the regime is obviously nonperturbative and level L = 4 is
required.

We do find that although the Markovian second-order
perturbative theory (Bloch-Redfield) allows an intuitive, qual-
itative understanding of the dynamics, it fails to describe the
dynamics with quantitative accuracy (cf. HEOM results). Even
at relatively weak coupling, this can lead to significant differ-
ences, as shown in Fig. 15. Given the relatively weak coupling
involved, we believe that the origin of these differences is
related to the Markov (time-local) approximation in Redfield
theory, which does not take into account the long correlation
time of the environmental spectral functions that we consider.
This is supported by the results in Fig. 15, which show that the
differences in dynamics become negligible for times longer
than the bath correlation time (≈200 fs), as shown in Fig. 2. As
the oscillatory coherent dynamics induced by the relaxation are

FIG. 15. Comparison of the eigenstate population dynamics com-
puted with the Markovian (M) Redfield equations (dashed lines)
and the numerically non-Markovian (NM) exact results obtained by
HEOM (solid lines) at relatively weak coupling η = 0.01.
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much more prominent in the HEOM results, this indicates that
a proper treatment of extended bath correlation times can also
be an important factor for noise-induced coherence generation
in the classical case, further emphasizing the need for methods
such as HEOM.

APPENDIX B: PARAMETERS OF THE
SPECTRAL DENSITY

The parameters of the superohmic expression [Eq. (6)]
for the thin and broad spectral density used in the HEOM

TABLE I. The parameters of the superohmic expression (6) used
in the HEOM simulations.

l (a.u.) �1 (a.u.) 2 (a.u.) �1 (a.u.)

9.562 × 10−4 6.3537 × 10−3 4.5639 × 10−3 2.7188 × 10−4

2.762 × 10−3 1.6554 × 10−3 6.4639 × 10−3 2.5319 × 10−3

simulations are gathered in Table I. The p parameter is taken as
1.95 × 10−14 × f , where f is adjusted to obtain the different
renormalization energies.
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