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Abstract Scoring rules constitute a particularly popular technique for aggregating a set of rank-
ings. However, setting the weights associated to rank positions is a crucial task, as different instan-
tiations of the weights can often lead to different winners. In this work we adopt minimax regret
as a robust criterion for determining the winner in the presence of uncertainty over the weights.
Focusing on two general settings (non-increasing weights and convex sequences of non-increasing
weights) we provide a characterization of the minimax regret rule in terms of cumulative ranks,
allowing a quick computation of the winner. We then analyze the properties of using minimax
regret as a social choice function. Finally we provide some test cases of rank aggregation using the
proposed method.

Keywords Scoring rules · rank aggregation · computational social choice · possible winners ·
minimax regret · convex sequences · robust optimization

1 Introduction

Rank aggregation arises in many settings including voting, recommender systems, information
retrieval and sports. Positional scoring rules are often used in these settings: each alternative
receives points based on its position on each of the input rankings and the alternative with the
highest total score is deemed the winner.

Scoring rules offer the advantage of being very simple to implement. Moreover, scoring rules
satisfy several desirable properties (Young 1975) including monotonicity, consistency and partici-
pation (two important properties that are not satisfied by scoring rules are Condorcet consistency
and clone-proofness).

In scoring rules, a vector of weights, called scoring vector, determines the amount of points
attributed to the first rank, to the second rank, etc. These weights, typically monotone decreasing,
can encode preferences for controlling the tradeoff between “extreme” alternatives (often in the first
positions and in the last positions), and “moderate” ones (alternatives that are most of the times
in the middle positions). A particular scoring rule is Borda count that uses linear weights; while
it satisfies some additional properties (Young 1974; Fishburn and Gehrlein 1976) and sometimes
presented as superior to other scoring rules, Borda may not be adequate in decision contexts
where greater discrimination between the positions is needed. For instance, in many contexts,
in particular in sport competitions, it is often assumed that weights should constitute a convex
sequence (Llamazares 2016), meaning that the difference between the weight of the first position
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and that of the second position is at least as large as the difference between the weight of the
second and the third position, and so on.

Setting the weights of a scoring rule is a critical task; indeed, it is often the case that different
winners may emerge when using different scoring vectors. Since fixing the scoring vector can be
seen as arbitrary choice, Cook and Kress (1990) suggested evaluating each alternative according
to its most favorable scoring vector, in order to avoid any subjectivity. Several authors (Cook
and Kress 1990; Green et al. 1996; Hashimoto 1997; Foroughi and Tamiz 2005; Llamazares and
Peña 2009, 2013; Khodabakhshi and Aryavash 2015; Llamazares 2016) have then proposed similar
approaches to score alternatives by considering the space of feasible weights.

In this work we view the rank aggregation problem as a decision problem under uncertainty.
The uncertainty over the scoring rule is based on an explicit representation of the possible scoring
vectors; this is a setting of strict uncertainty (French 1986). There are several possible criteria
that can be used for decision-making under strict uncertainty; the most common are: maximax,
maximin, Hurwitz’s and minimax regret; the reader is referred to French (1986) for a critical review.
In fact, some of previous approaches to rank aggregation can be seen from this prespective: Cook
and Kress (1990) adopt the maximax criterion while the criterion chosen by Khodabakhshi and
Aryavash (2015) is closely related to Hurwicz’s criterion.

While there is no definite consensus on which criterion is best, we think that evaluating each
alternative according to its most favorable scoring vector, as done in several of the papers cited
above, is often too much “optimistic”. As an alternative may perform very well with some scoring
vectors, but may have dismal performance according to other scoring vectors, we think that is
important to provide some form of robustness. Therefore we adopt minimax regret (Savage 1954)
as a criterion for choosing the alternative to be declared as winner; with this robust criterion, we
are able to give guarantees on the quality of the decision.

More precisely, we assume that a central authority postulates some basic requirements about
the scoring vector, in particular we focus on two settings: 1) the set of non-increasing weights and
2) the set of convex non-increasing weights. Each alternative is associated to a max regret value,
corresponding to the worst-case loss (in term of score points) that we could incur if we were to
choose that alternative. The alternative (or the alternatives) to be declared as “winner” is the one
that minimizes such loss, i.e. achieving minimax regret.

In this paper we provide a thorough analysis of winner determination with minimax regret.
The main contributions of the paper consist in the characterization of regret in the two main
settings (non-increasing weights, non-increasing convex weights), providing closed-form expressions
for computing max regret (in Theorem 1 and Theorem 2), in analyzing minimax regret as a social
choice function (in Theorem 3), and in providing experimental tests. We also discuss the case in
which additional preference information (imposing a minimal value for difference between the value
of two weights) is known about the weights.

The paper1 is organized as follows. First, in Section 2 we provide relevant background, covering
scoring rules with uncertain weights, dominance relations between alternatives, and the identifica-
tion of possible winners. Then, in Section 3 we present the aggregation with minimax regret and
we provide a novel characterization under different hypothesis about the feasible scoring vectors.
In Section 4 we present a formal analysis of minimax regret as a social choice function. Finally in
Section 5 we describe some tests showing, with real data, the use of the proposed methods for rank
aggregation. Section 6 provides some concluding remarks.

2 Background

In this section we review relevant background. We begin by presenting the basic decision problem
and some notation in Section 2.1. We then reformulate scoring rules in terms of cumulative ranks
in Section 2.2. Based on these reformulations, we discuss dominance relations between alternatives
in Section 2.3 . Finally, in Section 2.4 we present the notions of possible and necessary winners,
and discuss the connection between these concepts and dominance relations.

1 Part of this article is based on a conference paper (Viappiani 2018), where we presented some of the theoretical
results (without proofs) and discussed the approach based on minimax regret by comparing with expected utility
and other criteria. In this article we extend the analysis focusing on minimax regret and study its properties in the
context of social choice.
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2.1 Scoring rules

As usual in social choice, we assume that n voters express preferences in the form of rankings
involving a set A of m alternatives (alternatives might be candidates for office, product configu-
rations, restaurant dishes, etc.); rankings are assumed to be linear orders. The set of voters with
their preference rankings is known as the profile. Let vx = (vx1 , . . . , v

x
m) be the rank distribution of

x, where vxj is the number of times that alternative x was ranked in the j-th position. Note that∑m
j=1 v

x
j = n for each x ∈ A and

∑
x∈A v

x
j = n for each j = 1, . . . ,m.

Positional scoring rules discriminate between alternatives by fixing a weight to each rank; the
score of an alternative is obtained by summing up the points obtained in each of the input rankings.
The score obtained by alternative x is s(x;w) =

∑m
j=1 wjv

x
j where the vector w = (w1, . . . , wm),

called the scoring vector, specifies the number of points assigned to each position. These total
scores can be used to pick a winner or to rank the alternatives from the best to the worst. For
example plurality is obtained by setting w1 = 1 and wj = 0 for all j ∈ {2, . . . ,m}.

By choosing a particular w, it is possible to specify some preferences on the aggregation, by
giving more or less weight to one position compared to the positions that came afterwards in the
ranking. We assume that not all weights are null, otherwise the alternatives are not discriminated
(degenerated scoring rule). A natural hypothesis is to require that the sequence of weights is non-
increasing: wi ≥ wi+1 for all i ∈ {1, . . . ,m− 1}; this expresses the basic intuition that in a ranking
an alternative is at least as preferred to the alternatives that comes afterwards.

A scoring rule is invariant to affine positive transformation of the scoring vector. Therefore,
with no loss of generality, we let w1 = 1 and wm = 0 (therefore we have m−2 degrees of freedom).
Given this assumption the Borda rule is given by setting wj = m−j

m−1 .
Moreover, it is often (but not always) assumed that the positional weights constitute a convex

sequence, meaning that the difference between the first and the second weight is not less than the
difference between the second and of the third, and so on. In such a case the weights need to satisfy
the following constraint, for each i between 1 and m− 2:

wi − wi+1 ≥ wi+1 − wi+2 ⇐⇒ wi − 2wi+1 + wi+2 ≥ 0. (1)

Note that Borda and plurality use a convex scoring vector; furthermore convexity is often satisfied
by the weights used when combining ranks in sports, races and other situations (e.g. formula one
world championship, alpine skiing world cup).

We now introduce some of the notation that we will use in the paper. We use [[m]] to denote the
set {1, . . . ,m}. Given two vectors α and β of size m, we write α � β iff αj ≥ βj for all components
j ∈ [[m]]. If the inequalities are strict, αj > βj for all components j ∈ [[m]], then we write α � β.

We will use WD to denote the set of scoring vectors with non-increasing weights

WD =
{

(w1, . . . , wm)
∣∣∣1 = w1 ≥ w2 ≥ . . . ≥ wm−1 ≥ wm = 0

}
,

and WC to denote the set of non-increasing scoring vectors whose weights constitute a convex
sequence2 (with our boundary assumptions, w1 = 1 and wm = 0)

WC =
{

(w1, . . . , wm)
∣∣∣w ∈WD ∧ wi − 2wi+1 + wi+2 ≥ 0 ∀i∈ [[m−2]]

}
.

In order to simplify our terminology, with a little abuse, from now on “decreasing weights” will
always mean the set WD of non-increasing weights, and “convex weights” will always refer to WC ,
the set of non-increasing convex weights.

2.2 Reformulation using Cumulative Ranks

We now show how it is possible to reformulate scoring rules in terms of cumulative ranks; this
is useful in order to establish dominance relations between alternatives in the context of scoring

2 There is some redundancy in the constraints: it is enough to assume convexity and wm−1 ≥ 0 to ensure that
the sequence is non-increasing.
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Fig. 1 Relations between rank distribution, cumulative and double cumulative rank distributions (left), between
the weights of the scoring vector, differential weights and second-order differential weights (right).

rules, as it will be shown in Section 2.3. The reformulations presented here will also be used in
Section 3 to characterize the aggregation method based on minimax regret.

We consider the fraction of times that an alternative was ranked in a certain position or better.
Cumulative standings, or cumulative ranks, are defined as the cumulative sum of the rank vectors,
starting from the first position. For each x ∈ A, the vector V x = (V x1 , . . . , V

x
m−1) is such that

V xj =
∑j
l=1 v

x
l is the number of times that alternative x has been ranked in position j or better;

note that V x has only m−1 components (we do not consider the number of times that an alternative
was ranked at least in the last place, as it is always equal to the number of voters n). Cumulative
ranks have been previously used by several authors (Stein et al. 1994; Green et al. 1996; Llamazares
and Peña 2009, 2015a,b).

We now define the vector δ = (δ1, . . . , δm−1), dubbed differential weights, as the vector of the
differences between two successive positional weights of the original scoring vector.

Definition 1 Given the vector of weights (w1, . . . , wm) ∈ WD, the vector of differential weights
δ = (δ1, . . . , δm−1) is such that

δj = wj − wj+1 ∀j ∈ [[m−1]].

Remember that we assumed that w1 = 1 and wm = 0; this assumption means that we have
δ1 = 1 − w2 and δm−1 = wm−1. As in Llamazares and Peña (2015a,b), the score obtained by an
alternative x can now be expressed as:

s(x;w) =

m−1∑

j=1

wjv
x
j =

m−1∑

j=1

m−1∑

i=j

(wi − wi+1)vxj =

m−1∑

j=1

vxj

m−1∑

i=j

δi =

m−1∑

i=1

δi

i∑

j=1

vxj =

m−1∑

j=1

δjV
x
j . (2)

This means that the score can be expressed with δ as parameter, using the cumulative rank V x

of x. Decreasing weights in the original formulation correspond to positive differential weights; the
hypothesis that w1 = 1 implies

∑m−1
j=1 δj = 1 and therefore the score of an alternative is a convex

combination of its vector of cumulative ranks.
Note that the original rank vectors can be expressed in terms of cumulative standings: vj = Vj−

Vj−1; similarly the original weights can be recovered from the differential weights: wj =
∑m−1
l=j δl.

