
HAL Id: hal-02373088
https://hal.sorbonne-universite.fr/hal-02373088v1

Submitted on 22 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A First ISA-Level Characterization of EM Pulse Effects
on Superscalar Microarchitectures

Julien Proy, Karine Heydemann, Alexandre Berzati, Fabien Majeric, Albert
Cohen

To cite this version:
Julien Proy, Karine Heydemann, Alexandre Berzati, Fabien Majeric, Albert Cohen. A First ISA-Level
Characterization of EM Pulse Effects on Superscalar Microarchitectures. ARES 2019 - 14th Interna-
tional Conference on Availability, Reliability and Security, Aug 2019, Canterbury, United Kingdom.
pp.7:1–7:10, �10.1145/3339252.3339253�. �hal-02373088�

https://hal.sorbonne-universite.fr/hal-02373088v1
https://hal.archives-ouvertes.fr


HAL Id: hal-02373088
https://hal.sorbonne-universite.fr/hal-02373088

Submitted on 22 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A First ISA-Level Characterization of EM Pulse Effects
on Superscalar Microarchitectures

Julien Proy, Karine Heydemann, Alexandre Berzati, Fabien Majeric, Albert
Cohen

To cite this version:
Julien Proy, Karine Heydemann, Alexandre Berzati, Fabien Majeric, Albert Cohen. A First ISA-Level
Characterization of EM Pulse Effects on Superscalar Microarchitectures. ARES 2019 - 14th Interna-
tional Conference on Availability, Reliability and Security, Aug 2019, Canterbury, United Kingdom.
pp.7:1–7:10, �10.1145/3339252.3339253�. �hal-02373088�

https://hal.sorbonne-universite.fr/hal-02373088
https://hal.archives-ouvertes.fr


A First ISA-Level Characterization of EM Pulse Effects
on Superscalar Microarchitectures – A Secure

Software Perspective
Julien Proy

INVIA
Meyreuil, France

julien.proy@invia.fr

Karine Heydemann
Sorbonne Universités, UPMC Univ

Paris 06, CNRS, LIP6
Paris, France

karine.heydemann@lip6.fr

Alexandre Berzati
INVIA

Meyreuil, France
alexandre.berzati@invia.fr

Fabien Majéric
Thalès

La Ciotat, France
fabien.majeric@thalesgroup.com

Albert Cohen
Inria and DI, École Normale

Supérieure†
Paris, France

albert.cohen@inria.fr

ABSTRACT
In the area of physical attacks, system-on-chip (SoC) designs
have not received the same level of attention as simpler
micro-controllers. We try to model the behavior of secure
software running on a superscalar out-of-order microproces-
sor typical of more complex SoC, in the presence of electro-
magnetic (EM) pulses. We first show that it is possible, in a
black box approach, to corrupt the loop iteration count of
both original and hardened versions of two sensitive loops.
We propose a characterization methodology based on very
simple codes, to understand and classify the fault effects at
the level of the instruction set architecture (ISA). The result-
ing classification includes the well established instruction
skip and register corruption models, as well as new effects
specific to more complex processors, such as operand sub-
stitution, multiple correlated register corruptions, advanced
control-flow hijacking, and combinations of all reported ef-
fects. This diversity and complexity of effects can lead to
powerful attacks. The proposed methodology and fault clas-
sification at ISA level is a first step towards a more complete

characterization. It is also a tool supporting the designers of
software and hardware countermeasures.

CCS CONCEPTS
• Security and privacy → Hardware attacks and coun-
termeasures; Software and application security; •Computer
systems organization→ Embedded and cyber-physical sys-
tems.

KEYWORDS
electromagnetic pulse injection, fault models, superscalar
out-of-order, countermeasures to physical attacks
ACM Reference Format:
Julien Proy, Karine Heydemann, Alexandre Berzati, Fabien Majéric,
and Albert Cohen. 2019. A First ISA-Level Characterization of EM
Pulse Effects on SuperscalarMicroarchitectures –A Secure Software
Perspective. In Proceedings of the 14th International Conference on
Availability, Reliability and Security (ARES 2019) (ARES ’19), August
26–29, 2019, Canterbury, United Kingdom.ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3339252.3339253

1 INTRODUCTION
Physical attacks and specifically fault attacks have long been
a serious threat in the world of embedded secure devices.
Sensitive data are stored in devices like smart cards and
passports, designed to resist such physical attacks. Tamper
resistance is also part of the certification of security protocols,
encryption and authentication codes, boot loaders, etc., and
the devices themselves [6]. A variety of techniques, such as
electromagnetic (EM) pulses, power or clock glitches, laser
beams, have been applied to a variety of devices [28].
†With Google AI at the time of publication.

https://doi.org/10.1145/3339252.3339253


ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Proy et. al

In an era of ubiquitous smart devices, higher integration
enables complex, higher performance system-on-chip (SoC)
architectures to take over simpler micro-controllers in a wide
variety of secure applications. Until recently, microproces-
sor architecture and SoC complexity were considered strong
deterrents for thwarting fault attacks [26]. However, recent
papers showed that fault attacks are also effective on such
devices [15, 23, 25], prompting the attention of security re-
searchers to complex microarchitectures.

