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Abstract   

Understanding spatial and temporal dynamics of non-algal particles (NAP) in open 

ocean is of the utmost importance to improve estimations of carbon export and sequestration. 

These particles covary with phytoplankton abundance but also accumulate independently of 

algal dynamics. The latter likely represents an important fraction of organic carbon but it is 

largely overlooked. A possible way to study these particles is via their optical backscattering 

properties (bbp) and relationship with chlorophyll-a (Chl). To this aim, we estimate the 

fraction of bbp associated with the NAP portion (𝑏𝑏𝑝
𝑘 ) that does not covary with Chl by using 

a global Biogeochemical-Argo dataset. We quantify the spatial, temporal and vertical 

variability of 𝑏𝑏𝑝
𝑘 . In the northern productive areas, 𝑏𝑏𝑝

𝑘 is a small fraction of bbp and shows a 

clear seasonal cycle. In the Southern Ocean, b
k

bp is a major fraction of total bbp. In 

oligotrophic areas, 𝑏𝑏𝑝
𝑘  has a smooth annual cycle. 
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1. Introduction  

In the ocean, the pool of non-algal particles (NAP) includes: i) heterotrophic organisms 

such as bacteria, micro-grazers and viruses, ii) organic particles of detrital origin such as 

faecal pellets and cell debris, iii) mineral particles of both biogenic (e.g. calcite liths and 

shells) and terrestrial origin (e.g. clays and sand), iv) bubbles (Sosik et al., 2008) and v) 

plastics. Understanding of the spatial and temporal dynamics of NAP in the open ocean can 

improve estimations of carbon export and sequestration (Azam et al., 1983; Bishop and 

Wood, 2009). NAP can covary with phytoplankton abundance or accumulate regardless of 

algal dynamics. In such a context, a possible way to monitor these particles and distinguish 

between these two fractions is via their optical backscattering properties and relationship with 

chlorophyll-a. Unfortunately, only a few studies have concerned the backscattering properties 

of NAP up to date (bbNAP; units of m
-1

) (Cho and Azam, 1990; Morel and Ahn, 1990, 1991; 

Stramski and Kiefer, 1991), as a consequence of the difficulties in directly measuring this 

optical coefficient. Indeed, optical backscattering sensors measure backscattering of all 

particles suspended in seawater (bbp; units of m
-1

) (Dall’Olmo et al., 2009, 2012, Westberry et 

al., 2010), which includes algal particles among the others. The NAP signal cannot be 

separated from that of phytoplankton. However, total bbp offer the great advantage to be 

measured by satellite and in situ from Biogeochemical-Argo (aka BGC-Argo) floats. Using 

bbp we can thus observe the global ocean with high spatial and temporal resolutions.  

The first attempt to derive bbNAP in the open waters was by Behrenfeld et al. (2005) 

(hereafter Be05) using five-years of ocean colour remote sensing data. They computed the 

fraction of the bbp that does not covary with phytoplankton chlorophyll-a concentration (Chl; 

units of mg m
-3

), and estimated it as the offset of a linear regression between satellite-derived 

bbp and Chl when Chl concentrations were > 0.14 mg m
-3

. This offset was defined as the 

background of the bbNAP (hereafter 𝑏𝑏𝑝
𝑘 ; units of m

-1
) and refers only to a fraction of the total 

bbp signal caused by NAP that thus does not covary with Chl (i.e. phytoplankton). 

In Be05, 𝑏𝑏𝑝
𝑘  is assumed to be a constant value both in space and time (i.e. 3.5·10

-4
 m

-

1
). Be05 attributed it to “a stable heterotrophic and detrital component of the surface particle 

population and therefore independent of the phytoplankton dynamics”. Recently, Bellacicco 

et al. (2016) (hereafter Blc16) applied Be05’s approach for distinct bioregions and seasons in 

the Mediterranean Sea, and showed that 𝑏𝑏𝑝
𝑘  has instead a marked regional and seasonal 

variability. Such a result thus confirmed that the heterotrophic and detrital components at the 

sea surface are neither negligible nor stable, but highly variable in seawater (Siokou-Frangou 

et al., 2010). These observations were consistent with field observations of Chl and bbp from 

the BOUSSOLE buoy in which the Chl-bbp relationship was highly dependent on the season 

of the area (Antoine et al., 2011). The variability of the 𝑏𝑏𝑝
𝑘  by Blc16 was also later 

confirmed by Bellacicco et al., (2018) for the global ocean (hereafter Blc18). Indeed, Blc18 

highlighted two distinct oceanic areas: the productive sub-polar North Atlantic Ocean, where 