We now derive a reformulation that is useful for scoring vectors that constitute convex sequences.
To do so we need to introduce the double cumulative rank distribution, also called cumulative of
the cumulative standings (Stein et al. 1994; Llamazares 2016):

Vxj =

j∑

l=1

V xl =

j∑

l=1

l∑

o=1

vxo =

j∑

l=1

(j − l + 1)vxl ∀j ∈ [[m]]

We now define a new vector of parameters φ, called second-order differential weights, whose ele-
ments represent a discrete analogous of the second-order derivative.



Robust Winner Determination in Positional Scoring Rules with Uncertain Weights 5

rule positional weights differential weights 2nd-order differential weights

Plurality w = (1, 0, . . . , 0︸ ︷︷ ︸
m−1

) δ = (1, 0, . . . , 0︸ ︷︷ ︸
m−2

) φ = (1, 0, . . . , 0︸ ︷︷ ︸
m−2

)

k-approval w = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
m−k

) δ = (0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
m−k−1

) φ = (0, . . . , 0︸ ︷︷ ︸
k−2

,−1, 1, 0, . . . , 0)︸ ︷︷ ︸
m−k−1

Borda w = (1, m−2
m−1 ,

m−3
m−1 , . . . ,

1
m−1 , 0) δ = ( 1

m−1 , . . . ,
1

m−1 ) φ = (0, . . . , 0︸ ︷︷ ︸
m−2

, 1
m−1 )

top-k Borda w = (1, k−1
k , . . . , 1

k , 0, . . . , 0︸ ︷︷ ︸
m−k

) δ = (
1

k
, . . . ,

1

k︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
m−k−1

) φ = (0, . . . , 0︸ ︷︷ ︸
k−1

, 1
k , 0, . . . , 0︸ ︷︷ ︸

m−k−1

)

Table 1 Common positional scoring rules and their associated (positional, differential, 2nd-order differential)
weights.

Definition 2 Given scoring vector (w1, . . . , wm) ∈ WD and the associated differential weights
(δ1, . . . , δm−1) from Definition 1, let φ, second-order differential weights, to be the vector (φ1, . . . , φm−1)
such that

{
φj = δj − δj+1 = wj − 2wj+1 + wj+2 ∀j ∈ [[m− 2]]
φm−1 = δm−1 = wm−1.

(3)

Given that we assumed w1 = 1, we have φ1 = 1− 2w2 + w3 and, since wm = 0, we have φm−2 =
δm−2 − δm−1 = wm−2 − 2wm−1. Stating φj ≥ 0 for all components j is equivalent to require the
scoring vector w to be convex.

The score s(x;w) of x under a scoring rule with scoring vector w can now be expressed in
function of φ,

s(x;w) =

m−1∑

j=1

φjVxj (4)

with φ obtained from w using Equation (3). The constraint that the weights of the scoring vector
should be bounded and the highest weight, w1 has value equal to one, becomes, expressed in terms
of second-order differential weights, the constraint

∑m−1
l=1 l φl = 1.

In Figure 1 we summarize the relations between rank distributions, cumulative rank distribu-
tions and double cumulative distributions, and as well weights, differential and second-order differ-
ential (convex) weights. We note that there is a kind of duality between (v, V,V) and (w, δ, φ). The
scoring vector w is made of non-negative elements, V is non-decreasing and V is non-decreasing
and convex. On the other hand, w is non-increasing and δ is positive. Furthermore, if w is convex,
δ is non-increasing and φ is made of non-negative elements.

Example 1 Suppose, for instance, that there are m = 6 alternatives and the scoring vector is
w = (1, 0.6, 0.2, 0.1, 0, 0). The differential weights are δ = (0.4, 0.4, 0.1, 0.1, 0) and the second-
order differential weights φ = (0, 0.3, 0, 0.1, 0). Note that w is a non-increasing convex sequence
(and with 1 and 0 at the extremes); consequently δ is positive, non-increasing and sums up to 1;
φ has all components that are non-negative and is such that φ1 + 2φ2 + 3φ3 + 4φ4 + 5φ5 = 1. In
addition to the usual way, the score of alternative x under w can be computed, using the cumulative
distribution (Equation 2), as 0.4V x1 + 0.4V x2 + 0.1V x3 + 0.1V x4 or equivalently (using Equation 4) as
0.3V2 + 0.1V4. Assume that the rank distribution of an alternative x is vx = (3, 1, 2, 0, 2, 2); then
the vector of cumulative ranks is V x = (3, 4, 6, 6, 8) and the vector of double cumulative ranks is

Vx = (3, 7, 13, 19, 27). The score s(x) =
∑m−1
j=1 δjV

x
j = 0.4 · 3 + 0.4 · 4 + 0.1 · 6 + 0.1 · 6 = 4 and as

well s(x) =
∑m−1
j=1 φjVxj = 0.3 · 7 + 0.1 · 19 = 4.

As an example of non convex sequence, consider w′ = (1, 0.2, 0.1, 0.1, 0, 0): we have δ′ =
(0.8, 0.1, 0, 0.1, 0) and φ′ = (0.7, 0.1,−0.1, 0.1, 0); note that δ′ is not monotone (as δ′3 < δ′4) and φ′

is not positive (as φ′3 < 0), indeed the scoring vector w′ is not convex.

We summarize in Table 1 how some common scoring rules are expressed in terms of differential
weights and in terms of second-order differential weights. We highlight the following observations:
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– k-approval, the rule obtained with scoring vector (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0), is not convex when k ≥ 2.

The k-approval score of alternative x, denoted as sk-approval(x), is exactly V xk .
– We call top-k Borda the scoring rule based on Borda restricted to giving points to the top k

positions. The score stop-k-Borda(x) of an alternative x with respect to top-k Borda is
Vx

k

k .

2.3 Dominance relations

The usefulness of the reformulations presented in Section 2.2 is that they can be used to discrimi-
nate alternatives according to dominance relations that allow to identify alternatives that are less
preferred than another one for any feasible scoring vector. Dominance only gives us a partial order,
so it is usually not enough to unambiguously define a winner. The dominance relations presented
here were first discussed by Stein et al. (1994) and can be seen as a special case of those studied
by Salo (1995). Note that dominance relations have been widely studied in the context of multi
attribute decision problems (Hazen 1986; Weber 1987; Pearman 1993).

Definition 3 Let x, y ∈ A be two alternatives and let W be a set of scoring vectors.

– Alternative x is said to weakly dominate alternative y with respect to W if the score of x is at
least as high as the score of y for any scoring rule with scoring vector in W .

– Similarly, alternative x is said to strongly dominate y with respect to W if the score of x is
strictly higher than the score of y for any scoring rule with scoring vector in W .

– An alternative x is said to be weakly (respectively strongly) dominated if there is another
alternative y, different from x, that weakly (resp. strongly) dominates it.

– An alternative x is said to be weakly undominated if x is not strongly dominated; while alter-
native x is strongly undominated if x is not weakly dominated.

We now address dominance when considering WD and WC as set of feasible scoring vectors.

Decreasing weights When dealing with scoring vectors in WD, i.e. with decreasing weights, the set
of possible scores obtained by an alternative x, with cumulative ranks V x, is given by

{m−1∑

j=1

δjV
x
j

∣∣∣δ1 ≥ 0, . . . , δm−1 ≥ 0 ∧
m−1∑

j=1

δj = 1
}
.

Basically, all convex combinations of the components of V x are possible. The next proposition
shows that we can compare the cumulative ranks of two alternatives componentwise to check if a
dominance relation exists.

Proposition 1 (Stein et al. 1994, Theorem 1, part a) Let x, y ∈ A. Then x weakly dominates y
with respect to WD if and only if V x � V y, and x strongly dominates y with respect to WD if and
only if V x � V y. In formulas:

– V x � V y ⇐⇒ ∀w ∈WD s(x;w) ≥ s(y;w),
– V x � V y ⇐⇒ ∀w ∈WD s(x;w) > s(y;w) .

The previous statement can be seen as a form of first-order stochastic dominance (Fishburn and
Vickson 1978).

Convex weights Assuming a decreasing convex sequence (the scoring vector belongs to WC), the
space of possible scores associated with an alternative x is given by

{m−1∑

j=1

φjVxj
∣∣∣φ1 ≥ 0, . . . , φm−1 ≥ 0 ∧

m−1∑

j=1

j φj = 1
}
.

All φj are non-negative since the scoring vector is assumed to be a convex sequence.
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The next proposition shows that, in the case of convex weights (WC), we can compare the
double cumulative ranks of two alternatives componentwise to check if a dominance relation exists.
Indeed, if each element of the vector Vx is at least as big as the corresponding element of Vy, then
x has at least the same score of y for any scoring rule with convex weights (and the analogous
relation holds with strict inequalities).

Proposition 2 (Stein et al. 1994, Theorem 1, part b) Let x, y ∈ A. Then x weakly dominates y
with respect to WC if and only if Vx � Vy, and x strongly dominates y with respect to WC if and
only if Vx � Vy. In formulas:

– Vx � Vy ⇐⇒ ∀w ∈WC s(x;w) ≥ s(y;w),
– Vx � Vy ⇐⇒ ∀w ∈WC s(x;w) > s(y;w).

This is akin to second order stochastic dominance (Fishburn and Vickson 1978) in the theory of
decision-making under uncertainty, but considering convex and not concave utility.

Example 2 Consider the following numeric example. The first table reports the distribution of
the ranks, to be read as follows: a is ranked two times first, two time second, etc., while b is never
ranked first but is ranked 6 times second and 2 times third. The second table reports the cumulative
ranks (for example, a is ranked 4 times in the second position or better) and the third the double
cumulative ranks.

Alternative v·1 v·2 v·3 v·4

a 2 2 2 2
b 0 6 2 0
c 2 0 4 2
d 4 0 0 4

Alternative V ·1 V ·2 V ·3

a 2 4 6
b 0 6 8
c 2 2 6
d 4 4 4

Alternative V·1 V·2 V·3
a 2 6 12
b 0 6 14
c 2 4 10
d 4 8 12

– When considering decreasing weights (set WD), one can establish dominance by pairwise com-
parisons of rows in the table of cumulative ranks; for instance alternative a weakly dominates
alternative c since V a1 = V c1 , V a2 > V c2 , and V a3 = V c3 . The set of undominated alternatives is
then {a, b, d}. No strong domination holds.

– When considering convex weights (set WC), now alternative d weakly dominates alternative
a; moreover d strongly dominates c since Vdj > Vcj for all j ∈ [[m−1]]. The set of strongly
undominated alternatives is {b, d}, while the set of weakly undominated ones is {a, b, d}.

2.4 Possible and necessary winners

We now introduce the concept of possible and necessary winners of a positional scoring rule with
uncertain scoring vector. Note that this differs from the more established notions of possible and
necessary winners in voting (Konczak and Lang 2005; Xia and Conitzer 2011), where uncertainty
is on the preferences and not on the voting rule.

In what follows, let W be the set of feasible weights; with W being either the set of monotone
decreasing weights WD or the set of decreasing convex sequences WC .

Definition 4 An alternative x is a possible co-winner, with respect to W , if there is a scoring
vector w ∈ W such that the score of x under w is higher or equal than the scores of all other
alternatives; that is,

∃w ∈W : s(x;w) ≥ s(y;w) ∀y ∈ A \ {x}.
Moreover, x is said to be a possible winner, with respect to W , if there is a scoring vector w ∈W
such that the score of x under w is strictly higher than the scores of all other alternatives; that is,

∃w ∈W : s(x;w) > s(y;w) ∀y ∈ A \ {x}.