EM fault injection does not require specific chip prepara-
tion and offers an interesting trade-off between affordability
and precision. It has been proven effective on simple mi-
croarchitectures [8, 16] and features relatively well under-
stood fault models [11, 16]. SoCs and complex architectures
have not received the same level of attention yet. A handful
of recent studies targeting complex SoC reported feasible
exploitation [15]. However, the achievable effects remain
poorly understood; characterizing the effects of EM pulses
on complex microarchitectures is a necessary step to enable
the design of effective software and hardware countermea-
sures.
This paper analyzes the behavior of secure software run-

ning on a superscalar out-of-order microprocessor in the
presence of EM pulses. Following a black box approach, we
successfully corrupt the loop iteration count of vanilla as
well as hardened versions of two sensitive loops running on
an ARM Cortex-A9 processor. We propose a step-by-step
methodology using very simple codes to understand and
classify the fault effects at the level of the instruction set
architecture (ISA).1 The well established instruction skip and
register corruption models are part of this classification, to-
gether with new effects specific to more complex processors.
The latter include operand substitution, multiple correlated
register corruptions, advanced control-flow hijacking, and
combinations of all reported effects. This diversity and com-
plexity of effects can lead to powerful attacks. The proposed
ISA-level classification and analysis on secure software is a
first step towards a more complete characterization of EM-
induced faults.
The paper is organized as follows. Section 2 discusses

related work. Section 3 describes the hardware and soft-
ware setup. Serving as a motivation for the whole study,
Section 4 conducts a sensitivity analysis of vanilla and hard-
ened versions of representative loops. Section 5 presents a
step-by-step methodology and derives an initial fault model
classification. We further extend these models to interpret
the faults observed on the sensitive loops in Section 6, wrap-
ping up a first characterization. Section 7 concludes with
directions towards a more complete characterization.

1The ISA is the lowest level available to a programmer implementing secure
applications.

2 RELATEDWORK
Since the pioneering exploit of a CRT-RSA implementa-
tion [4], fault attacks targeting cryptographic applications
have been under the spotlight of security research and new
studies are published every year [28]. Such fault attacks are
either described at an algorithmic level [1, 8] or target a
specific implementation [5, 9]. They rely on the attacker’s
ability to inject and exploit fault effects on a sensitive appli-
cation: e.g., a skipped instruction or corrupted variable. As
a result, most studies considered the injection or exploita-
tion dimensions, while the characterization of possible fault
effects received less attention. This is particularly true of
modeling efforts targeting the hardware/software interface.
Moro et al. proposed a first ISA-level characterization of

EM fault injection on a 32-bit ARMCortex-M3 processor [16].
Observing that EM fault injections can alter transfers from
the Flash memory, they model these effects as load value
corruption or instruction replacement at ISA level. Also, 25%
of these instruction replacements happen to be equivalent
to skipping an instruction. Riviere et al. reported that due
to the presence of an instruction cache or prefetch buffer,
some instructions (previously fetched) can be replayed as a
consequence of EM fault injection on anARMCortex-M4 pro-
cessor [22]. Yuce et al. [27] targeted a 7-stage-pipeline 32-bit
LEON3 processor using voltage glitch injection, which can
lead to the corruption of up to 5 consecutive instructions—
each one in a different pipeline stage.
Dureuil et al. [11] proposed to infer a probabilistic fault

model from a series of iterative fault injection campaigns
running dedicated test codes. This model is the basis for the
robustness evaluation of an application using a simulator.
While the accuracy of the inferred probabilistic fault model
is highly dependent on the first set of experiments, this work
highlights the importance of crafting adequate test codes to
analyse fault effects.
Kelly et al. proposed a methodology to characterize a

fault model from laser injections on an 8-bit AVR micro-
controller [13]. They performed a whole chip scan running
test codes consisting of a single instruction from different
classes. Theymapped every instruction (class) to one or more
sensitive areas on the chip and associated it with different
observable effects. A deeper investigation revealed that laser
beam injection on a selected sensitive area enables to skip an
instruction. This methodology shows the importance to use
specific test codes to determine fault effects at ISA level, yet
the authors did not propose a classification of all observed
effects.

The injection of faults on more complex SoC has recently
raised the interest of security researchers. Attacks targeting
an ARM Cortex-A9 platform—typical of early smartphones—
attempted priviledge escalation in Linux using power glitches [23]



A First ISA-Level Characterization of EM Pulse Effects ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

and to bypass secure boot protections using laser injec-
tion [25]. Majeric et al. [15] sucessfully injected EM-induced
faults targeting a hardware AES implementation on a sim-
ilar SoC. These early studies demonstrate the feasibility to
target a specific SoC location without altering the behavior
of the full chip. All these works report on the feasibility of
exploiting fault injections, but their effects at ISA level are
not yet understood. The characterization of fault effects on
complex microarchitectures is yet to come, in particular the
effects of EM fault injection.

3 EXPERIMENTAL SETUP
This section details the fault injection setup including the
targeted hardware device and the software environment
supporting the attack campaigns and analyses.

3.1 Device under test
All attacks have been realized on a widespread SoC typical
of automotive and Internet of Things (IoT) applications. It
consists of a dual-core 32-bit ARM Cortex-A9 MPCore on
CMOS 40nm technology implementing the ARMv7-a ISA
and clocked at up to 1 GHz. From experiments, we measured
a performance around 80M instructions per second.

The following features of the Cortex-A9 microarchitecture
stand out from previous studies of simpler in-order proces-
sors such as secure element micro-controllers [16, 27]:

• 8-stage variable-latency pipeline;
• superscalar, dual-issue instruction decoder;
• register renaming with out-of-order write-back;
• branch predictor (with a branch target buffer);
• 64B loop buffer bypassing the instruction cache.