𝑏𝑏𝑝
𝑘  and particle biomass (i.e. phytoplankton cells) are anti-correlated; and the Southern 

Ocean, where 𝑏𝑏𝑝
𝑘  signal is mainly driven by inorganic particles, such as algal coccoliths 

(Balch et al., 2016, 2018), bubbles or foam that occur in the stormy seas (Stramski et al., 
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2004). However, ocean-colour data used in these works are only sensitive to the surface 

layer. The increasing number of BGC-Argo floats, equipped with bbp sensors, can therefore 

expand the analysis to underlying layers. 

The relationship between bbp and Chl is also influenced by phytoplankton specific 

composition and diversity (e.g. size, shape, internal structure), physiology (e.g., 

photoacclimation) and the nature of NAP itself (Stramski et al., 2004; Dall’Olmo et al., 2009, 

2012). Therefore, an analytical fit between bbp and Chl that includes these factors may 

improve 𝑏𝑏𝑝
𝑘  estimations. In such a context, Brewin et al., (2012) (hereafter Br12) presented a 

relationship between bbp and Chl that accounted for modifications in phytoplankton size. The 

model, based on surface in situ observations, included separated bbp terms for small and large 

cells that dominated the overall fit at different Chl ranges. This model also estimated 𝑏𝑏𝑝
𝑘 , as 

the offset of the fit between bbp and Chl in clear waters where this relationship converged to a 

flat value for low Chl values. The 𝑏𝑏𝑝
𝑘  parameter was interpreted as a constant background of 

NAP (e.g. heterotrophic bacteria, detritus, viruses, minerogenic particles), possibly partly 

influenced by very small phytoplankton (e.g. prochlorophytes).  

In this study, the Br12 model is applied to an extensive global dataset of Chlorophyll-a 

fluorescence, here converted in Chl, and bbp (700) measurements acquired from BGC-Argo 

profiling floats. In detail, we estimate 𝑏𝑏𝑝
𝑘  across different oceanic areas (i.e. from productive 

to ultra-oligotrophic zones), months, and in two distinct layers of the water column: at the 

surface and within the euphotic layer. To interpret our estimations of 𝑏𝑏𝑝
𝑘 , we use as a 

reference of the 𝑏𝑏𝑝
𝑘  value in each region the median bbp at 950 – 1000 meters also derived 

from BGC-Argo observations. At these depths bbp is entirely due to the fraction of NAP that 

does not covary with Chl (Poteau et al., 2017). 

 

2. Data and Methods 

2.1 The BGC-Argo dataset  

An array of 425 BGC-Argo profiling floats was deployed around the World’s oceans as 

part of several national and international programs (http://biogeochemical-argo.org), and 

collected data from 30/05/10 to 31/12/18 every one up to ten days. These floats acquired 0-

1000 m vertical profiles of pressure, temperature and salinity by a Seabird Scientific SBE 41 

Conductivity-Temperature-Depth (CTD) sensor, Chlorophyll-a fluorescence (FChla; 

excitation at 470 nm, emission at 695 nm) and the angular scattering function at 700 nm by 

Seabird-WetLABS combo sensors (mostly FLBB, ECOTRIPLET, or MCOMS). 