Definition 5 An alternative x is a necessary co-winner with respect to W if, for all scoring vectors
w ∈W , the score of x under w is higher or equal than the scores of all other alternatives; that is,

∀w ∈W : s(x;w) ≥ s(y;w) ∀y ∈ A \ {x}.
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Fig. 2 The indifference curves, points on the (V1, V2)
plane that achieve the same score, are straight lines. We
show, as examples, indifference lines for δ = (0.5, 0.5),
shown in red, and indifference lines δ = (0.8, 0.2), in
blue. There is no way to set δ in order to make alterna-
tive a optimal: either b or c will have higher score than
a for any orientation of the indifference lines.
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Fig. 3 The scores of a, b in c in function of the param-
eter w2. It can be seen that a cannot be optimal for any
value of w2, so it is not a possible winner. However it is
not dominated by b (there are values of w2 that make
a better than b) nor by c (there are values of w2 that
make a better than c).

Moreover, x is said to be a necessary winner, with respect to W , if, for all scoring vectors w ∈W ,
the score of x is strictly higher than the scores of all other alternatives; that is,

∀w ∈W : s(x;w) > s(y;w) ∀y ∈ A \ {x}.

It can be shown that possible co-winners are efficient alternatives in the DEA-AR model of Cook
and Kress (1990, page 3).

We now discuss the connection between possible and necessary winners (or co-winners) and
the dominance relations described previously in Section 2.3. It is straightforward to realize that
a strongly dominated alternative cannot be a possible co-winner, and that a weakly dominated
alternative cannot be a possible winner. Moreover the following proposition provides a series of
simple observations.

Proposition 3 Let x ∈ A. The following propositions hold:

– Alternative x is a necessary winner if and only if x strongly dominates every other alternative.
– Alternative x is a necessary co-winner if and only if x weakly dominates every other alternative.
– If there are two or more necessary co-winners, then they all have the same score for all w ∈W .
– If alternative x is a possible winner, then x is strongly undominated.
– If alternative x is a possible co-winner, then x is weakly undominated.
– If alternative x is a possible co-winner, then either x is strongly undominated or, x is weakly

dominated by alternatives that are possible co-winners.

It is important to observe that it is possible to have undominated alternatives that are not
possible co-winners (and, therefore, not possible winners). We show this with an example.

Example 3 Assume the rank distributions (n = 24, m = 3) associated to three alternatives a, b, c
presented in the following table (to be read as follows: a is ranked first 8 times, second 7 times and
9 times last).

v·1 v·2 v·3

a 8 7 9
b 12 0 12
c 4 17 3
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We consider decreasing weights. As usual we let w1 = 1 and w3 = 0, so the only free parameter is
w2. The score of a is s(a) = 8+7w2; the score of b is s(b) = 12 and the score of c is s(c) = 4+17w2.
Can a be a winner for some values of w2 ? The answer is no: for a to be better than b, we need
w2 ≥ 4

7 but for a to be better than c, w2 should be less than 2
5 (see Figure 2 and Figure 3).

The cumulative ranks are V a = (8, 15), V b = (12, 12), V c = (4, 21) and no pairwise domination
holds between a, b, or c. Therefore a is neither dominated by b or c but is not a possible winner
(and not even a possible co-winner).

Note that it is well known in the literature of multi attribute utility theory (Hazen 1986) and
multicriteria optimization (Ehrgott 2005) that being undominated does not imply being a possible
co-winner. Undominated alternatives are known as Pareto efficient in multicriteria optimization
and “supported” solutions are alternatives that maximize a weighted sum of sub-utilities, and the
latter are only a subset of the former. The analogy can be fully appreciated by inspecting Equation
(2) and (4) to realize that possible co-winners maximize a weighted sum of cumulative ranks.

It is possible to test whether alternative x is a possible winner by computing its maximum
advantage, that is the maximum difference between its score and that of the best ranked alternative
other than x, by considering all possible scoring vectors. If the value of the maximum advantage is
positive, then x is a possible winner, while if it is zero then x is a possible co-winner; finally, if the
value is negative, there is always at least another alternative that achieves a strictly better score.

Definition 6 The maximum advantage (MA) of an alternative x ∈ A with respect to W is:

MA(x;W ) = max
w∈W

min
y∈A\{x}

{s(x;w)− s(y;w)} = max
w∈W

min
y∈A\{x}

{ m∑

j=1

wjv
x
j −

m∑

j=1

wjv
y
j } (5)

= max
w∈W

{ m∑

j=1

wjv
x
j −max

y 6=x

m∑

j=1

wjv
y
j

}
. (6)

The previous definition is general; however, we focus, in this paper, on either the class of decreasing
weights or the class of convex weights. The value of MA can be computed with the following
optimization:

max
Z,w

Z (7)

s.t. Z ≤
m∑

j=1

(vxj − vyj )wj ∀y ∈ A−{x} (8)

wj − wj+1 ≥ 0 (9)

wj − 2wj+1 + wj+2 ≥ 0 ∀j ∈ [[m− 2]] (10)

w1 = 1;wm = 0 (11)

Equations 7-11 represent a linear program that can be solved with standard optimization tools
such as CPLEX or Gurobi.3 There are m − 1 decision variables, of which m − 2 represent the
scoring vector (we have m − 2 degrees of freedom, since we assume w1 = 1 and wm = 0), and an
additional decision variable Z (representing the margin) whose value is constrained (Equation 8)
to be less than the difference in score between the score of x and any other alternative y ∈ A. The
value at optimum of the decision variable Z gives us the maximum margin MA(x;W ) of x when
choosing w in the set W of feasible scoring vectors. Constraint (10) refers to convex weights (i.e.
WC) and should be removed when dealing with decreasing weights (WD).

Example 2 (continued) Consider again the values of Example 2, whose distribution of the ranks
is given again below. Let us consider, for instance, the computation of the maximum advantage
of b; the advantage of b with respect to a as a function of w is given by

∑m
j=1 wj(v

b
j − vaj ) =

−2w1 + 4w2 − 2w4. The variable Z of the linear program is forced to be simultaneously lower than

3 http://www.gurobi.com/
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the expressions of the advantage against a, c and d; the constraint of Equation 8 above therefore
expands to the following constraints:

Z ≤− 2w1 + 4w2 − 2w4 (12)

Z ≤− 2w1 + 6w2 − 2w3 − 2w4 (13)

Z ≤− 4w1 + 6w2 + 2w3 − 4w4. (14)

When the problem is solved, the variable Z of the optimum of the linear program gives the value of
the maximum advantage. We now give the values of MA obtained by the different alternatives of
the example (in the last two column of the table below), once computed w.r.t. WD and once w.r.t.
WC .

Alternative v·1 v·2 v·3 v·4 MA(·;WD) MA(·;WC)

a 2 2 2 2 0 -0.29
b 0 6 2 0 2 0.66
c 2 0 4 2 0 -0.86
d 4 0 0 4 2 2

Note that when the weights are assumed to be convex, the feasibility region is reduced and therefore
the maximum margin will be lower. Alternatives b, d are possible winners in both cases, since they
are associated with a positive maximum advantage. Note that even if a is undominated in WD, a
is not a possible winner; in WD both alternatives a and c are possible co-winners; indeed they are
co-winners for the scoring vector w = (1, 0.5, 0.5, 0).

3 Robust winner determination

The notions of dominance and possible co-winners (presented before in Section 2.3 and 2.4) can
be useful to eliminate alternatives that have no possibility of winning without committing to a
specific vector of weights. As in general there can be many possible winners or co-winners, we need
a method to determine a single winner. While one possibility could be to elicit the weights, using
a process similar to that of utility elicitation (Braziunas and Boutilier 2008) adopted in decision
aid tools, it is often necessary to make a choice without the possibility of resolving the uncertainty
over the weights.

As we mentioned in Section 1, several methods have been proposed in order to determine a
winner in presence of an uncertain scoring vector; a review of some of the proposed methods is
given by Llamazares and Peña (2009). In particular, the classic work of Cook and Kress (1990)
proposed to take an optimistic approach, scoring each alternative according to the score that it
can get in the best case, under a number of constraints.

Our point-of-view is that of framing the problem of winner determination as a problem decision-
making under strict uncertainty. Given that there is a set of feasible weights (either decreasing
weights or convex weights) that is deemed possible, we can derive the set of scores that each
alternative could attain. Instead of an optimistic approach, we stress the importance of providing
some form of robustness in face of the uncertainty over the weights. Assume that a “true” scoring
vector exists but it is unknown to us: by adopting the criterion of minimax regret, we pick as
winner the alternative that ensures that the worst-case loss (in terms of score), with respect to the
winner according to the true (unknown) scoring vector, is minimum.

This Section is structured as follows: in Section 3.1 we discuss the minimax regret criterion,
while in Section 3.2 and 3.3 we present a characterization of minimax regret according to two
different assumptions about the weight uncertainty that are commonly made in practice: decreasing
weights and convex weights. Finally, in Section 3.4 we address the case where additional preferences,
relating the values of the weights of consecutive positions, are given about the weights.

3.1 Minimax regret

Minimax regret (Savage 1954) is a decision criterion that has been used for robust optimization
under uncertainty (Kouvelis and Yu 1997) and as well in decision-making with uncertain utility
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values (Salo and Hämäläinen 2001; Boutilier et al. 2006). Note as well that minimax regret has been
recently proposed (Lu and Boutilier 2011) as a way to aggregate incomplete profiles of preferences
with a given (fixed) social choice function.

In this article we adopt minimax regret to identify an alternative (to be declared winner) in
face of uncertainty over the values of the scoring vector w = (w1, . . . , wm). Assuming that the
scoring vector w belongs to a set of feasible weights W , we measure the quality of an alternative
x given W by considering its max regret, whose value represents the worst-case loss (in terms of
score “points”) that we might incur if we were to choose such an alternative as a winner. In other
words, max regret of x measures how far from optimal x could be in the worst case, considering
any w ∈W . The alternative (or the alternatives, in case of ties) associated with minimax regret is
is the alternative that is nearest to optimal in the worst case.

The minimax regret approach to winner determination is based on the following definitions.

Definition 7 Given x ∈ A and w ∈W , Loss(x;w) is defined as:

Loss(x;w) = max
y∈A
{s(y;w)} − s(x;w) (15)

Loss(x;w) is the loss (or actual regret) of choosing x as winner instead of choosing the optimal al-
ternative under scoring vector w; its value is the difference between the score of the best alternative
and the score obtained by alternative x when using the scoring vector w. The loss is non-negative.

Definition 8 The pairwise max regret (PMR) of alternative x with respect to alternative y is
defined as:

PMR(x, y;W ) = max
w∈W
{s(y;w)− s(x;w)} = max

w∈W

{m−1∑

j=1

wjv
y
j −

m−1∑

j=1

wjv
x
j

}
. (16)

PMR(x, y;W ), the pairwise max regret of x relative to y given W , is the worst-case loss, considering
all scoring vectors in W , of choosing alternative x rather than y; it is the maximum value of the
score difference between y and x, for any w ∈W . Notice that pairwise max regret can be negative.

Definition 9 The max regret (MR) of alternative x is defined as:

MR(x;W ) = max
w∈W

Loss(x;w) = max
y∈A

PMR(x, y;W ) (17)

= max
y∈A

max
w∈W

{m−1∑

j=1

wjv
y
j −

m−1∑

j=1

wjv
x
j

}
. (18)

MR(x;W ) is the worst-case loss associated with picking alternative x as a winner when w ∈W . We
can view max regret as an adversarial selection of the scoring vector w from W in order to maximize
the loss between the chosen alternative x and the best alternative under w (the alternative with
highest score using w as scoring vector). It can also be viewed as the maximum of the pairwise
max regret values of x relative to all alternatives y ∈ A. Max regret is non-negative.