The memory hierarchy features separate level 1 instruc-
tion and data caches of 32KB each, a unified level 2 cache
of 256KB, along with several external memory interfaces
(DDR3, NAND-Flash and NOR-Flash). The SoC is embedded
in a development board suitable for instrumentation on the
test bench, including a serial port (UART) and GPIO signals.

3.2 Attack setup
Electromagnetic fields (EM) are a suitable physical quantity
to observe or disturb a running processor. We used the EM
injection bench presented in Figure 1. It is composed of
an automated XY-table where the target board is placed,
a generator capable of injecting pulses from 6ns to 150ns and
up to±400V, an oscilloscope, an EM probe and an EM injector.
The EM probe is a coil of copper used to monitor and time the
moment of the injection very precisely, and to observe the
effects. The EM injector is also a coil of copper, reeled around
a piece of ferrite to focus the EM field. The board is connected
through a serial port to a control PC to communicate data
for analysis. Every component is connected to the control

PC which synchronizes the necessary actions after an initial
GPIO trigger.

Figure 1: Diagram of the automated EM injection plat-
form

Multiple parameters must be set when injecting a fault
such as spatial location, temporal location, injection voltage,
pulse polarity and duration. The parameters space is too large
to be exhaustively tested. One has to focus on most mean-
ingful parameters [22]. Our goal was to obtain a successful
setup (spatial location, voltage and duration of injection) that
injects exploitable faults with high probability. Following a
trial and error scheme [11], we selected the sensitive loca-
tion highlighted in Figure 2, a duration of 6ns and a pulse
voltage of 310V. Lower voltage reduces the occurrence of
successful faults while higher voltage mutes the SoC more
frequently. Overall, the timing offset to inject the fault after
the initial GPIO trigger is the only parameter varying during
our experiments. It lets us target different instructions as the
processor runs a given test code. In the following, an attack
campaign refers to series of experiments on the same test
code, each experiment consisting of a single EM pulse, and
varying the timing offset of injection.

Figure 2: EM probe and EM injector (left) as well as
their positioning over the SoC surface (right); the axis
represents the SoC package

3.3 Software setup
We derive the most appropriate instant to inject an EM dis-
turbance from the EM probe measurements. First of all, to



ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Proy et. al

ease the detection of the targeted code’s pattern in the EM
trace, we inserted a sequence of 200 nops before and after the
targeted region in the binary code. These sequences exhibit
much lower EM emissions that are easily detected on the
trace. Figure 3 shows the EM trace of an execution of a loop
where the pulse has been injected at the fifth iteration. In
Figure 3, we can observe the different loop iterations (small
peaks) as well as nop sequences (flat parts), and the fault
injection itself (high oversized and truncated peak).

0 5 10 15

nops nops

time(µs)

GPIO
EM radiations

EM-pulse effect

Figure 3: EM radiation emanating from the chip while
injecting a fault during the execution of a loop

Inserting nop sequences and coupling those with a GPIO
trigger help to determine an interval of maximal timing
offsets covering a significant part of the running trace of the
target code. E.g., multiple iterations for a loop. An attack
campaign steps through that interval, injecting one pulse
at a precise timing offset; we selected steps of 5ns to be
shorter than CPU clock period. Besides, the execution of any
test code ends with a sequence of instructions to store the
contents of general-purpose registers r0 to r13 and to copy
its operating memory areas into an output buffer. This output
buffer is sent to the PC for analysis.

A dry run without any injection allows to collect reference
values in the output buffer. Every subsequent run is subject
to an EM fault injection. Comparing the output buffer with
reference values is called result analysis in the following.
We made the following implementation choices to facilitate
result analysis:

• the general-purpose registers are initialized with dis-
tinct low Hamming weight values, to help narrowing
down the analysis in case of (multiple) register corrup-
tion;

• similarly, the contents of operating memory areas is
initialized with distinct “remarkable” values;

• the test codes are developed in C and compiled with
clang/llvm version 6.0 at optimization level -O2; the
generated assembly code has been manually rewritten
to use all available registers (register allocators typi-
cally aims to spare registers) to better track the fault
effects on intermediate computations until the end of
the attacked code region.

For every fault injection, different types of results can be
observed. They are classified and assigned to different groups
among:

• no fault: the output buffer content exactly matches the
reference one: the fault has no visible effect;

• successful fault: the output buffer contents does not
match the reference one;

• mute—the board did not reply to the command; its
status is undefined (the board needs a hard reset).

For each successful fault, the received values may be ana-
lyzed to help identify what happened at ISA level.

4 PRELIMINARY FAULT SENSITIVITY
ANALYSIS

Attacks in the cryptography [9, 12] and systems [17] litera-
ture often target loops, aiming for early or deferred loop exit.
We would first like to assess the practicality of such control
flow disruption on sensitive loops.

4.1 Loop benchmarks
We selected two loops for their representativity of sensitive
code and small enough to make the analysis of fault effects
tractable:

• the memcpy-like function in Listing 1 is typical of
firmware updates subject to buffer overflow attacks [17];
instead of copying, values in the source and destination
buffers are added to ease result analysis;

• the memcmp-like function with early exit in Listing 2
resembles authentication schemes such as PIN verifi-
cation [10]; again, to facilitate analysis, the outcome
of the comparison is stored in a destination buffer at
every iteration.

for(k=0; k<n; k++) {
dst[k] += src[k];

}

Listing 1: Simple loop

for (k=0; k<n; k++) {
dst[k] = (src1[k] != src2[k]);
if (dst[k])
break;

}

Listing 2: Multiple exit
loop

The second loop is structurally more complex than the
first one: it has two different exits. Moreover, its early exit
condition depends on a comparison between data read from
memory whereas the loop exit of the first loop only depends
on a monotonically increasing counter.