Chlorophyll-a fluorescence is then converted to Chl concentration (units of mg m
-3

) and the 

angular scattering to particulate optical backscattering coefficient bbp (units of m
-1

) (see 

supplementary materials). All the data were downloaded from the Coriolis database 

(ftp://ftp.ifremer.fr/ifremer/argo/dac/coriolis) and quality controlled (see supplementary 

material). The BGC-Argo floats (more than 35000 correspondent Chl and bbp data) over 

global ocean used in the present study are partitioned into 18 areas (Figure 1). The dataset of 

Chl and bbp here used, represents the update version of the databases BOPAD-prof and 

BOPAD-surf by Organelli et al. (2017). The depth of euphotic zone, Zeu (units of m), which 

http://biogeochemical-argo.org)/
ftp://ftp.ifremer.fr/ifremer/argo/dac/coriolis)
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is the depth where PAR reaches 1% of its surface value, was estimated from the Chl profile 

through the iterative process described in Morel and Maritorena (2001). Subsequently, the 

first optical depth, Zpd (units of m), was calculated as Zeu/4.6 (Morel, 1988). Finally, for each 

profile, the mean and standard deviation of Chl and bbp were calculated within: i) the surface 

layer: the layer between sea surface and the first optical depth; ii) the euphotic layer: the layer 

between sea surface and euphotic zone; and iii) the bottom layer: the layer between 950 and 

1000 m. 

 

2.2 𝒃𝒃𝒑
𝒌  estimation: the model 

In this study, the model developed by Brewin et al., (2012) is used to compute 𝑏𝑏𝑝
𝑘 . The 

bbp is modeled as a function of Chl and takes into account the fractional contributions of 

small and large phytoplankton, as follows: 

 

𝑏𝑏𝑝 =  𝐶1
𝑚

· [𝑏𝑏𝑝,1
∗ − 𝑏𝑏𝑝,2

∗ ][1 − 𝑒−𝑆1·Chl] + 𝑏𝑏𝑝,2
∗

· Chl + 𝑏𝑏𝑝
𝑘     [1] 

where the subscript 1 and 2 refer to two populations of phytoplankton cells partitioned 

according to size: 1 is for cells < 20𝜇m while 2 is for cells > 20𝜇m; 𝑏𝑏𝑝,1
∗  and 𝑏𝑏𝑝,2

∗  refer to 

the Chl-specific bbp coefficients associated with environments dominated by the two 

populations of phytoplankton; 𝐶1
𝑚 and 𝑆1 refer to the maximum Chl concentration population 

1 can reach and the initial slope relating the Chl concentration of population 1 to total Chl, 

respectively. The term 𝑏𝑏𝑝
𝑘  refers to the background bbp coefficient. The general equation of 

the model can be simplified as: 

𝑏𝑏𝑝 = 𝑐 · [1 − 𝑒(−𝑆1𝐶ℎ𝑙)] +  𝑏𝑏𝑝,2
∗ · Chl + 𝑏𝑏𝑝

𝑘 ,        [2] 

 

in which 𝑏𝑏𝑝,2
∗  is the slope, 𝑏𝑏𝑝

𝑘  is the intercept of the fit, while c = 𝐶1
𝑚[𝑏𝑏𝑝,1

∗ − 𝑏𝑏𝑝,2
∗ ] 

and 𝑆1terms are the coefficients of the non-linear part of the model. The 𝑏𝑏𝑝,2
∗ , 𝑏𝑏𝑝

𝑘 , c and  

𝑆1coefficients are found from fitting Eq. 2 to bbp and Chl data by using the iterative bi-square 

method (see paragraph 2.3). The initial guess for the four parameters are reported in Table 

S1. These values are in the range and order of magnitude of the values reported in Brewin et 

al., (2012). This model reduces to the Be05, Blc16 and Blc18 linear models if the non-linear 

term is discarded out, which would be the case where 𝑏𝑏𝑝,1
∗  and 𝑏𝑏𝑝,2

∗ tend to the same value. 

This model represents an evolution of the previous published model (i.e. Be05, Blc16 and 

Blc18) because of it takes into account the phytoplankton populations variability in the Chl-

bbp relationship and thus for 𝑏𝑏𝑝
𝑘  estimations. In addition, the inclusion of the non-linear term 

introduces more flexibility reducing the fit errors for the areas here analyzed (see Figures S1 

and S2). 