Definition 10 The minimax regret (MMR) and the set S∗ of regret-optimal alternatives are de-
fined as follows:

MMR(W ) = min
x∈A

MR(x;W ) (19)

S∗(W ) = arg min
x∈A

MR(x;W ) (20)

MMR(W ), the minimax regret associated with W , is the minimum among the values of max regret
of all alternatives in A, and the set S∗(W ) contains the alternatives that achieve this minimal value:
for all x∗ ∈ S∗(W ), MR(x∗;W ) = MMR(W ). The alternatives in S∗(W ) are to be considered as
“winners” according to the minimax regret criterion. Minimax regret is non-negative.

The previous definitions are valid for any set W , although in this paper we focus on either
WD (decreasing weights) or WC or (convex weights), as these represent typical situations in which
scoring rules are used.
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Fig. 4 The loss of a, b in c in function of the parameter w2. Max regret is the maximal value of the loss; therefore
MR(a;W ) = 6, obtained when w2 = 1, MR(b;W ) = 9, obtained when w2 = 1, and MR(c;W ) = 8, obtained when
w2 = 0; alternative a achieves minimax regret. Note the fact that a always has strictly positive loss: indeed a is not
a possible co-winner.

We now provide some general remarks about the use of minimax regret for determining the
winner, by inspecting the relation with the notions presented in Section 2: undominated alterna-
tives, possible and necessary winners. First of all, it is immediate to realize from the definition
of PMR that, if x weakly dominates y with respect to W , then we have PMR(x, y;W ) ≤ 0; and
similarly, if x strongly dominates y, we have PMR(x, y;W ) < 0 (and the converse is also true). In
the case PMR(x, y;W ) = PMR(y, x;W ) = 0 then s(x;w) = s(y;w) for all w ∈W .

Moreover, ordering the alternatives by their max regret is consistent with dominance in the sense
that the relation “having lower max regret” is a refinement of the dominance relations previously
introduced, as shown by the next proposition.

Proposition 4 Let x, y ∈ A. The following statements connect max regret and dominance rela-
tions:

1. For an arbitrary set W of scoring vectors:
If x weakly dominates y, then MR(x;W ) ≤ MR(y;W );
if x strongly dominates y, then MR(x;W ) < MR(y;W ).

2. Moreover, when considering decreasing weights, i.e. the scoring vector belongs to WD:
If V x � V y then MR(x;WD) ≤ MR(y;WD);
if V x � V y then MR(x;WD) < MR(y;WD).

3. Finally, when considering convex weights, i.e. the scoring vector belongs to WC :
If Vx � Vy then MR(x;WC) ≤ MR(y;WC);
if Vx � Vy then MR(x;WC) < MR(y;WC).

An immediate consequence of the previous proposition is that the alternatives in S∗, yielding
minimax regret, cannot be strongly dominated. An alternative in x ∈ S∗ can be weakly dominated
however; if this is the case then, according to Proposition 4, x is dominated by another alternative
in S∗, and it is undominated with respect to any alternative in A− S∗(W ).

Proposition 5 The followings statements hold:

1. For any x ∈ S∗(W ), x is weakly undominated, i.e. there is no y ∈ A such that y strongly
dominates x.

2. For all x ∈ S∗(W ), there is no y ∈ A \ S∗(W ) such that y weakly dominates x.

We now turn to inspecting necessary winners and co-winners. Since MR(x;W ) bounds the loss
of choosing x, MR(x;W ) = 0 means that x is a necessary co-winner: a max regret value of 0
ensures that no other alternative can be strictly better. Therefore when minimax regret is 0, the
alternatives in S∗ are necessary co-winners. When an alternative x is a necessary winner, then
MMR(W ) = MR(x;W ) = 0 and S∗ = {x} (all other alternatives have strictly higher max regret).
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Proposition 6 Let x ∈ A. The following statements hold:

1. Alternative x is a necessary co-winner if and only if MR(x;W ) = 0.
2. If x is a necessary winner then MR(x;W ) = 0 and S∗(W ) = {x}.
3. Alternative x is a necessary winner if and only if PMR(x, z;W ) < 0 for all z ∈ A \ {x}.

We now show that the proposed aggregation method based on minimax regret might pick as a
winner an alternative that is not a possible co-winner for any scoring vector.

Observation 1 An alternative associated with minimax regret may not be a possible co-winner.

This is shown with an example.

Example 3 (continued) We consider again the example with 3 alternatives (see page 8) with
cumulative scores V a = (8, 15), V b = (12, 12) and V c = (4, 21). We assume that the scoring vector
lies in WD (decreasing weights). We have seen before that no pairwise domination hold and that
a is not a possible winner.

Figure 4 plots the value of Loss(x;WD) for x ∈ {a, b, c} as a function of w2 (the value of the
loss of x corresponds, for each w, to the difference between the highest score for each w and the
score of x, and can be found graphically by looking at Figure 3). Inspecting Figure 3, we find that
the max regret values are the following: MR(a;WD) = 6, MR(b;WD) = 9 and MR(c;WD) = 8.
Alternative a is the one that guarantees that the loss with respect to the best alternative is lowest.
Therefore a is the best alternative according to max regret, although there is no scoring rules with
weights in WD that makes it a winner.

The paiwise max regret PMR(x, y;W ) can be computed using a linear program; the objective
function is expressed as

max (vy1 − vx1 ) +

m−1∑

j=2

wj(v
y
j − vxj )

where the decision variables are w2, . . . , wm−1. One needs to impose linear constraints on the
decision variables in order to force that the scoring vector (the weights) is a feasible instantiation.
The constraints wj ≥ wj+1 for j ∈ [[m−2]] and wm−1 ≥ 0 express the fact that the scoring vector
should belong to WD. In the case of WC (when a convex sequence is desired) the constraint
wj − 2wj+1 + wj+2 ≥ 0 has to be added for each j ∈ [[m− 2]].

While of course the use of linear programming is a perfectly valid approach, in the following we
provide characterizations of minimax regret in terms of cumulative ranks and double cumulative
ranks. The theoretical results, that we present next, give us a way to compute max regret without
solving an optimization problem; therefore we can compute the winner(s) in a very efficient way.
We first address decreasing weights in Section 3.2 and then address convex weights in Section 3.3.
Finally, in Section 3.4 we address the case where additional preferences, relating the values of the
weights of consecutive positions, are given about the weights.

3.2 Characterization of max regret with decreasing weights

We now analyze the minimax regret criterion in the case that the scoring vector belongs to WD. In
the following lemma we give a characterization of the pairwise max regret in terms of cumulative
ranks.

Lemma 1 In the case of decreasing weights, for any pairs x, y ∈ A, it holds

PMR(x, y;WD) = max
j∈[[m−1]]

{V yj − V xj }. (21)
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Remember that the score obtained with k-approval is sk-approval(x) = s(x;wk-approval) = V xk , where
wk-approval is the vector with 1 in the first k position and 0 afterwards (refer to the end of Section
2.2 and Table 1). Then, according to Lemma 1,

PMR(x, y;WD) = max
j∈[[m−1]]

sj-approval(y)− sj-approval(x)

that is the maximum difference of scores with respect to plurality, 2-approval, 3-approval, etc.
Note also that the winner according to k-approval is then just the alternative with highest value
Vk; let V ∗k = maxx∈A V xk be such value.

The following theorem makes use of Lemma 1 and characterize the value of max regret in case
of decreasing weights.

Theorem 1 For any alternative x ∈ A it holds

MR(x;WD) = max
j∈[[m−1]]

{V ∗j − V xj } (22)

where V ∗k = maxx∈A V xk .

The importance of Theorem 1 is that it is possible to compute max regret without solving any
optimization, considering the maximum difference between cumulative ranks. Note that, since V ∗j
is equivalent to the best score according to j-approval, the term V ∗j − V xj is the loss occurred to
x when considering j-approval; max regret can be seen as the maximum loss occurred by x with
respect to the family of k-approval voting rules.

The value of minimax regret is therefore MMR(W ) = minx∈A maxj∈[[m−1]]{V ∗j − V xj }. The
minimax regret optimal alternative is then the alternative that is the least far away from the optimal
score attained with any k-approval voting rule.

Example 2 (continued) We provide an example of max regret computation using Theorem 1,
considering again the rank distribution of Example 2. We assume w ∈ WD (decreasing weights).
One needs to consider the table of the cumulative standings; the max regret of a given alternative
is the maximum shortfall between the values in the alternative’s row compared to the best value (in
bold in the tables below) in each column. Hence, MR(a;WD) = max{4− 2, 6− 4, 8− 6} = 2.

Alternative v·1 v·2 v·3 v·4

a 2 2 2 2
b 0 6 2 0
c 2 0 4 2
d 4 0 0 4

Alternative V ·1 V ·2 V ·3

a 2 4 6
b 0 6 8
c 2 2 6
d 4 4 4

Alternative MR(·;WD)

a 2
b 4
c 4
d 4

The regret-optimal alternative, that is the alternative with minimum MR(·;WD), is therefore al-
ternative a, and MMR(WD) = MR(a;WD) = 2.

3.3 Characterization of max regret with convex weights

We continue the analysis by considering convex weights, assuming w ∈WC . With this assumption,
the space of possible scores associated to an alternative is given by

{m−1∑

j=1

φjVxj
∣∣∣φ1 ≥ 0, . . . , φm−1 ≥ 0 ∧

m−1∑

j=1

j φj = 1
}
.

We now provide a characterization of max regret with respect to WC in terms of double
cumulative ranks, therefore allowing to compute the minimax regret optimal alternative very easily.
First of all, we consider pairwise max regret.

Lemma 2 Assuming convex weights, the pairwise max regret of an alternative x against y can be
computed as follows:

PMR(x, y;WC) = max
j∈[[m−1]]

{Vyj − Vxj
j

}
. (23)
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Note that
Vx

k

k represents the score associated to the top-k Borda rule (see the end of Section
2.2 and Table 1). Then, according to Lemma 2,

PMR(x, y;WC) = max
j∈[[m−1]]

stop-j-Borda(y)− stop-j-Borda(x).

Let V∗j = maxx∈A Vxj be the maximum value of the double cumulative ranks for a given position
j. We use Lemma 2 to derive the following Theorem that provides the characterization of max regret
under convex weights.

Theorem 2 Assuming convex weights, the max regret of alternative x can be computed as follows:

MR(x;WC) = max
j∈[[m−1]]

{V∗j − Vxj
j

}
(24)

where V∗j = maxx∈A Vxj .

Equation 24 basically states that the computation of max regret when w lies in WC is equivalent
to consider the maximum loss occurred by x with respect to the family of top-k Borda aggregators
(that includes plurality and Borda as a special case). The practical usefulness of Theorem 2 is that
it allows to compute the value of max regret of an alternative in closed form (therefore without
having to solve a linear program).

Example 2 (continued) We consider again the running example and compute the max regret
values when considering that the scoring vector is a convex sequence, using Theorem 2. First,
we compute the double cumulative distribution of the ranks; we then divide the second column by
two, the third by three, etc. Then, for computing MR(a;WC), we consider the maximum, among
columns, between the value of a and the best (bold) value, i.e. max{4 − 2, 4 − 3, 4.66 − 4} = 2.
The computation is similar for the other alternatives; we obtain that the minimax regret optimal
alternative in this case is therefore d, yielding MR(d;WC) = 0.66.

Alternative
V·1
1

V·2
2

V·3
3

MR(·,WC)

a 2 3 4 2
b 0 3 4.66 4
c 2 2 3.33 2
d 4 4 4 0.66

3.4 Computing max regret in presence of additional preferences

In some circumstances it is expected that there is at least some difference between successive
weights; as for instance in Cook and Kress (1990). Indeed, in addition of assuming decreasing
weights, one might want to impose a minimum difference between consecutive weights and to
specify different values for different positions:

wj − wj+1 ≥ tj ∀j ∈ [[m− 1]] (25)

with t1, . . . , tm−1 being non-negative scalars. These thresholds are called discriminative values in
the following. We consider:

– WD,t, the set of decreasing weights with discriminative values (thresholds) t1, . . . , tm−1, and
– WC,t, the set of convex weights with discriminative values (thresholds) t1, . . . , tm−1.