4.2 First fault injection campaign
We conducted an attack campaign on both loops, stepping
pulse injections through all instructions executed in a given
iteration. Table 1 shows the results.



A First ISA-Level Characterization of EM Pulse Effects ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

Table 1: Classification of EM pulse results

Code No Fault Mute Successful faults
loop1 12663 (93.0%) 403 (2.9%) 555 (4.1%)
loop2 14287 (95.0%) 341 (2.4%) 372 (2.6%)

The fraction of successful faults is consistent with existing
results on simpler devices [24]. Successful faults can be fur-
ther divided into two classes: a harmful fault led to corrupted
output values and taking the wrong exit (incorrect number
of iterations or taking the wrong exit in the second loop); a
harmless fault where output are not nominal but still indicate
a correct number of loop iterations and taken exit branch.
Table 2 shows the proportion of successful faults that are
classified as harmful or harmless: 15% of the successful faults
on the first loop break the security property and up to 80%
of the successful faults on the second loop. Since the latter
involves more registers and instructions in its exit conditions,
its attack surface is higher, explaining the higher number
of successful faults. These campaigns demonstrate our in-
jection setup’s effectiveness on simple loops on a complex
microarchitecture.

Table 2: Breakdown of successful faults

Code Harmful faults Harmless faults
loop1 87 (15.7%) 468 (84.3%)
loop2 299 (80.4%) 73 (19.6%)

Our first attempt to explain these successful faults is to
consider existing fault models, such as instruction skip [16]
and register corruption [2, 18, 19]. We analyzed the faulted
contents of the output buffer and observed that 8% (resp. 14%)
of the faulty behaviors can be explained by an instruction
skip (resp. register corruption). The remaining 78% successful
faults cannot directly be explained without further investi-
gation.
In practice, sensitive codes are often protected against

instruction skip and register corruption [3, 7, 14, 20, 21]. For
this reason, the following section studies the feasibility of
attacking hardened codes.

4.3 Fault injection campaign on hardened
code

We selected two hardening schemes from the literature, one
dedicated to loops [20] and a general-purpose scheme [21].

The first scheme replicates the loop exit condition and the
slice of instructions involved in its computation. Both con-
ditions are compared at each iteration. Any fault impacting
one of the computations is detected and leads to an error

0 20 40 60 80 100%

loop1-sec
loop2-sec

loop2-swift

Harmless fault Detected fault Harmful fault

Figure 4: Successful fault breakdown on hardened
loops

handler. This countermeasure is designed to resist under the
instruction skip and register corruption fault models.

The second scheme, called SWIFT, is based on a duplication
of all instructions. This scheme also introduces a signature-
based control-flow integrity mechanism: every basic block
has its own signature; two variables track signature updates
at branches using both original and duplicated predicates.
This scheme is designed to detect control-flow hijacking
and any register corruption resulting from one Single Event
Upset [2] where a single bit is flipped.
These countermeasures are designed to be target inde-

pendent. The loop hardening scheme was validated on a
simple micro-controller, the ARM Cortex-M3 [20]; imple-
mented in the llvm middle-end, it is immediately applicable
to more complex processors with similar ISA (ARMv7-m vs.
ARMv7-a). SWIFT was originally designed for IA64, taking
advantage of its instruction predication and wide-issue logic.
We adapted it to the ARMv7 assembly language. Since both
schemes behave very similarly on the simple control flow
of the loop1 benchmark, we report the SWIFT results on the
loop2 benchmark only.
In the following, loop1-sec and loop2-sec refer to the ap-

plication of the loop hardening scheme to both loop bench-
marks, whereas loop2-swift corresponds to the second loop
hardened with SWIFT.

We conducted attack campaigns on these hardened loops.
The results include an additional class called Detected fault,
counting EM pulses resulting into a detected fault with a
corrupted output buffer.
Figure 4 shows interesting results. Hardening the code

significantly reduces the probability of a successful attack,
and this is the case for both countermeasures. The coun-
termeasures do detect some of the faults, this is consistent
with our preliminary analysis that some injections led to
skipping an instruction or corrupting a register. However,
as numerous faults are not detected, these results also sug-
gest that EM pulses may induce complex effects at software
level that are not caught by the countermeasures. Further
fault characterization is required to better understand the
achievable effects visible at ISA level.



ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Proy et. al

5 CHARACTERIZING AND MODELING
FAULTS

To characterize the different fault effects, let us step back
from loop benchmarks and switch to a set of much simpler
(synthetic) codes. The simpler codes are designed to exer-
cise a narrower set of microarchitectural elements (registers,
functional units, data path). The attack campaign consid-
ers codes of increasing complexity and microarchitectural
footprint. This step by step methodology facilitates the isola-
tion of (faulty) effects; it also enables designing subsequent
experiments from the previously observed effects.

5.1 Sequence of nop
Without prior knowledge on the effect of electromagnetic
injection on this complex SoC, we started from themost basic
example consisting of a linear sequence of nop instructions.

On a campaign of 3000 runs, we observed 142mutes but no
successful fault. It appears that, at ISA level, neither registers
nor instructions have been corrupted. This was somewhat
surprising to us given the observed register corruption on
the loop benchmarks. One may immediately deduce that
there is no general instruction replacement going on: any
replacement, if it occurs, has no effect on the architectural
registers. In particular, this experiment rules out any of thin
air instruction replacement on or before the decode stage.