The Eq. 2 is applied to each area (spatially-resolved with the temporal aggregation 

approach reported in Figure 1), and for every month (spatially- and temporal-resolved 

approach) for the two layers.  
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The ratio between the 𝑏𝑏𝑝
𝑘  value found in the surface and in the bottom layers, and 

analogously for the euphotic layer, enables understanding the difference between upper and 

deeper layers for each area of interest. It is computed as: 

 

𝑏𝑏𝑝
𝑘̂ =

𝑏𝑏𝑝,𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑘

𝑏𝑏𝑝,𝑏𝑜𝑡𝑡𝑜𝑚
𝑘           [3a] 

 

𝑏𝑏𝑝
𝑘̂ =

𝑏𝑏𝑝,𝑒𝑢𝑝ℎ𝑜𝑡𝑖𝑐
𝑘

𝑏𝑏𝑝,𝑏𝑜𝑡𝑡𝑜𝑚
𝑘           [3b]

  

In addition to this ratio, 𝑏𝑏𝑝
𝑘̅̅ ̅̅  is here defined as the fraction of the 𝑏𝑏𝑝

𝑘  with respect to the 

median bbp (in %) giving an understanding on the relationship between NAP and particle 

biomass in the different areas, and the layers, of the ocean:  

 

𝑏𝑏𝑝
𝑘̅̅ ̅̅ =

𝑏𝑏𝑝
𝑘

𝑏𝑏𝑝
              [4] 

 

2.3 Model fit and statistics 

For all the computations, Chl measurements below the value of 0.01 mg m
-3

 are 

considered too noisy for a proper estimation of 𝑏𝑏𝑝
𝑘  and are filtered out from the dataset. The 

model in Eq. 2 is fitted to the data using the iterative bi-square method which minimizes a 

weighted sum of squared errors, where the weight given to each data point decreases with the 

distance from the fitted curve (Huber, 1981). Therefore, the error function is sensitive to the 

bulk of the data and the effect of outliers is thus reduced. This error function is minimized 

through the Trust-Region algorithm (Moré and Sorensen, 1983) and the final fit estimate is 

found after a maximum of 400 iterations. For each 𝑏𝑏𝑝
𝑘  the 95% confidence intervals and two-

standard deviation as confidence limit (2σ) are computed. In order to assess the model 

performance for the 𝑏𝑏𝑝
𝑘  calculation, the root mean square (RMS; in m

-1
) error between the 

modeled-bbp and measured-bbp are computed. The RMS is calculated according to: 

 

𝑅𝑀𝑆 =  √
1

𝑁
 ∑  (𝑏𝑏𝑝,𝑚𝑜𝑑𝑒𝑙𝑒𝑑,𝑖  − 𝑏𝑏𝑝,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖)

2
 

𝑁

𝑖=1
 

 

 

3. Results and Discussion 

3.1 Global overview of 𝑏𝑏𝑝
𝑘  

Aggregated quality-controlled data within the surface layer for all areas and months 

(N=36067) are shown in Figure 2a. The bbp coefficients increase with Chl but with relatively 
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constant bbp for low Chl values (Figure 2a). This behavior is consistent with previous 

observations by Behrenfeld et al. (2005) and Brewin et al. (2012), and is considered to be the 

consequence of two distinct oceanic conditions: “photoacclimation-dominance” and 

“biomass-dominance” of Chl signal. The former is typical of oligotrophic areas (e.g. 

subtropical gyres) where variability of Chl is uncoupled with biomass and the process of 

acclimation to light and nutrients drives Chl variations (Siegel et al., 2013; Halsey and Jones, 

2015; Barbieux et al., 2018). On the reverse, the latter case is typical of most productive areas 

where Chl and bbp strongly covary (Dall’Olmo et al., 2009, 2012; Westberry et al., 2010). The 

high Chl-bbp co-variability is a clear indication that particles (and biomass) covary with 

phytoplankton abundance, while the physiological photoacclimation process playing a 

secondary role in determining the Chl variations. 

Here, the application of the Br12 model to these BGC-Argo data leads to a 𝑏𝑏𝑝
𝑘  equal to 

5.0·10
-4

 m
-1

 at the surface, a value higher than that found by Be05 (3.5·10
-4

 m
-1

 at 443 nm). 