We now analyze how minimax regret can be computed in these two settings.
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Decreasing weights The next proposition provides us with an efficient way to compute pairwise max
regret, that is computing the scoring vector w ∈WD,t that maximizes the loss s(y;w)− s(x;w).

Proposition 7 For any pair of alternatives x, y ∈ A, it holds

PMR(x, y;WD,t) =
[(

1−
m−1∑

j=1

tj

)
max

j∈[[m−1]]
{V yj − V xj }

]
+

m−1∑

j=1

tj(V
y
j − V xj ) (26)

or, equivalently,

PMR(x, y;WD,t) =
[(

1−
m−1∑

j=1

tj

)
PMR(x, y;WD)

]
+

m−1∑

j=1

tj(V
y
j − V xj )

where PMR(x, y;WD) is pairwise max regret computed with no discriminative thresholds.

Note that Proposition 7 can as well be used to check dominance with respect to WD,t by testing
the sign of PMR(x, y;WD,t).

The previous proposition directly leads to the formulation of max regret, by substituting Equa-
tion (26) into Equation (17):

MR(x;WD,t) = max
y∈A

{(
1−

m−1∑

j=1

tj

)
max

j∈[[m−1]]

{
V yj − V xj

}
+

m−1∑

j=1

tj(V
y
j − V xj )

}
.

Convex weights The remaining case to consider is that of WC,t, the set of convex weights with
discriminative thresholds. For computing the max regret in this case, we do not have a closed
formula. Note that the following simple linear program computes the pairwise max regret, that
is equal to maximum score difference between y and x when the scoring vector w is convex with
discriminative thresholds t.

max

m−1∑

j=1

δj(V
y
j − V xj ) (27)

s.t. δj ≥ δj+1 ∀j ∈ [[m− 2]] (28)

δj ≥ tj ∀j ∈ [[m− 1]] (29)

m−1∑

j=1

δj = 1 (30)

Constraint 28, 29 and 30 assure that the weights are in WC,t. When the result of the optimization
above is lower than 0, than y dominates x. We use the linear program of Equations 27-30 to
compute the pairwise max regret of alternative x against each alternative y ∈ A, and take the
maximum value, to find MR(x;WC,t).

Example 2 (continued) We consider again the running example. We compare the scores ob-
tained by evaluating each alternative according to max regret using the following threshold vectors:

– t1 = (0.2, 0.1, 0.1),
– t2 = (0.3, 0.1, 0.1),
– t3 = (0.3, 0, 0),
– t4 = (0, 0.1, 0.4).

In the following table we show the scores obtained by the alternatives with max regret with the
threshold vectors t1, . . . , t4 (in the first row we show the regret values obtained with no discrimi-
native thresholds) assuming the space WD,t. Note that, with different threshold vectors, any of the
undominated alternatives a, b, d may be optimal with respect to minimax regret.

We then consider minimax regret with the scoring vector belonging to the space WC,t. We show
the scores obtained by using max regret to evaluate the alternatives with the different vectors t1, t2
and t3 (as t4 is not consistent with convexity). In all cases, d achieves minimax regret.
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MR Decreasing Convex

t a b c d a b c d

(0, 0, 0) 2 4 4 4 2 4 2 0.66
t1 1.4 2.6 2.6 2.2 1.4 2.6 1.6 0.66
t2 1.4 2.6 2 1.4 1.4 2.6 1.6 0.66
t3 2 4 2 0.8 2 4 2 0.2
t4 2 0.2 3.2 3.8

Example 4 We consider the following rank distribution table, taken from Llamazares and Peña
(2013), with 6 alternatives and 10 voters; however it is assumed that only the top 4 positions
contribute to the score (and therefore the rank distribution is given only for the first 4 positions).

Alternative v·1 v·2 v·3 v·4

a 3 3 4 3
b 4 5 5 2
c 6 2 3 2
d 6 2 2 6
e 0 4 3 4
f 1 4 3 3

We note that alternatives a, e and f are dominated. In the table below we summarize the result
of the aggregation with regret for different preferences about the scoring vector. When assuming
decreasing weights, max regret ranks 〈b, c, d〉, but the reverse ranking 〈d, c, b〉 is obtained when
assuming convex weights.

We also show the max regret values obtained with different values of the vector t of discrim-
inative thresholds. Depending on vector t, any of the undominated alternatives b, c or d may be
selected by the aggregation method.

MR Decreasing Convex

t a b c d e f a b c d e f

(0, 0, 0, 0) 4 2 3 4 7 6 3 2 1.25 1 6 5
(0.2, 0.2, 0.1, 0) 3.20 0.90 1.60 2.20 6.00 5.00 2.75 0.90 1.25 1.00 5.40 4.50
(0.4, 0, 0, 0) 3.00 2.00 1.80 1.60 6.00 5.00 3.00 2.00 0.60 0.70 6.00 5.00
(0.3, 0, 0, 0.1) 3.00 1.80 2.10 1.80 5.90 5.00 2.70 0.90 1.03 0.90 5.40 4.50
(0.44, 0, 0.16, 0) 2.68 1.20 1.04 1.36 5.68 4.68 2.52 0.72 0.43 0.52 5.36 4.36

4 Analysis of Aggregation with Minimax Regret as a Social Choice Function

We now ask ourselves whether the proposed aggregation method satisfies the traditional properties
that are studied in the theory of social choice (Zwicker 2016). Remember that a profile is the set
of input rankings, and let P be the set of profiles (all possible ways to combine n permutations
of m alternatives). A social choice function is a function f : P → 2A \ ∅ associating each possible
profile with a set of “winners” (a non empty subset of A, typically small).

In the following, for the rest of this section, we will view minimax regret as a social choice func-
tion, mapping a profile to a set of winners. Note that the information basis is the rank distribution,
imposing an equivalence relation between profiles that induces that same rank distribution vx for
each alternative x ∈ A. As we need a notation to make explicit the profile we are referring to, we
write vx[p] for the rank distribution of x is with respect to profile p.

Definition 11 We define the following social choice functions:

– The minimax regret rule with decreasing weights (MMR-Dec) is defined as follows: for any
profile p, MMR-Dec returns the set S∗(WD) or alternative yielding minimax regret, computed
with the rank distribution derived by p.

– The minimax regret rule with convex weights (MMR-Con) is defined as follows: for any profile
p, MMR-Con returns the set S∗(WC) or alternative yielding minimax regret, computed with
the rank distribution derived by the profile p.
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It is easy to notice that MMR-Dec and MMR-Con are neutral, anonymous (there is no bias in favour
of any alternative or voter) and unanimous (if all voters place an alternative in first position, this
alternative is selected as winner).

The Pareto property requires that no Pareto dominated alternative is selected as winner or
co-winner. Alternative y is said to be Pareto dominated if there is another alternative x such that
x is preferred to y by all voters. Bur if in all input rankings x occupies a better rank position than
y, then it must then be V x � V y. This guarantees that the alternatives yielding minimax regret are
not strongly dominated; but, unfortunately, weak dominance cannot be excluded (see Proposition
5) and not even Pareto dominance. Therefore the Pareto property is actually not satisfied.

Note however that is straightforward to amend the rules to ensure that Pareto is satisfied:
Proposition 5 ensures that weak dominance can only hold among alternatives that are tied at the
minimax regret value. Therefore, it is enough to filter out the weakly dominated alternatives (by
comparing the cumulative ranks, in the case of WD, and by comparing double cumulative ranks,
in the case of WC), if there are any, from the set of alternatives that achieve minimax regret
(since Pareto dominated alternatives are also weakly dominated, filtering out weakly dominated
alternatives ensure that the remaining ones are Pareto undominated).

Monotonicity requires that, if some voter raises a winning alternative in their ranking without
changing the orders of the remaining ones, that alternative continues to be a winner. Aggregation
of rankings using minimax regret is monotonic. Intuitively, if x is a winner in a profile p, it has
to continue to be a winner in a p′ obtained by placing x in in a better position, since it will be
associated with the same value of max regret or lower; we conclude that the rule is monotone.

Our rules do not satisfy Independence to irrelevant alternatives (IIA). The lack of satisfaction
of IIA is not however necessarily problematic, since it is often this property that is relaxed in order
to escape the Arrow’s theorem; moreover it can be argued that decisions in real contexts are often
impacted by the set of available decisions4.

A weaker form of IIA is to require that the aggregation is independent of the rank of irrelevant
alternatives. This property, expressed in terms of social ranking, require that any change in ranks
of alternatives A \ {x, y} should not change the order between x and y. In terms of social choice
function, we interpret this as requiring that if x is a winner and y is not, any change in ranks of
alternatives A \ {x, y} should not make y winner. While scoring rules and the method proposed by
Llamazares and Peña (2013) satisfy this weaker property, minimax regret does not, as shown by
the following example.

Example 2 (continued) Let us denote p the original profile of Example 2 and consider the profile
p′, where alternatives b and c have different rank distributions, while the rank distributions of
alternatives a and d are unchanged. In p′ all alternatives are associated with the same max regret
value of 3 and in particular now alternatives a and d are considered equal, while in the original
example alternative a was the only winner and had a lower max regret value than d.

Alternative v·1 v·2 v·3 v·4

a 2 2 2 2
b 1 6 0 1
c 1 0 6 1
d 3 0 1 4

Alternative V ·1 V ·2 V ·3 MR

a 2 4 6 3
b 1 7 7 3
c 1 1 7 3
d 4 4 4 3

We now considered an even weaker form of IIA that we call Independence from the Rank of
Dominated Alternatives (IRDA)5. IRDA states that the set of winners does not change whenever
a profile is modified in a way that everything stays the same beside the ranks of dominated
alternatives.

Definition 12 A social choice function f satisfies Independence from the Rank of Dominated
Alternatives (IRDA) if, for any two profiles p, p′, defined on the same alternatives A, we have that
f(p) = f(p′), the winners are the same in p and p′, whenever

4 See for instance the discussion on “Minimax and the objection from irrelevant alternatives” in Peterson’s book
(see Peterson 2017, pag. 53).

5 Indeed Llamazares and Peña Llamazares and Peña (2009) remarks that winner determination should not be
sensible to the ranks obtained by “inefficient” alternatives.
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Profile 1:

Alternative v·1 v·2 v·3 v·4

a 4 0 2 0
b 1 5 0 0
c 1 1 4 0
d 0 0 0 6

Alternative V ·1 V ·2 V ·3 MR

a 4 4 6 2
b 1 6 6 3
c 1 2 6 3
d 0 0 0 6

Profile 2:

Alternative v·1 v·2 v·3 v·4

a 2 0 5 0
b 2 2 0 3
c 1 3 1 2
d 2 2 1 2

Alternative V ·1 V ·2 V ·3 MR

a 2 2 7 2
b 2 4 4 3
c 1 4 5 2
d 2 4 5 2

Profile 1 ∪ Profile 2:

Alternative v·1 v·2 v·3 v·4

a 6 0 7 0
b 3 7 0 3
c 2 4 5 2
d 2 2 1 8

Alternative V ·1 V ·2 V ·3 MR

a 6 6 13 4
b 3 10 10 3
c 2 6 11 4
d 2 4 5 8

Table 2 An example showing that aggregation with minimax regret does not satisfy consistency: assuming decreas-
ing weights, alternative a is picked as the minimax regret alternative in both profile 1 and profile 2, but b is selected
by the rule when the two profiles are merged.

1. the set of undominated alternatives is the same in p and p′, and
2. the rank distributions of all alternatives that are undominated is the same in p and p′.

By inspecting Equation (22) and Equation (24) it is possible to see that the max regret of an
alternative x does not depend on the rank of dominated alternatives (indeed it depends only on
the ranks of x and on the ranks of some of the possible co-winners). Therefore MMR-Dec and
MMR-Con satisfy IRDA.