By construction, it is not possible to detect instruction skip
on such a code, which brings us to the following experiment.

5.2 Single counter incrementation
Our second test example consists of a sequence of add r0,
r0, #1 instructions. By incrementing only one register,
we attempt to correlate corruption effects with instruction
operands.
Among all successful faults, only r0 has been corrupted.

This is an important result consistent with the previous ex-
periment on a sequence of nops. It also indicates that the
microarchitecture does not implement nop as an instruction
involving one or more register operands (e.g., add r0, r0,
#0).

We also analyzed the faulted values observed in r0. Most
of these correspond to twice the expected (unfaulted) value
plus a small negative offset2. Occasionally three or four times.
This could be explained by the selection of an architectural or
bypass logic register instead of the expected constant #1. The
offset is proportional to the number of instructions remaining
to be executed after the fault affecting r0. We could confirm
this timing correlation on the EM trace. The proportionality
is faithfully observed except in very rare cases where the
offset is smaller; this suggests (rare) additional effects such as

2Small relative to the initial value of r0, see Section 3.

instruction skip and bit flips. At ISA level, it can be modeled
as the replacement of one or more instructions add r0, r0,
#1 by add r0, r0, r0. Given the selectivity of the observed
values, we can also rule out a functional unit replacement,
e.g., sll r0, r0, #1 would be an alternative replacement
but such an explanation would authorize replacements with
more arithmetic and logic operations leading to amuchwider
distribution of observed values.
We then studied the sensitivity to the register operand

number. Replacing r0 with r5 in the sequence of additions
showed that only r5 was faulted, which is consistent with
the previous findings. Yet the faulted values now behave
differently: we now observe values consistent with a major-
ity of replacement with add r5, r5, r0 and a minority
with add r5, r5, r5! This motivates further study of the
influence of the register operand number in the fault effects,
which will be the purpose of the following experiment.

So far, 96% of these two experiments can be explained
with the replacement of one operand, but the exact nature
of this replacement remains obscure at this point. Many mi-
croarchitectural effects could explain the observed results:
corruption may take place in the registers themselves, in
selectors/multiplexers addressing architectural or physical
register banks, or the bypass logic. We are also not sure how
many registers and/or instructions have been corrupted, but
several observations hint at multiple faults, possibly corre-
lated/coupled..

5.3 Multiple counter incrementation
The next experiment runs a sequence of add rx, rx, Cx
instructions where Cx is a different constant for every regis-
ter, with x ranging from 0 to 9. This configuration has four
advantages. First of all, since the sequence features additions
only, it mitigates complexity. Second, it touches multiple
registers, but none of these induces any dependence. Third,
the distance between two instructions modifying the same
register is 10 instructions, limiting time-dependent effects
associated with out-of-order execution or pipelining. Finally,
every register is incremented using a different immediate
constant (Cx). We used prime numbers to reduce chances of
collision in corrupted values.

This campaign hints at the number of instructions or reg-
isters that may be impacted by a single injection, as well
as the potential interaction between simultaneously exe-
cuted instructions. And our observations indicate that many
registers can be corrupted by a single fault. As previously
observed, only registers occurring as instruction operands
are corrupted, and we also observe that all registers have
the same sensitivity to corruption or to be used as a source
operand in a replacement (resulting in the corruption of an-
other register). Figure 5 shows the distribution of the number



A First ISA-Level Characterization of EM Pulse Effects ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

0 20 40 60 80 100%
1 2 3 4 5 6 7 8 9 10 registers

Figure 5: Distribution of the number of corrupted reg-
isters per successful injection

of corrupted registers impacted by one single injection. Mul-
tiple register corruption is more likely to occur: the average
number of corrupted registers per successful fault is 3.8 and
all alive registers can be corrupted at once.
The analysis is already delicate, even on such a simple

code. Yet some behaviors can still be explained thanks to
the setup of initial register values. We observed that some
registers received the values expected for other ones. At
ISA level, it can be modeled as the replacement of add ry,
ry, Cy by add ry, rx, Cx where rx + Cx is the value
expected for another register. Some corrupted values can also
be explained by an operand replacement. All these observed
faults still seem to come from the selection of an architectural
or bypass logic register instead of expected operands.

Some corrupted registers also derive from in-flight values
(from the register itself or another one) with several flipped
bits. Also, some corrupted register contents match precisely
the reset of their 16 most-significant bits. The experiment
highlights another frequent effect resulting into a double
register corruption. Considering the two instructions add
r2, r2, #5 and add r3, r3, #7, we observed correlated
corruptions of the form

faulted_value(r2) − expected_value(r2) = −5
faulted_value(r3) − expected_value(r3) = 7

These can be modeled by one instruction skip (here add r2,
r2, #5) and the replay of an instruction (add r3, r3, #7).
The frequency of this effect targeting different registers with
different values rules out another cause such as bit flips. Some
groups of corrupted registers do not belong to consecutive
instructions in the program order; this is most likely due to
superscalar out-of-order execution.