On the other hand, Br12 reported 7.0·10
-4

 m
-1

 for 470 nm and 5.6·10
-4

 m
-1

 at 526 nm. Blc18 

found a median 𝑏𝑏𝑝
𝑘  value equal to 9.5·10

-4
 m

-1
 based on 19-years of ocean colour data. These 

values are comparable as the spectral variability is limited in case of bbp (±30% between 

443nm and 700nm when assuming bbp decreasing as a power law with slope equal to 0.7). In 

relative terms, our study shows that 𝑏𝑏𝑝
𝑘  dominate within the surface layer as it accounts for 

57% of the total bbp measured by all BGC-Argo floats, a remarkably high percentage. 

An increased Chl-bbp co-variability is observed within the euphotic layer (Figure 2b; 

N=37322). The derived 𝑏𝑏𝑝
𝑘  is not comparable to our estimates from the surface layer or from 

previous satellite observations because it includes deeper layers where there is high particle 

concentration, as for example oligotrophic areas such as the subtropical gyres and the eastern 

Mediterranean Sea (Volpe et al., 2007; Barbieux et al., 2018). The first estimation of 𝑏𝑏𝑝
𝑘  for 

this layer is a value of 3.9·10
-4

 m
-1

, and accounts for 45% of the total bbp, suggesting that in 

the euphotic layer NAP are more correlated to Chl than at the surface. 

 

3.2 Geographical distribution of 𝑏𝑏𝑝
𝑘  

Figure 3a shows 𝑏𝑏𝑝
𝑘  estimations for the surface, euphotic and bottom layers within 

each geographical area sampled by BGC-Argo floats. In surface layer, the range of variability 

spans between 10
-4

 m
-1

 and 10
-3

 m
-1

, consistent with global ocean-colour estimations 

(Bellacicco et al., 2018). Lower variability characterizes the euphotic layer (of a factor of ~6), 

from ~1.0·10
-4

 m
-1

 to 6.0·10
-4

 m
-1

. For the bottom layer, variability is the lowest, between 

2.0·10
-4

 m
-1

 and 4.0·10
-4

 m
-1

. The two upper layers display a latitudinal gradient, with a 

general 𝑏𝑏𝑝
𝑘  decrease from northern to southern oceans. 𝑏𝑏𝑝

𝑘  in the bottom layer does not show 

a clear geographical pattern and remains relatively constant across all sampled oceanic areas. 

Figure 3b shows the 𝑏𝑏𝑝
𝑘̂  for each area, the ratios between the spatially-resolved 𝑏𝑏𝑝

𝑘  

found at the surface and euphotic layers with the estimation for the bottom layer. Globally, 

𝑏𝑏𝑝
𝑘̂  is higher in the upper layer than the at the bottom from mid- to low-latitudes, while 𝑏𝑏𝑝

𝑘  at 

the bottom is higher than at the surface in most productive seas such as the NASPG, SAZ, 

PFZ and ASZ_SIZ areas (Uitz et al., 2009; Alkire et al., 2014; Artega et al., 2018). In these 
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areas, 𝑏𝑏𝑝
𝑘̅̅ ̅̅  is only a small fraction of the total bbp in surface waters (< 20%; Figure 3c) as a 

consequence of the higher relative variability in the bbp and phytoplankton abundance (Alkire 

et al., 2014). In the NASPG, characterized by high phytoplankton biomass, 𝑏𝑏𝑝
𝑘̅̅ ̅̅  is lower than 

10%. It means that bbp is more dominated by particles that covary with phytoplankton cells 

(see Eq. 1), thus being more influenced by phytoplankton dynamics.  

In the Southern Ocean (i.e. STZ, SAZ, PFZ and ASZ_SIZ areas), 𝑏𝑏𝑝
𝑘̅̅ ̅̅  ranges from 15% (i.e. 