Consistency (Young 1975), sometimes also called reinforcement, states that, if an alternative is
the winner when considering two different population of voters, then the same alternative should
be a winner when the two populations are merged together. Minimax regret does not satisfy
consistency, as seen by the following counterexample.

Example 5 In Table 2 we present an example showing that aggregation with minimax regret does
not satisfy the property of consistency: indeed in both profiles 1 and 2, the alternative a is the
winner according to minimax regret. In the combined profile, however, b, and not a, is the winner.

We reckon that it is not that surprising that aggregation with minimax regret is not consistent:
according to Young’s axiomatization a rule that is neutral, anonymous and consistent should be a
scoring rule (and clearly MMR-Dec and MMR-Con are not equivalent to any scoring rule).

The next property that we check is homogeneity, requiring that replicating the same profile
several times lead to the same social choice. In terms of rank distribution, when a profile is replicated
several times, the v values are multiplied by k: vxj [p′] = kvxj [p], for all positions j and for all
alternatives x. It is a very easy exercise to verify that the pairwise max regret values are multiplied
by k; for any x and y,

PMRp′(x, y;W ) = kPMRp(x, y;W )

and that therefore

MRp′(x;W ) = kMRp(x;W )

leaving the winner, that is the alternative(s) associated with minimax regret, unchanged. Therefore
MMR-Dec and MMR-Con are homogeneous.

Another property commonly studied in social choice is the independence from adding symmetric
profiles (Merlin 2003): adding a symmetric profile (a profile where all permutations are present in
the same number) should not change the result of the aggregation. Consider the profile p′ obtained
from the profile p by adding a symmetric profile; we have

vxj [p′] = vxj [p] + λ ∀x ∈ A,∀j
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and therefore MRp′(x;W ) = MRp(x;W ) for all x ∈ A, from which it follows MMRp′(W ) =
MMRp(W ); then our social choice functions give the same output in p and p′. We conclude that
the property is satisfied by MMR-Dec and MMR-Con.

MMR-Dec and MMR-Con do not necessarily pick a Condorcet winner, in the case it exists. One
may ask if the rules satisfy a weaker notion of Condorcet winner; the absolute majority property
states that an alternative ranked first by a majority of the voters should be picked as the winner.
In general, aggregation with minimax regret does not satisfy the property of absolute majority,
unless in the trivial case with only two alternatives (m = 2).

We can, however, determine a condition on the number of times an alternative needs to be
ranked in first position in order to ensure being chosen as a winner by MMR-Dec and MMR-Con.
In particular, under decreasing weights, if an alternative is ranked first by at least two thirds of
the voters, then this alternative is the single winner for MMR-Dec. For convex weights a smaller
fraction of first position is required; for large number of alternatives this fraction is about two
thirds as well.

Proposition 8 Let p be the profile.

– When an alternative x ∈ A is ranked first at least 2
3n times, then MMR-Dec(p) = {x}.

In other words, if x is such that vx1 >
2
3n then S∗(WD) = {x}

– When an alternative x ∈ A is ranked first at least 2m−2
3m−2n times, then MMR-Con(p) = {x}.

In other words, if x is such that vx1 >
2m−2
3m−2n then S∗(WC) = {x}.

We wrap up our discussion on the social choice properties of MMR-Dec and MMR-Con in the
following theorem.

Theorem 3 The social choice functions MMR-Dec and MMR-Con satisfy anonymity, neutrality,
unanimity, monotonicity, IRDA, homogeneity and independence from symmetric profiles.

5 Numerical Tests with Real Data

We perform a number of tests with real data; our intention is to provide some examples of regret-
based aggregation (using the social choice functions MMR-Dec and MMR-Con) and to compare
the results of the proposed aggregation method with some common voting rules (such as plurality,
Borda, k-approval). We are also interested in numerically evaluating the size of the set of undom-
inated alternatives and check how often there are undominated alternatives that are not possible
winners.

We consider the rankings of the F1 race championship from 1961 to 2008, obtained from the
PREFLIB data repository.6 In this context, an alternative is a driver and each ranking is the result
of a race.

Undominated alternatives and possible winners The first part of the analysis consists in computing
the number of undominated alternatives and that of possible winners.

We analyze the number of undominated alternatives and possible winners in Figure 5. The
number of drivers (corresponding to m in our model) ranges from to 22 to 62; n, the number
of races (not shown in the figure) ranges from to 8 to 19. The bar graph at the top partitions
the drivers into Pareto optimal and Pareto dominated (a driver is Pareto dominated if there is
another one that is better ranked in all races). The number of Pareto alternatives in each year is
represented by the blue bar; for instance 16 drivers out of 54 are Pareto in the championship of
1961, while there are 17 Pareto optimal drivers out 22 in 2008 (the height of the blue and yellow
bar corresponds to the total number of drivers in a given year).

We then analyze (using the propositions of Section 2.3) which drivers are undominated (with
respect to weak dominance), and which drivers are possible winners, applying the concepts de-
scribed in Section 2.4 (remember that a possible winner is necesseraly undominated). The second
bar graph of Figure 5 shows the number of undominated alternatives and the number of possible
winners in the hypothesis of decreasing weights, WD.

6 http://www.preflib.org/.
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Fig. 5 Number of Pareto dominated and Pareto optimal alternatives (top chart), number of undominated alter-
natives and possible winners considering decreasing (middle chart) and convex (bottom char) scoring vectors, in
actual rank data (F1 races).

We can observe that there are often several possible winners (alternatives that can win with
an instantiation of the weights) but never more than 8. In just 5 years there is a necessary winner
(1962, 1963, 1991, 1993, 2002); this happens when there is only one possible winner.

The third bar graph, at the bottom of Figure 5, shows that, when assuming convex scoring
vectors, the number of possible winners is considerably reduced (and there is a necessary winner
in several circumstances) but in most of the cases there is more than one possible winner.

We observed that there are sometimes undominated alternatives that are not possible winners,
however this event is quite rare (it happens only two times when assuming WD and two times
assuming WC).

Winner determination with minimax regret We report some examples of using the aggregation
method using minimax regret to determine a winner with an uncertain scoring vector. We consider
again the F1 championship data and we determine which driver (or drivers in case of ties) is
selected as winner according to the different aggregation methods. Table 3 shows, for the period
1987-2008, the scores of different drivers according to different methods (plurality, 3-approval,
Borda, the point system used by F1 and minimax regret). In particular, the last two columns
show max regret values when assuming either monotone or convex weights. Only drivers that are
undominated in WD are shown; moreover a checkmark (X) in the last column means that the
driver is also undominated in WC (obviously since WC ⊂ WD, the undominated alternatives in
WC are a subset of the undominated in WD) . For example, in the F1 championship of 2008,
there are four possible winners (Hamilton, Kubica, Heidfeld and Massa) when assuming decreasing
weights but only two (Hamilton and Massa) when assuming convex weights. When considering
convex sequences, there is a tie between Hamilton and Massa with respect to max regret.

Remember that an alternative with max regret value of 0 is a necessary co-winner (see Propo-
sition 6); this situation happens only three times (in 1991, 1993 and in 2002) when considering
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Alternative Plurality 3-approval Borda F12010 MR(·,WD) MR(·,WC )

1986 Alain Prost 4.00 11.00 13.87 9.32 1.00 1.00 X
Nlson Piquet 4.00 10.00 13.61 8.68 2.00 1.00
Ren Arnoux 0.00 0.00 11.68 3.08 11.00 7.75
Nigel Mansell 5.00 9.00 13.26 8.92 2.00 0.83 X

1987 Gerhard Berger 2.00 3.00 10.19 4.64 8.00 5.33
Michele Alboreto 0.00 3.00 9.58 2.56 9.00 7.43
Thierry Boutsen 0.00 1.00 10.81 3.00 10.00 8.00
Jonathan Palmer 0.00 0.00 11.10 2.40 11.00 8.83
Ayrton Senna 2.00 8.00 13.42 7.68 4.00 4.00
Nlson Piquet 3.00 11.00 13.48 9.12 3.00 3.00 X
Teo Fabi 0.00 1.00 9.87 2.60 10.00 8.25
Nigel Mansell 6.00 7.00 11.16 7.32 5.00 3.00 X

1988 Alain Prost 7.00 14.00 14.83 12.04 1.00 1.00 X
Ayrton Senna 8.00 11.00 14.69 11.00 3.00 1.80 X

1989 Thierry Boutsen 2.00 5.00 12.80 5.16 8.00 5.40
Alessandro Nannini 1.00 4.00 12.43 4.76 8.00 6.00
Riccardo Patrese 0.00 6.00 13.11 5.44 6.00 6.00
Ayrton Senna 6.00 7.00 13.13 6.96 6.00 4.20 X
Alain Prost 4.00 11.00 14.50 9.80 2.00 2.00 X

1990 Nlson Piquet 2.00 4.00 13.82 6.76 7.00 5.33 X
Nigel Mansell 1.00 5.00 12.23 4.80 6.00 5.00
Alain Prost 5.00 9.00 13.54 9.00 3.00 1.33 X
Gerhard Berger 0.00 7.00 13.36 6.28 6.00 6.00
Ayrton Senna 6.00 11.00 13.51 9.24 3.00 0.55 X

1991 Ayrton Senna 7.00 12.00 15.05 11.48 0.00 0.00 X

1992 Michael Schumacher 1.00 8.00 13.37 7.24 8.00 8.00
J J Lehto 0.00 0.00 11.29 0.92 12.00 11.50
Riccardo Patrese 1.00 9.00 13.24 7.08 8.00 8.00
Nigel Mansell 9.00 12.00 14.00 11.16 1.00 0.00 X
Michele Alboreto 0.00 0.00 12.29 3.00 12.00 11.25

1993 Alain Prost 7.00 12.00 14.62 10.84 0.00 0.00 X

1994 Olivier Panis 0.00 1.00 12.80 2.20 10.00 9.00
Christian Fittipaldi 0.00 0.00 12.24 1.68 11.00 9.43
Damon Hill 6.00 11.00 14.38 10.08 2.00 2.00 X
Michael Schumacher 8.00 10.00 12.64 9.44 3.00 1.74 X

1995 Damon Hill 4.00 9.00 13.62 7.84 5.00 5.00
Mika Salo 0.00 0.00 11.88 2.00 11.00 10.25
Johnny Herbert 2.00 4.00 13.82 6.72 7.00 7.00
Gerhard Berger 0.00 6.00 12.91 4.88 10.00 9.50
Michael Schumacher 9.00 11.00 14.47 10.72 2.00 0.00 X
Rubens Barrichello 0.00 1.00 11.41 2.32 10.00 9.40

1996 Jacques Villeneuve 4.00 11.00 13.17 9.20 4.00 4.00
Damon Hill 8.00 10.00 13.35 10.32 1.00 0.00 X

1997 Jacques Villeneuve 7.00 8.00 13.30 8.88 2.00 1.17 X
Mika Salo 0.00 0.00 9.67 0.68 12.00 9.56
Jean Alesi 0.00 5.00 12.96 5.72 7.00 7.00
Michael Schumacher 5.00 8.00 13.48 9.16 3.00 2.00 X

1998 Michael Schumacher 6.00 11.00 13.27 9.68 2.00 2.00 X
Mika Hkkinen 8.00 11.00 13.18 10.84 2.00 0.11 X
Eddie Irvine 0.00 8.00 12.23 6.96 8.00 8.00

1999 Mika Hkkinen 5.00 10.00 12.17 8.64 4.00 2.40 X
Eddie Irvine 4.00 9.00 13.91 9.48 1.00 1.00 X

2000 Mika Hkkinen 4.00 11.00 14.05 10.32 5.00 5.00 X
Michael Schumacher 9.00 12.00 13.68 11.44 2.00 0.40 X
David Coulthard 3.00 11.00 13.77 9.28 6.00 6.00
Ralf Schumacher 0.00 3.00 10.36 4.20 11.00 10.00