5.4 Isolating effects
In the previous attack campaign, multiple operands are often
corrupted simultaneously across one or more instructions.
The injection pulse duration is really short (6ns) and does not
directly explain this behavior. We thus suspected side effects
due to pipelining where a single glitch can influence mul-
tiple instructions [27]. In an attempt to reduce the number
of simultaneous corruptions, we replayed the last campaign
inserting one or several nop instructions between every ad-
dition. The average number of simultaneously corrupted
registers effectively went down from 3.8 to 3.2 with 1 nop,
1.8 with 2 nops, 1.7 with 4 nops, and to 1.1 with 50 nops.

These experiments confirm that a single fault may affect
several in-flight instructions.

5.5 Fault models and classification
To summarize our findings, we observed and analyzed differ-
ent fault effects and highlighted different of their properties:
a register not used by the processor has a very low prob-
ability of being corrupted; all registers seem to have the
same sensitivity despite a fixed EM-pulse spatial position;
registers value can be directly corrupted (multiple bit-flips
or most-significant half-word reset); all alive registers can
be corrupted at once and inserting nop instructions between
every instruction reduces the number of corrupted registers.
Finally, instructions can be corrupted in multiple ways. They
can either be skipped (no write, no operation) or replayed, or
their operands can be substituted mainly by operands from
other instructions being processed.
These are general observations and analyzed behaviors

for the fault injection setup. Before confronting and applying
these findings to complex test codes, we further classify the
results of a single injection according to the type of effect
observable at ISA level:

• Instruction skip: one instruction is skipped.
• Register most-significant half-word (mshw) reset: the
corrupted value corresponds to a reset of the 16 most-
significant bits of the expected value.

• Register corruption: the corrupted value is either de-
rived from another existing one (bit flips) or does not
seem correlated to any in-flight value.

• Source operand substitution: an immediate value or a
source register of an instruction is not the expected
one; the corrupted value usually comes from the imme-
diate or source register operand of another instruction.

In most cases, results cannot be explained directly by a
single one of the four previous groups. Instead, a combina-
tion of these effects is needed, often with strongly coupled
composite effects:

• Combined skip of an instruction and replay of a previ-
ously executed one.

• Combined register corruptions leading to correlated
corrupted values.

• Repeated occurrences of the same fault effects, such as
instruction skip or register corruption with or without
correlated values.

• Sometimes, mixed faults that correspond to two or
more distinct of the above, without any apparent cor-
relation.

Moreover, the instructions impacted in these fault effect
do not necessary form consecutive intervals due to out-of-
order execution. Also, the occurrence rate of all these fault
patterns are not equal. The precise effect of one injection is



ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Proy et. al

known to be difficult to predict. However, we observed sev-
eral times some faulty outputs with the same values. Hence,
the probability to reproduce some faults is far from negligi-
ble.
Based on these analysis and classification, we can revisit

the yet unexplained results from more complex loop exam-
ples. This is the purpose of the next section.

6 LOOPING BACK
A major difference between the previous test codes and the
more complex loops resides in the instruction mix. In ad-
dition to arithmetic operations, loops contain memory ac-
cesses (load/store) and branches, and access more diverse
data coming from memory. Also, the results are more dif-
ficult to analyze due to the propagation of the fault effects
until the contents of the output buffer can be retrieved.

6.1 Loop analysis w.r.t. fault classification
To analyze results from successful faults on loop test codes,
we first considered the fault effect classification established
in the previous section. As a faulted contents of the output
buffer can sometimes be explained with more than one single
ISA-level effect, we prioritized the models in reverse order
of their (apparent) complexity: we first look for a skipped in-
struction, and subsequently for operand substitution, register
corruption, composite faults, and eventually mixed models.
We managed to classify a significant part of the results, but
some effects remain unexplained when considering these
fault models only.
Some values loaded from memory areas have been cor-

rupted while source memory remains unaltered. These val-
ues follow two patterns: either similar to alive register con-
tents with several flipped bits or values apparently not cor-
related to any available values but repeated over injections.
The latter ones can be explained by values from other mem-
ory areas and thus be related to an operand substitution in
the load instruction. The former pattern can be modeled by
a register corruption as already observed. However, we can-
not ensure that it does not come from a corruption of the
memory transfer itself. Moreover, we encountered this case
several times highlighting a sensitivity of load instruction.
We call this a load corruption effect.

The second of these new effects is much more original
and is best understood at the level of the control-flow graph
(CFG) of the function. Some injections on hardened versions
can only be explained by a jump from the end of a basic block
(linear sequence of instructions without a branch) directly
to the beginning of another one. When the target block is an
illegal destination block in the CFG, we name this effect a
magic edge. We did not observe any random jumps to the

middle of basic blocks. This behavior hints at the corrup-
tion of the branch target buffer or another branch prediction
mechanism, rather than a more direct effect on the program
counter that would have led to a greater diversity of tar-
get addresses (i.e., one would have observed jumps into the
middle of basic blocks).

The occurrence of such a magic edge may induce an early
exit that bypasses all the control blocks of a loop-centric
countermeasure. It is not detected by SWIFT either, although
it is meant to protect against a very wide range of control-
flow hijacking patterns. Overall, this new effect provides a
powerful attack vehicle, although it seems difficult at this
point to precisely control the target of a magic edge.