PFZ) to 60% (i.e. STZ) for surface waters suggesting inorganic particles (e.g. coccoliths) can 

also drive the 𝑏𝑏𝑝
𝑘  signal (Figure 3c). Indeed, coccoliths concentrations covary with bbp 

because they scatter light with high efficiency (Balch et al. 2016; 2018). The 𝑏𝑏𝑝
𝑘 values, and 

their order of magnitude, are consistent with measurements of bbp from CaCO3 reported in 

Balch et al. (2016) along the Great Calcite Belt (GCB) (their Figure 2c). Thus, in these areas 

of the Southern Ocean, the 𝑏𝑏𝑝
𝑘  may be related to the coccolithophorids seasonality (i.e. 

skeleton compounds of no longer living cells; 𝑏𝑏𝑝
𝑘  is the bbp when Chl is zero) (Balch et al. 

2016; 2018; Bellacicco et al., 2018). 

In less productive areas (e.g. EMS, IEQ, NASTG, SISTG, SASTG, SPSTG; Figure 3d), 

𝑏𝑏𝑝
𝑘̅̅ ̅̅  is greater than 80% at the surface layer, consistent with previous findings (Brewin et al., 

2012; Bellacicco et al., 2018). These areas are characterized by limited nutrients availability 

determining low phytoplankton biomass, especially pico- and nano-phytoplankton dominated 

communities (Bricaud et al., 2004; Mignot et al., 2014), which are rapidly recycled in the 

surface layer thus supporting relatively high bacterial and detrital biomass. For the euphotic 

layer, much of the bbp can be related to phytoplankton biomass as highlighted by a lower 𝑏𝑏𝑝
𝑘̅̅ ̅̅  

value of around 60%. This is the consequence of the subsurface chlorophyll maximum 

(SCM) which is deeper in the subtropical gyres and oligotrophic seas as found by Mignot et 

al., (2014) and Barbieux et al., (2019). It determines that, at depth, there is an increase of 

phytoplankton biomass and of NAP covarying with phytoplankton: the 𝑏𝑏𝑝
𝑘  coefficient indeed 

decreases from the surface to the euphotic layers (Figure 3a).  

  

3.3 Seasonal variability of 𝑏𝑏𝑝
𝑘  

The 𝑏𝑏𝑝
𝑘  values within surface and euphotic layers show a clear seasonal cycle with 

maxima during the productive periods (𝑏𝑏𝑝
𝑘  > 5.0·10

-4
) and minima during the low productive 

periods (𝑏𝑏𝑝
𝑘  < 4.0·10

-4
) in all the areas outside the oligotrophic seas (e.g. NS, NASPG, 

WMS, EMS, STZ, SAZ, PFZ, ASZ_SIZ) (Figure 4).  

In the NASPG, 𝑏𝑏𝑝
𝑘  shows high values during the well-known spring bloom and low 

values from December to April (Briggs et al., 2011; Alkire et al., 2014; Mignot et al., 2018). 

In the Southern Ocean, and especially SAZ, PFZ and ASZ_SIZ areas, 𝑏𝑏𝑝
𝑘  shows the maxima 

values from December to April (i.e. period of bloom) while the minima are detected in the 

period May-September.  

In the Mediterranean Sea (i.e. WMS and EMS), the seasonal cycle varies within the 

sub-basins showing different amplitude and shape, clearly linked to the regional trophic 
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regimes. WMS shows 𝑏𝑏𝑝
𝑘  values higher than the eastern ones confirming the presence of a 

general decreasing eastward gradient for this coefficient. In the western basin of 

Mediterranean Sea, deep-water formation dynamics and/or the generally shallow nutricline 

results in a maximum value in April. On the contrary, maxima generally occur earlier 

between February and March in the eastern Mediterranean basin. These results confirm 

Bellacicco et al., (2016) findings for this semi-enclosed basin. In their work, 𝑏𝑏𝑝
𝑘  was 

demonstrated to be variable both in space and time with a marked seasonality in the different 

bio-regions of both the sub-basins. As shown by Bellacicco et al., (2016), periods 

characterized by lower 𝑏𝑏𝑝
𝑘  (e.g. summer) are also associated with higher variability and 

uncertainties in the estimations. This is valid for the 𝑏𝑏𝑝
𝑘  both in the surface and euphotic 

layers, and has to be taken into account in the interpretation of these results (see Tables S3 

and S4).  