2001 Michael Schumacher 9.00 14.00 15.36 13.08 1.00 0.00 X
Jean Alesi 0.00 0.00 11.24 2.36 15.00 13.20

2002 Michael Schumacher 11.00 17.00 16.68 15.20 0.00 0.00 X

2003 Kimi Rikkonen 1.00 10.00 12.61 8.52 5.00 5.00 X
Juan Pablo Montoya 2.00 9.00 12.39 7.84 4.00 4.00
Michael Schumacher 6.00 8.00 13.74 9.44 2.00 0.50 X

2004 Michael Schumacher 13.00 15.00 16.79 14.68 1.00 0.00 X
Rubens Barrichello 2.00 14.00 15.79 10.84 11.00 11.00

2005 Rubens Barrichello 0.00 4.00 13.58 4.12 12.00 10.20
Fernando Alonso 7.00 15.00 17.04 12.88 1.00 0.00 X

2006 Nick Heidfeld 0.00 1.00 11.69 2.72 14.00 12.33
Fernando Alonso 7.00 14.00 16.19 12.84 1.00 0.00 X

2007 Lewis Hamilton 4.00 12.00 15.00 10.60 2.00 2.00 X
Kimi Rikkonen 6.00 12.00 14.84 10.88 2.00 0.46 X
Fernando Alonso 4.00 12.00 14.96 10.64 2.00 2.00 X
Heikki Kovalainen 0.00 1.00 11.96 3.48 11.00 9.33

2008 Lewis Hamilton 5.00 10.00 14.43 9.72 2.00 1.00 X
Robert Kubica 1.00 7.00 14.00 7.40 5.00 5.00
Nick Heidfeld 0.00 4.00 13.29 6.00 6.00 6.00
Felipe Massa 6.00 10.00 13.62 9.60 4.00 1.00 X

Table 3 The scores obtained by undominated alternatives in F1 championships (years 1986-2008) with different
aggregation methods.
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Disagreement F1 plurality 3-approval 5-approval Borda MR(·;WD) MR(·;WC)

F1 0 0.41 0.23 0.30 0.29 0.17 0.17
plurality 0.41 0 0.47 0.60 0.55 0.43 0.28
3-approval 0.23 0.47 0 0.35 0.40 0.26 0.34
5-approval 0.30 0.60 0.35 0 0.35 0.31 0.38
Borda 0.29 0.55 0.40 0.35 0 0.28 0.39
MR(·;WD) 0.17 0.43 0.26 0.31 0.28 0 0.18
MR(·;WC) 0.17 0.28 0.34 0.38 0.39 0.18 0

Table 4 Average disagreement (with respect to winner) between the different rank aggregation methods (F1 cham-
pionship dataset; years 1961-2008).

decreasing weights, but it happens several times when considering the uncertainty being over con-
vex weights.

We remarked before (see Proposition 5 and as well discussion in Section 4) that it is theoret-
ically possible that relations of weak dominance hold between alternatives tied at the minimax
regret value (i.e. between alternatives that minimize max regret). However, we never observed
such phenomenon in this dataset: the winners according to minimax regret are always strongly
undominated.

Comparison of different aggregation methods We now want to analyze how often different social
choice functions pick a different winner. We compare our methods based on max regret, that is
the social choice functions MMR-Dec and MMR-Con (considering no discriminative thresholds),
with plurality, 3-approval, 5-approval, Borda and ranking with the true F1 point system7. In
Table 4 we analyze how often the different methods disagree on picking the winner (considering all
years 1961-2008). We compute the disagreement between two sets of winners as the cardinality of
the symmetric set difference normalized by the cardinality of the union; in this way we are able to
handle the case where an aggregation method may give the same score to more than an alternative,
returning multiple winners. While often all methods pick the same winners, there is a considerable
difference between some of the methods.

The two methods based on minimax regret (one assuming decreasing weights in WD and the
other assuming convex weights in WC) pick a different winner 18% of the times. Minimax regret is
more “similar” to Borda when considering WD rather than WC ; while minimax regret assuming
the weights in WC is more similar to plurality than when using WD (this fact is not surprising
since plurality is itself a convex rule). Both methods based on regret agree about 83% of the times
with the aggregation using the real F1 point system.

6 Conclusions

While scoring rules are often used for aggregating rankings, determining the scoring vector (the
weights associated to each position) is a crucial step, since different scoring vectors may induce
picking different winners.

In this paper we considered how to aggregate the input rankings by assuming a scoring vector
with uncertain weights, proposing to adopt the minimax regret criterion. Minimax regret ensures
that the decision is robust with respect to the full range of possible choices for the scoring vector.

We assume that we are given a set of possible scoring vectors addressing the case of decreasing
weights and convex sequences of decreasing weights. We also considered the possibility that the
decision maker may impose some “discriminative thresholds” imposing a minimum separation
between the weights. The main contributions of this paper are the characterization of max regret
in terms of cumulative ranks (giving efficient way to compute the regret optimal alternative that
does not require linear programming) and the analysis of the properties of minimax regret from
the point of view of social choice theory.

7 Several different versions have been adopted over the years; here we choose to compare only with respect to the
point system used in 2010.
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We mention some additional related works. Recently researchers in computational social choice
theory have been considering methods for dealing with partially specified preference profiles; for
example, possible and necessary winners when aggregating partial orders (Xia and Conitzer 2011).
While we considered weights associated to positions, Baumeister et al. (2012) have considered
aggregation rules with weights attached to individual voters and provided methods for computing
possible winners. Some authors have considered machine learning methods in relation to scoring
rules: Procaccia et al. (2009) studied how a scoring vector can be learned from examples, while
Haghtalab et al. (2018) considered, in a setting of repeated social choice, how to learn the weights
attached to voters.

Finally, we mention that it has been questioned (Bossert and Suzumura 2018) the idea that
the positional scores have to be aggregated using a sum; in particular, the OWA operator has been
considered (Goldsmith et al. 2014; Garćıa-Lapresta and Mart́ınez-Panero 2017) as an alternative
aggregator.
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Salo A, Hämäläinen RP (2001) Preference ratios in multiattribute evaluation (PRIME)–elicitation and decision
procedures under incomplete information. IEEE Trans on Systems, Man and Cybernetics 31(6):533–545

Savage LJ (1954) The Foundations of Statistics. Wiley, New York
Stein WE, Mizzi PJ, Pfaffenberger RC (1994) A stochastic dominance analysis of ranked voting systems with scoring.

European Journal of Operational Research 74(1):78 – 85, DOI https://doi.org/10.1016/0377-2217(94)90205-4,
URL http://www.sciencedirect.com/science/article/pii/0377221794902054

Viappiani P (2018) Positional scoring rules with uncertain weights. In: Proc. od Scalable Uncertainty Management
- 12th International Conference, SUM 2018, Milan, Italy, October 3-5, 2018, pp 306–320

Weber M (1987) Decision making with incomplete information. European Journal of Operational Research 28(1):44
– 57, DOI https://doi.org/10.1016/0377-2217(87)90168-8

Xia L, Conitzer V (2011) Determining possible and necessary winners given partial orders. J Artif Intell Res 41:25–67
Young HP (1974) An axiomatization of Borda’s rule. Journal of Economic Theory 9:43–52
Young HP (1975) Social choice scoring functions. SIAM Journal on Applied Mathematics 28(4):824–838, URL

http://www.jstor.org/stable/2100365

Zwicker WS (2016) Introduction to the theory of voting. In: Brandt F, Conitzer V, Endriss U, Lang J, Procaccia
AD (eds) Handbook of Computational Social Choice, Cambridge University Press, pp 23–56, DOI 10.1017/
CBO9781107446984.003, URL https://doi.org/10.1017/CBO9781107446984.003

A Appendix: Proofs

We omit the proof of Proposition 3 that is trivial.

Proposition 4 Let x, y ∈ A. The following statements connect max regret and dominance relations:

1. For an arbitrary set W of scoring vectors:
If x weakly dominates y, then MR(x;W ) ≤ MR(y;W );
if x strongly dominates y, then MR(x;W ) < MR(y;W ).

2. Moreover, when considering decreasing weights, i.e. the scoring vector belongs to WD:
If V x � V y then MR(x;WD) ≤ MR(y;WD);
if V x � V y then MR(x;WD) < MR(y;WD).

3. Finally, when considering convex weights, i.e. the scoring vector belongs to WC :
If Vx � Vy then MR(x;WC) ≤ MR(y;WC);
if Vx � Vy then MR(x;WC) < MR(y;WC).

Proof 1) If x weakly dominates y, by definition ∀w ∈ W s(x;w) ≥ s(y;w) (Definition 3). For any z ∈ A, we have
that:

PMR(x, z;W ) = max
w∈W

{s(z;w)− s(x;w)} ≤ max
w∈W

{s(z;w)− s(y;w)} = PMR(y, z;W ). (31)

Therefore MR(x;W ) = maxz∈A PMR(x, z;W ) ≤ maxz∈A PMR(y, z;W ) = MR(y;W ).
2) The result follows directly from part 1 of this proposition and Proposition 1
3) The result follows directly from part 1 of this proposition and Proposition 2.

Proposition 5 The followings statements hold:

1. For any x ∈ S∗(W ), x is weakly undominated, i.e. there is no y ∈ A such that y strongly dominates x.
2. For all x ∈ S∗(W ), there is no y ∈ A \ S∗(W ) such that y weakly dominates x.
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Proof 1) Let x ∈ S∗(W ), by definition x ∈ arg minz∈A MR(z;W ). Now assume y strongly dominates x. Then, by
Proposition 4, we have MR(y;W ) < MR(x;W ), but this is absurd.
2) Let x ∈ S∗(W ). Now assume y ∈ A \ S∗(W ) and that y weakly dominates x. Then, by Proposition 4, we have
MR(y;W ) ≤ MR(x;W ) and therefore MR(y;W ) = MMR(W ), meaning y ∈ S∗(W ) . We obtain a contradiction.

Proposition 6 Let x ∈ A. The following statements hold:
1. Alternative x is a necessary co-winner if and only if MR(x;W ) = 0.
2. If x is a necessary winner then MR(x;W ) = 0 and S∗(W ) = {x}.
3. Alternative x is a necessary winner if and only if PMR(x, z;W ) < 0 for all z ∈ A \ {x}.

Proof 1. x is a necessary co-winner ⇐⇒ s(x;w) ≥ s(z;w) ∀z∈A, ∀w∈W ⇐⇒ PMR(x, z;W ) ≤ 0 for all z ∈ A
⇐⇒ MR(x;W ) = 0.

2. If x is a necessary winner then it is also a necessary co-winner, and part 1 of this proposition implies MR(x;W ) =
0, and x ∈ S∗(W ). Let y ∈ A \ {x}. Since x is a necessary winner, s(x;w) > s(y;w) for all w ∈ W , therefore
PMR(y, x;W ) > 0 and MR(y;W ) ≥ PMR(y, x;W ) > 0. Hence S∗(W ) = {x}.

3. x is a necessary winner ⇐⇒ s(x;w) > s(z;w) ∀z∈A\{x}, ∀w∈W ⇐⇒ PMR(x, z;W ) < 0 for all z∈A\{x}

Lemma 1 In the case of decreasing weights, for any pairs x, y ∈ A, it holds

PMR(x, y;WD) = max
j∈[[m−1]]

{V y
j − V

x
j }. (21)

Proof By noticing that the optimal solution of a bounded linear program is attained in one of the vertices, we derive

PMR(x, y;WD) = max
{ m∑

j=1

[wjv
y
j − wjv

x
j ]
∣∣∣1 = w1 ≥ w2 ≥ . . . ≥ wm−1 ≥ wm = 0

}
=

= max
{m−1∑

j=1

δj(V y
j − V

x
j )
∣∣∣δ1 ≥ 0, . . . , δm−1 ≥ 0 ∧

m−1∑
j=1

δj = 1
}

=

= max
{m−1∑

j=1

δj(V y
j − V

x
j )
∣∣∣δ ∈ {oneat(1), . . . , oneat(m-1)}

}
=

= max
j∈[[m−1]]

{V y
j − V

x
j } (32)

where oneat(j) is the vector with 0 everywhere except in position j where the value is 1. ut

Theorem 1 For any alternative x ∈ A it holds

MR(x;WD) = max
j∈[[m−1]]

{V ∗j − V x
j } (22)

where V ∗k = maxx∈A V
x
k .