6.2 Fault classification on loops
Let us now classify all the successful faults observed during
the different attack campaigns on loop benchmarks.
As the hardened loops leave some faults undetected, we

applied a costly combination of both countermeasures to the
loop2 example from Listing 2. We first applied loop scheme
from [20] and hardened the resulting code using SWIFT
scheme. We refer to this version as loop2-sec+swift. We also
ran an attack campaign on this version.
Figure 6 shows the distribution of successful faults ac-

cording to all the fault models established in this paper, for
all loop benchmarks. Note that the ratio of instruction skip
may be slightly skewed (in excess) due to the priority we
assigned to this model in the classification methodology (cf.
Section 6.1). Also, the single faults are displayed first for
every fault model, before any composite faults. Note that
15% of the successful faults remain unexplained. Further in-
vestigation is needed, involving additional attack campaigns
and analyses.
The results also show that all fault models have been ob-

served in every attack campaign. The proportion of a given
fault model varies widely across the test codes, but composite
effects are always far from negligible.
Let us now focus on the classification of the fault effects

that manage to bypass the software countermeasures of the
hardened loops, by considering only harmful (undetected)
faults. Figure 7 selects some of the effects listed in Figure 6,
detailing the breakdown of successful faults.
We can observe that most of the single faults (from Fig-

ure 6) are either detected or harmless. The harmful single
faults, magic edge excluded, are most often due to an operand
substitution (destination register) that leads to a double reg-
ister corruption that bypasses the detection mechanisms.

Harmful faults are mainly due to composite faults or magic
edges. However, composite faults affecting differently an
original computation and its duplicated version are detected:
48% of the composite faults of Figure 6 are no more present



A First ISA-Level Characterization of EM Pulse Effects ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

0 10 20 30 40 50 60 70 80 90 100%

loop2-swift+sec (2074)
loop2-swift (1615)

loop2-sec (702)
loop2 (372)

loop1-sec (475)
loop1 (551)

instruction skip register corruption operand replacement mshw reset load corruption magic-edge mixed faults

single faults composite faults

Figure 6: Fault distribution according to the different models and the multiplicity of faults for each loop code
(with the total number of successful faults for each code)

0 25 50 75 100%

loop2-swift+sec (80)
loop2-swift (447)
loop2-sec (118)
loop1-sec (87)

magic edge other single mixed other composite

Figure 7: Distribution of effects leading to a harmful
fault (with the total number of harmful faults for each
code)

in Figure 7. The remaining composite faults bypass the coun-
termeasures and represent a large fraction of the undetected
faults.
Magic edges represent a real threat for all the hardened

version. A single magic edge cannot be detected by the first
(loop-centric) countermeasure. For the hardened versions
of loop2, around 33% of mixed faults are a combination of a
magic edge and another corruption. In particular, stacking
the two countermeasures (version loop2-swift+sec) is not suf-
ficient to entirely protect against magic edge and composite
effects.

Also, code size may grow exponentially with the stacking
of countermeasures: ×3 for loop2-sec and loop2-swift and ×11
for loop2-swift+sec. This advocates for further investigation
of fault effects on complex microarchitectures to provide a
more complete characterization. It would enable the deploy-
ment of protection schemes intrinsically resistant to multiple
faults. A mix of software and hardware countermeasures
seems particularly attractive to mitigate overhead.

7 CONCLUSION
We first established the vulnerability of loop-based applica-
tions to electromagnetic (EM) fault injections targeting an
out-of-order superscalar processor. Following a black-box
approach and relying on widely available equipment, we
demonstrated the exploitation of this vulnerability by locally

disrupting the control flow of hardened versions of sensitive
loops. We also demonstrated that state-of-the-art software
countermeasures could reduce the probability of success of
such attacks, but fail to achieve levels of protection com-
parable with running the same hardened loops on simpler
micro-controllers.

We proposed a step-by-step methodology to characterize
the fault effects at the level of the instruction set architecture
(ISA), starting from extremely simple yet carefully designed
code fragments, and following on with loop benchmarks in-
cluding loops hardened with software countermeasures. We
applied this methodology to identify a range of fault models,
some already well-known observed on simpler processors
such as instruction skip or register corruption, as well as
newer ones, potentially very powerful and specific to com-
plex microarchitectures. Among the latter, we observed and
classified correlated effects such as instruction skip and replay,
operand substitution and magic-edge control flow hijacking,
as well as compositions of such effects.

These results explain the wide vulnerabilities left open by
state-of-the-art software countermeasures designed for con-
ventional fault models. In particular, they highlight the fun-
damental weakness of replication-based software-only pro-
tections, aimed at single, localized faults. The correlated and
mixed fault models we characterize seem to evade such repli-
cation tactics. Our results motivate further research in two
directions: (1) broadening the characterization of EM fault
injection at ISA level, covering microarchitectures from dif-
ferent vendors taped out with different technological nodes
and exploring more die locations, and (2) designing and eval-
uating hardware or hybrid hardware-software countermea-
sures capable of detecting multiple fault effects with strong
correlations, as well as advanced control flow hijacking.

REFERENCES
[1] C. Aumüller, P. Bier, P. Hofreiter, W. Fischer, and J.-P. Seifert. Fault

attacks on RSA with CRT: Concrete results and practical countermea-
sures. Cryptology ePrint Archive, Report 2002/073, 2002.



ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Proy et. al

[2] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The
sorcerer’s apprentice guide to fault attacks. Proceedings of the IEEE,
94(2):370–382, 2006.

[3] T. Barry, D. Couroussé, and B. Robisson. Compilation of a coun-
termeasure against instruction-skip fault attacks. In Workshop on
Cryptography and Security in Computing Systems, CS2, 2016.

[4] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of check-
ing cryptographic protocols for faults. In W. Fumy, editor, Advances
in Cryptology — EUROCRYPT, pages 37–51. Springer, 1997.