The 𝑏𝑏𝑝
𝑘  at the bottom layer shows a smoother seasonal cycle in respect to what occur 

in the upper layers. As found by Poteau et al., (2017), an annual cycle is only observed at the 

Southern Ocean and sub-polar North Atlantic area, regions with the largest amplitude in the 

seasonal cycles at the surface and euphotic layer (Figure 4) due to blooms of large 

phytoplankton (Alkire et al., 2014; Barbieux et al., 2018). Poteau et al., (2017), indeed, 

suggested that the 𝑏𝑏𝑝
𝑘  at the depth can be mostly related to disaggregation of these large 

settling particles. 

The seasonal cycle of 𝑏𝑏𝑝
𝑘  in the less productive seas for all the layers is low, suggesting 

low NAP seasonal variations (e.g. detrital matter, heterotrophic bacteria, virus). The 𝑏𝑏𝑝
𝑘  

estimation for each month appears to be nearly constant throughout the year (Figure 4) and 

thus bbp may be controlled mostly by 𝑏𝑏𝑝
𝑘 , as highlighted also in Figure 3c. 

 

4. Conclusions 

In this work, an extensive global dataset of Chl and bbp (700) measurements acquired 

from Biogeochemical-Argo (BGC-Argo) profiling floats was analyzed. Specifically, we 

investigated and describe the spatial, vertical and temporal variability of 𝑏𝑏𝑝
𝑘  at global scale. 

The main results are:  

o 𝑏𝑏𝑝
𝑘  shows a similar order of magnitude in both surface and euphotic layers, as previously 

published works based on ocean-colour data: ranging between 10
-4

 and 10
-3

 m
-1

. 

o In the surface layer, the 𝑏𝑏𝑝
𝑘  increase from southern to the northern hemisphere, 

confirming what was found by Bellacicco et al., (2018) using ocean-colour data. 

o In the surface layer of most productive areas (e.g. NASPG), the 𝑏𝑏𝑝
𝑘  is only a small 

fraction of the total bbp (< 20%), while in the oligotrophic waters, 𝑏𝑏𝑝
𝑘  is the main 

contributor to the total bbp (> 80%). In the euphotic layer of the oligotrophic areas, the 𝑏𝑏𝑝
𝑘  

has a lower contribution to the total bbp (average value of 65%).  
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o In the surface and euphotic layers, the 𝑏𝑏𝑝
𝑘  shows strong seasonal variability in the main 

productive areas of the global ocean, such as NASPG and the Southern Ocean areas. 𝑏𝑏𝑝
𝑘  

has instead a weak temporal variability in the low productivity areas, such as the 

subtropical gyres. This is valid also for the 𝑏𝑏𝑝
𝑘  estimations at the bottom layer. 

The 𝑏𝑏𝑝
𝑘  is a key parameter for satellite estimations of phytoplankton biomass in terms 

of carbon (Behrenfeld et al., 2005, 2016; Bellacicco et al., 2016, 2018, 2019; Martinez-

Vicente et al., 2017; Westberry et al., 2008, 2016). Recently, Bellacicco et al., (2018) 

highlighted the difference (of around a factor of 2) in the phytoplankton carbon biomass 

estimation from space by using a 𝑏𝑏𝑝
𝑘  variable in space, rather than a single value. 

Consequently, inclusion of this reported spatial-temporal and depth variations of 𝑏𝑏𝑝
𝑘  into 

phytoplankton carbon models may help to improve their predictions from remote sensing data 

(Martinez-Vicente et al., 2017) but also from BGC-Argo floats (Mignot et al., 2014, 2018).  

Remote optical-based predictions and interpretation of phytoplankton carbon models 

would also benefit from a better understanding of NAP composition and which particles 

generate the bbp signal across the world’s oceans. Indeed, submicron detrital particles have 

long been considered as the main source of bbp (Stramski et al., 2004). However, Organelli et 

al. (2018) has highlighted that bbp is mainly due to particles with diameters between 1-10 μm 

which may also include NAP and aggregates. This latter study thus opens the way to new 

questions on the sources of the open-ocean bbp signal that are critical to improving our 

interpretation of open-ocean bbp. 