Proof We use Lemma 1 and substitute Equation (21) into the formula of MR(x) given by Equation (17):

MR(x;WD) = max
y∈A

max
j∈[[m−1]]

{V y
j −V

x
j } = max

j∈[[m−1]]
max
y∈A
{V y

j −V
x
j } = max

j∈[[m−1]]
{max
y∈A
{V y

j }−V
x
j } = max

j∈[[m−1]]
{V ∗j −V x

j }.

ut

Lemma 2 Assuming convex weights, the pairwise max regret of an alternative x against y can be computed as
follows:

PMR(x, y;WC) = max
j∈[[m−1]]

{Vy
j − V

x
j

j

}
. (23)

Proof The proof is similar to that of Lemma 1. The pairwise max regret can be computed using the following linear
program.

PMR(x, y;WC) = max

m−1∑
j=1

φj(Vy
j − V

x
j ) (33)

s.t.

m−1∑
j=1

j φj = 1 (34)

φ1 ≥ 0, . . . , φm−1 ≥ 0 (35)

Let oneat(j) be the vector with 0 everywhere except in position j where the value is 1.
We know from the theory of linear programming that the optimum is attained in one of the vertices. Therefore, the
optimal φ must be of the type j ·oneat(j), that is (1, 0, . . . , 0), (0, 0.5, 0, . . . , 0), ..., (0, . . . , 0, 1

m−1
). The corresponding

optimal δ is among (1, 0, . . . , 0), ( 1
2
, 1
2
, 0, . . . , 0), ( 1

3
, 1
3
, 1
3
, 0, . . . , 0), etc.

PMR(x, y;WC) = max


m−1∑
j=1

φj(Vy
j − V

x
j )
∣∣∣φ ∈ {oneat(j)

j

}m−1

j=1

 = max
j∈[[m−1]]

Vy
j − V

x
j

j
. (36)

ut
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Theorem 2 Assuming convex weights, the max regret of alternative x can be computed as follows:

MR(x;WC) = max
j∈[[m−1]]

{V∗j − Vx
j

j

}
(24)

where V∗j = maxx∈A Vx
j .

Proof The result follows by using Lemma 2 in order to substitute Equation (23) in Equation (17); we then exchange
the order of the two max.

MR(x;WC) = max
y∈A

max
j∈[[m−1]]

{Vy
j − V

x
j

j

}
= max

j∈[[m−1]]
max
y∈A

{Vy
j − V

x
j

j

}
= max

j∈[[m−1]]

{V∗j − Vx
j

j

}
.

ut

Proposition 7 For any pair of alternatives x, y ∈ A, it holds

PMR(x, y;WD,t) =
[(

1−
m−1∑
j=1

tj

)
max

j∈[[m−1]]
{V y

j − V
x
j }
]

+

m−1∑
j=1

tj(V y
j − V

x
j ) (26)

or, equivalently,

PMR(x, y;WD,t) =
[(

1−
m−1∑
j=1

tj

)
PMR(x, y;WD)

]
+

m−1∑
j=1

tj(V y
j − V

x
j )

where PMR(x, y;WD) is pairwise max regret computed with no discriminative thresholds.

Proof We let δ̂j to be the slack between the value of δj and its discriminative value tj :

δ̂j = wj − wj+1 − tj = δj − tj (37)

for j ∈ [[m− 1]]. Equation (25) ensures that δ̂j ≥ 0. Consider the difference of score between two alternatives y and
x:

s(y;w)− s(x;w) =

m−1∑
j=1

δ̂j(V y
j − V

x
j ) +

m−1∑
j=1

tj(V y
j − V

x
j ) (38)

We now consider the maximum s(y;w) − s(x;w) when picking a scoring rule whose scoring vector w belongs to
WD,t (weakly decreasing and with discriminative values). Note that, the second addendum on the right-hand side
of Equation (38) can be viewed as constant.

max
w∈WD,t

s(y;w)− s(x;w) = max
{m−1∑

j=1

δj(V y
j − V

x
j ) | 0 ≤ δj ≤ 1 ∧

m−1∑
1

δj = 1 ∧ δj ≥ tj · ∀j ∈ [[m− 1]]
}

(39)

=

m−1∑
j=1

tj(V y
j − V

x
j ) + max

{m−1∑
j=1

δ̂j(V y
j − V

x
j ) | 0 ≤ δ̂j ≤ 1 ∧

m−1∑
1

δ̂j = 1−
m−1∑
j=1

tj · ∀j ∈ [[m− 1]]
}

(40)

=

m−1∑
j=1

tj(V y
j − V

x
j ) +

(
1−

m−1∑
j=1

tj

)
max

j∈[[m−1]]
(V y

j − V
x
j ). (41)

ut

Proposition 8 Let p be the profile.

– When an alternative x ∈ A is ranked first at least 2
3
n times, then MMR-Dec(p) = {x}.

In other words, if x is such that vx1 >
2
3
n then S∗(WD) = {x}

– When an alternative x ∈ A is ranked first at least 2m−2
3m−2

n times, then MMR-Con(p) = {x}.
In other words, if x is such that vx1 >

2m−2
3m−2

n then S∗(WC) = {x}.

Proof 1. Decreasing weights WD: Consider a profile p in which x is such that vx = (a, 0, . . . , 0, n − a) and
vy = (n − a, a, 0, . . . , 0) and a > n

2
(x is ranked first at least a times and is last all other times; y is first

n − a times and second a times). Then V x = (a, . . . , a) and V y = (n − a, n, . . . , n). According to Lemma 1,
PMR(x, y;WD) = V y

2 − V x
2 = n − a and PMR(y, x;WD) = V x

1 − V
y
1 = 2a − n. It can be shown that in this

profile MR(x;WD) = PMR(x, y;WD) and MR(y;WD) = PMR(y, x;WD) since every alternative other than x
and y is (weakly) dominated. Therefore x is a winner if

MR(x;WD) < MR(y;WD) ⇐⇒ n− a < 2a− n ⇐⇒ a >
2

3
n.

The last step is to show that the profile p is the most challenging situation to alternative x: in any profile p′ in
which x is ranked first at least a times, x will be at least as well ranked as in p, and any challenger will be at
most ranked as well as y in p. Indeed monotonicity guarantees us that the max regret of x will be minimum.
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2. Convex weights WC : Consider a profile p in which x is such that vx = (a, 0, . . . , 0, n − a) and vy = (n−
a, a, 0, . . . , 0) and a > n

2
(x is ranked first at least a times and is last all other times; y is first n− a times and

second a times). The cumulative ranks of x and y are V x = (a, . . . , a) and V y = (n − a, n, . . . , n); the double
cumulative ranks Vx and Vy are such that that Vx

j = ja and Vy
j = jn − a, with j ∈ [[m − 1]]. We impose that

the max regret of x is lower than that of y, and then use Lemma 1:

MR(x;WC) < MR(y;WC) ⇐⇒ PMR(x, y;WC) < PMR(y, x;WC)

⇐⇒ max
j∈[[m−1]]

{Vy
j − V

x
j

j

}
< max

j∈[[m−1]]

{Vx
j − V

y
j

j

}
⇐⇒ n−

a

m− 1︸ ︷︷ ︸
Vy
m−1
m−1

− a︸︷︷︸
Vx
m−1
m−1

< a︸︷︷︸
Vx
1
1

− (n− a)︸ ︷︷ ︸
Vy
1
1

⇐⇒ a >
2(m− 1)

3m− 2
n.

Notice that alternative x is the “worst ranked” among all possible rank distribution satisfying the above condition
and y is ranked as well as possible (since we filled up the profile in the most disadvantageous way to x). Now
to conclude the proof, as in the previous case, we make use of monotonicity to prove the argument that in any
other profile where alternative x satisfies the above condition on the number of first positions, x will achieve
minimax regret.

ut

Theorem 3 The social choice functions MMR-Dec and MMR-Con satisfy anonymity, neutrality, unanimity,
monotonicity, IRDA, homogeneity and independence from symmetric profiles.

Proof Neutrality and anonymity are trivial to check. Proof sketches for homogeneity and independence from sym-
metric profiles were given in the main text.

For unanimity, we need to show that if all voters place an alternative x in first position, then x will have a
max regret value of zero and therefore x will be declared the winner. x has rank distribution vx = (n, 0, . . . , 0) and
cumulative standings V x = (n, . . . , n). All other alternatives y 6= x have 0 in the first component of their cumulative
ranks, V y

1 = 0, and a value less than n in the other components. Using Theorem 1, MR(y;WD) = n, for any y,
while MR(x;WD) = 0; therefore x is the only winner. The proof is similar for WC .

We now prove monotonicity. Indeed, assume that, starting from a profile p, we modify the ranking associated with
one of the voters so that an alternative x moves from some position i2 to some position i1 < i2 and call the resulting
profile p′. Then the rank distribution of the new profile is such that vxi1 [p′] = vxi1 [p] + 1 and vxi2 [p′] = vxi2 [p]− 1. It

follows that the cumulative rank distribution V x[p′] of alternative x in the new profile p′ is such that

V x
j [p′] =


V x
j [p] j = 1, . . . , i1 − 1

V x
j [p] + 1 j = i1, . . . , i2 − 1

V x
j [p] j = i2, . . . ,m

We therefore have V x[p′] � V x[p]. We also have V y [p′] � V y [p] for any y 6= x since y can either have the same
ranks as in p′ or may have lose a position.

Now, let J = {j ∈ [[m−1]]|x ∈ arg maxz V z
j [p′]}, that is the set of positions for which x has maximum cumulative

rank in p′. We have (using Theorem 1)

MRp′ (x;WD) =
m−1
max
j=1
{V ∗j [p′]− V x

j [p′]} = max
j 6∈J
{ max
y∈A−{x}

{V y
j [p′]} − V x

j [p′]} ≤

≤ max
j 6∈J
{ max
y∈A−{x}

{V y
j [p]} − V x

j [p]} =
m−1
max
j=1
{V ∗j [p]− V x

j [p]} = MRp(x;WD).

and this means regret of x in p′ cannot be higher than the regret of x in p. Assume y is any alternative that is not
a winner in p, meaning that MRp(x;WD) < MRp(y;WD). It follows

MRp′ (x;WD) ≤ MRp(x;W ) < MRp(y;WD) ≤ MRp′ (y;WD).

Therefore, if x is a winner in p, it has to continue to have minimax regret, and therefore to be a winner in p′; we
conclude that the rule is monotone in WD. Analogous reasoning can be made for WC .

To prove IRDA note that, according to Equation 22, the max regret of an alternative depends only on its rank
distribution, and on the values V ∗1 , . . . , V

∗
m−1. But, for any j, V ∗j = maxy V

y
j and the associated alternatives in

arg maxy V
y
j have maximal cumulative rank in the j-th position, meaning that are either undominated or dominated

by another alternative that is also in arg maxy V
y
j (said in another way, for each j, there is at least 1 undominated

alternative in arg maxy V
y
j ).

Thus any change in the rank of dominated alternatives does not change the values V ∗1 , . . . , V
∗
m−1, when moving

from p to p′. This means that by changing the ranks of dominated alternatives will not change MR(x;WD), and
therefore the winners according to MMR will be the same, and therefore MMR is IRDA. ut