[5] E. Brier, D. Naccache, P. Q. Nguyen, and M. Tibouchi. Modulus fault
attacks against rsa-crt signatures. Cryptology ePrint Archive, Report
2011/388, 2011.

[6] Common Criteria. Common Criteria for Information Technology
Security Evaluation, Version 3.1, Revision 5.

[7] R. De Keulenaer, J. Maebe, K. De Bosschere, and B. De Sutter. Link-
time smart card code hardening. International Journal of Information
Security, pages 1–20, 2015.

[8] A. Dehbaoui, J. Dutertre, B. Robisson, P. Orsatelli, P. Maurine, and
A. Tria. Injection of transient faults using electromagnetic pulses –
practical results on a cryptographic system. Cryptology ePrint Archive,
Report 2012/123, 2012.

[9] A. Dehbaoui, A. Mirbaha, N. Moro, J. Dutertre, and A. Tria. Electro-
magnetic glitch on the AES round counter. In COSADE, 2013.

[10] L. Dureuil, G. Petiot, M. Potet, T. Le, A. Crohen, and P. de Choudens.
FISSC: A fault injection and simulation secure collection. In SAFE-
COMP, 2016.

[11] L. Dureuil, M.-L. Potet, P. de Choudens, C. Dumas, and J. Clédière.
From code review to fault injection attacks: Filling the gap using fault
model inference. In Smart Card Research and Advanced Applications
Conference (CARDIS), pages 107–124. Springer, 2016.

[12] T. Espitau, P. Fouque, B. Gérard, and M. Tibouchi. Loop-abort faults
on lattice-based signature schemes and key exchange protocols. IEEE
Trans. Computers, 67(11):1535–1549, 2018.

[13] M. S. Kelly, K. Mayes, and J. F. Walker. Characterising a cpu fault attack
model via run-time data analysis. In IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pages 79–84, 2017.

[14] J.-F. Lalande, K. Heydemann, and P. BerthomÃľ. Software Countermea-
sures for Control Flow Integrity of Smart Card C Codes. In Computer
Security - ESORICS, volume 8713 of LNCS, pages 200–218. Springer,
2014.

[15] F. Majéric, E. Bourbao, and L. Bossuet. Electromagnetic security tests
for SoC. In IEEE International Conference on Electronics, Circuits and
Systems (ICECS), pages 265–268, 2016.

[16] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz.
Electromagnetic fault injection: Towards a fault model on a 32-bit
microcontroller. In Workshop on Fault Diagnosis and Tolerance in
Cryptography, pages 77–88, 2013.

[17] S. Nashimoto, N. Homma, Y.-i. Hayashi, J. Takahashi, H. Fuji, and
T. Aoki. Buffer overflow attack with multiple fault injection and a
proven countermeasure. Journal of Cryptographic Engineering, 2016.

[18] S. Ordas, L. Guillaume-Sage, and P. Maurine. EM injection: Fault
model and locality. Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pages 3–13, 2015.

[19] S. Ordas, L. Guillaume-Sage, K. Tobich, J.-M. Dutertre, and P. Maurine.
Evidence of a larger em-induced fault model. In Smart Card Research
and Advanced Applications (CARDIS), pages 245–259. Springer, 2015.

[20] J. Proy, K. Heydemann, A. Berzati, and A. Cohen. Compiler-Assisted
Loop Hardening Against Fault Attacks. ACM Transactions on Architec-
ture and Code Optimization, 14(4):36, 2017.

[21] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August. SWIFT:
Software Implemented Fault Tolerance. In International Symposium
on Code Generation and Optimization, pages 243–254, 2005.

[22] L. Rivière, Z. Najm, P. Rauzy, J.-L. Danger, J. Bringer, and L. Sauvage.
High Precision Fault Injections on the Instruction Cache of ARMv7-M
Architectures. In IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), 2015.

[23] N. Timmers and C. Mune. Escalating privileges in linux using volt-
age fault injection. In Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pages 1–8, 2017.

[24] N. Timmers, A. Spruyt, and M. Witteman. Controlling PC on ARM
using fault injection. In Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pages 25–35, 2016.

[25] A. Vasselle, H. Thiebeauld, Q. Maouhoub, A. Morisset, and S. Ermeneux.
Laser-induced fault injection on smartphone bypassing the secure boot.
In Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC),
pages 41–48, 2017.

[26] B. Weyl. Secure on-board architecture specification. EVITA project
Deliverable D3.2, 2011.

[27] B. Yuce, N. F. Ghalaty, H. Santapuri, C. Deshpande, C. Patrick, and
P. Schaumont. Software fault resistance is futile: Effective single-glitch
attacks. InWorkshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), pages 47–58, 2016.

[28] B. Yuce, P. Schaumont, and M. Witteman. Fault attacks on secure em-
bedded software: Threats, design, and evaluation. Journal of Hardware
and Systems Security, 2(2):111–130, 2018.


	Abstract
	1 Introduction
	2 Related work
	3 Experimental setup
	3.1 Device under test
	3.2 Attack setup
	3.3 Software setup

	4 Preliminary fault sensitivity analysis
	4.1 Loop benchmarks
	4.2 First fault injection campaign
	4.3 Fault injection campaign on hardened code

	5 Characterizing and modeling faults
	5.1 Sequence of nop
	5.2 Single counter incrementation
	5.3 Multiple counter incrementation
	5.4 Isolating effects
	5.5 Fault models and classification

	6 Looping back
	6.1 Loop analysis w.r.t. fault classification
	6.2 Fault classification on loops

	7 Conclusion
	References