Future research challenges should therefore be directed to: (i) understand the drivers of 

the observed spatio-temporal variability and explore the composition of NAP across the 

world’s oceans and how it influences the bbp and 𝑏𝑏𝑝
𝑘 signal; (ii) study the impact on 

biogeochemistry of 𝑏𝑏𝑝
𝑘 , e.g. on the particles assemblage in different ocean trophic regimes 

(i.e. subpolar, subtropical); (iii) include 𝑏𝑏𝑝
𝑘 spatial and temporal variability into 

phytoplankton carbon estimations from space and its connections with phytoplankton 

physiology; and most importantly (iv): advance technology for (autonomous) optical 

measurements of NAP directly, for example by exploiting the birefringence properties of 

mineral particles such as calcite compounds (Guay and Bishop, 2002; Bishop and Wood, 

2009), and acquire spectral angular scattering to better understand the influence of bubbles 

and plastics (Zhang et al., 1998; Twardowski et al., 2012).  
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Figure 1: Geographical distribution of the BGC-Argo dataset on a global ocean scale. Each colour represents sampling areas and abbreviations. * indicates 

data acquired in four regions below 30°S which have been delineated by using temperature profiles (Gray et al., 2018): Sub-Tropical Zone (STZ) with a 

temperature at 100 m above 11°C; the Sub-Antarctic Zone (SAZ) with a temperature at 400 m below 5°C; the Polar Frontal Zone (PFZ) with the minimum 

temperature between 0 and 200 m above 2°C; the Antarctic Southern Zone and Seasonal Ice Zone (ASZ_SIZ) minimum temperature between 0 and 200 m 

below 2°C. 
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Figure 2: Plot density between Chl and bbp (700) within the surface layer (panel a) and the euphotic 

layer (panel b). Both panels include the number of observations (N) and the RMS (in m
-1

). The 

𝑏𝑏𝑝
𝑘 estimation (in m

-1
) with two standard deviation as confidence limit (2) is also reported. Chl 

values < 0.01 mg m
-3

 are not included in the fit computations. The plots are presented in logarithmic 

scale in both axes though the fit has been calculated in linear scale. Dot density is indicated as color 

from white (low density) to black (high density). 
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Figure 3: Geographical distribution of 𝑏𝑏𝑝
𝑘  (in m

-1
) in the three layers: surface (gold), euphotic (blue) 

and bottom (red) (a). The 𝑏𝑏𝑝
𝑘̂  for the surface (gold) and euphotic (blue) layers for each area (b). The 

dashed line indicates the case where 𝑏𝑏𝑝
𝑘̂  estimates between surface or euphotic layer with bottom 

layer are close to the same value. Panel c shows the 𝑏𝑏𝑝
𝑘̅̅ ̅̅̅ (in %) for each area and layer (gold for 

surface layer; blue for euphotic layer). The model performance, in terms of RMS (m
-1

) and interval of 

confidence at 95% for each 𝑏𝑏𝑝
𝑘  estimation is reported in the supplementary information (see Figures 

S3, S4; Table S2). ASEW area is not included in this analysis due to the low performance of the 

model and highest uncertainties in 𝑏𝑏𝑝
𝑘  assessment in both layer (for details see the supplementary 

materials). Note that the areas have been sorted from the northern to the southern hemisphere. Panel d 

shows the mean Chl values for each region and layers (gold for surface layer and blue for euphotic 

layer). See Table 1 for locations and abbreviations. 
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Figure 4: Temporal variability of 𝑏𝑏𝑝
𝑘  (in m

-1
) for each area and all the three layers: surface (gold), 

euphotic (blue) and bottom (red). The model performance, in terms of RMS (m
-1

) and interval of 

confidence at 95% for each monthly 𝑏𝑏𝑝
𝑘  estimation, are reported in the supplementary materials (see 

Tables S3, S4 and S5). ASEW and BAFF areas are not included in the analysis due to the 

absence/limited number of observations that prevents the description of the annual cycle. See Table 1 

for locations and abbreviations. 

 

 


