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ABSTRACT 
The confined dynamics of water molecules inside a pore involves an intermittence 
between adsorption steps near the interface and surface diffusion and excursions in the 
pore network. Depending of the strength of the interaction in the layer(s) close to the 
surface and the dynamical confinement of the distal bulk liquid, exchange dynamics can 
vary significantly. The average time spent in the surface proximal region (also called the 
adsorption layer) between a first entry and a consecutive exit allows estimating the level 
of “nanowettablity” of water. As shown in several seminal works, NMRD is an efficient 
experimental method to follow such intermittent dynamics close to an interface.  
In this paper, the intermittent dynamics of a confined fluid inside nanoporous materials is 
discussed. Special attention is devoted to the interplay between bulk diffusion, adsorption 
and surface diffusion on curved pore interfaces. Considering the nano or meso length 
scale confinement of the pore network, an analytical model for calculating the intra-
dipolar spin-lattice relaxation dispersion curves is proposed. In the low frequency regime 
(50KHz-100MHz), this model is successfully compared with numerical simulations 
performed using a 3D-off lattice reconstruction of Vycor glass. Comparison with 
experimental data available in the literature is finally discussed. 
 
Keywords:  
NMR relaxometry, porous media, adsorption, intermittent dynamics, confinement; 
water dynamics, Vycor porous glass. 

 

1. Introduction 

Water confined in the vicinity of mineral surfaces is ubiquitously encountered in 

numerous industrial nanoporous materials as well as in geological materials and 

biological tissues. The level of saturation and the specific properties of confined water 

strongly influence fluid transport and the rheological and poromechanical characteristics 

of these materials [1]. Various implications in catalysis, nanofiltration, life cycle and 

durability of various systems have to be considered.  

Water confinement in restricted geometry involves a proximal (or adsorption) layer and a 

distal region characterized by a bulky confinement in the pore network. As shown in Fig 

1, the molecular trajectory can be described as an alternate succession of surface 

adsorption steps followed by excursions in the confined bulk, generating a new relocation 

on the surface. As a result, the transport process appears as an intermittent dynamics 

sensitive to the interaction of the vicinal fluid with the interface and to the nature of bulk 

confinement [2-5].  
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Neutron spin echo or quasi-elastic scattering [6] can be used to follow local molecular 

dynamics inside the pore network or nearby the interfacial region. At very long time and 

large distance (above 1 ms and 1 m), macroscopic experiments or NMR pulsed field 

gradient spin echo experiments could be used. At the mesoscopic scale, mainly, for a time 

window ranging from few ns to some s, a promising way to follow the slow dynamics 

of an embedded fluid is to analyze the dispersion of the nuclear spin-lattice relaxation 

rate of the fluid using field cycling nuclear magnetic relaxation dispersion technique 

(NMRD) [7,8]. 

In this paper, we analyse the intermittent dynamics of a confined fluid inside nanoporous 

materials. These nanoporous networks are in general multiconnected systems. We focus 

on the interplay between bulk diffusion, adsorption and surface diffusion on curved pore 

interfaces. In section 2, we present some general properties of molecular intermittent 

dynamics. In section 3, we analyse how NMRD allows probing such dynamics with 

special emphasis on the role of pore surface curvature. In section 4, we compare our 

analytical model with numerical simulations performed on a toy 3D pore network 

mimicking Vycor glass [9,10]. Finally, in section 5, we provide a comparison with 

experimental NMRD data performed on Vycor glass [8,11]. 

 

2. Intermittent dynamics of water in nanoporous systems 

 

As shown in Fig 2, the time dependence of the intermittent dynamics of a confined fluid 

near a pore interface can be analysed using two density probability distribution (p.d.f.). 

The first p.d.f [4], ΨA(t) characterizes the way according to which an adsorbed molecule 

is released in the bulk. A(t), is the distribution of adsorption time separating an entrance 

in the proximal zone and its first desorption to the distal region. The first moment of 

ΨA(t),A, is the average time spent in the adsorption region between a first entry and the 

consecutive first exit. The second important p.d.f, referred to as B(t), is the bridge 

statistics that provides the time distribution between a desorption event and the next first 

possible reencounter within the proximal zone. The first moment of ΨB(t) is noted B. 

Various analytical expressions of B(t) were discussed in the literature especially for 

what we call a “open surface” such as flat [3,12], rough [13] or external cylindrical 

interfaces [14]. In such cases, bridge statistics of a Brownian motion exhibit an algebraic 

tail at long time, evolving as c/twith 0<<1. On the contrary for nanoporous 
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networks, one generally observes an exponential cut-off, suppressing a large part of the 

algebraic tail of B(t), at long time. This point was checked recently by extended 

molecular dynamics simulation of confined liquid water filling either a hydrophilic SiO2 

or a hydrophobic carbon nanopore [5]. 

When there is an exchange between a proximal (or adsorption) layer and a distal region 

characterized by a bulky confinement in the pore network, special attention must be 

devoted to detailed balance conditions that also define the level of adsorption on the 

interface. In fact, when a molecule hits the pore wall, its probability to be adsorbed is not 

unity but a probability p≤1. The p.d.f., ΨR(t), associated to the relocation statistics is 

related to ΨB(t) according to: 

     
)(~)1(1
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where )(~ R  and )(~ B  are the time Fourier transforms of )(tR  and )(tB , 

respectively. It is straightforward, using Eq 1, to show that a relocation in the pore space 

from a first desorption to a first readsorption takes an average time R=B/p. p and A, 

then define the level of adsorption. Using ergodicity hypothesis, the detailed balance 

condition is written as: 
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adsf  is the fraction of molecules located inside the adsorption layer and can be written as: 

      ads v sf S        (3) 

where S is the surface area normalized to the pore volume,  the thickness of the 

adsorption layer and s, its molecular compacity compared to the bulk confined fluid. 

The time evolution can be described using an indicator function I(t) equals to one in the 

adsorption state and zero in the confined bulk. This random signal is associated to 

probability distribution functions ΨA(t) and ΨR(t). A way to characterize the statistical 

nature of this intermittent dynamics is to compute the average time auto-correlation 

function of the random signal I(t) [4]. 
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      ( ) ( ). (0) / aC I I      (4) 

With )/( RAAa   . The bar is associated to the average over all initial times “0” 

along a trajectory. The two brackets stand for the ensemble average over all possible 

trajectories. It is straightforward to show that C(0)=1 and. aC )( . As discussed 

elsewhere [4, 5], it is convenient to compute the spectral density ( )J  of the noise I(t). 

( )J   is the time Fourier Transform (FT) of C(). Such a computation can be done easily 

if a statistical independence between successive adsorption steps and relocation periods is 

assumed. Under this hypothesis and following [4], we get: 

    2
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  (5) 

 
It is worth noting that the integral of this spectral density is normalized to unity. 
 
3. Intermittence in nanoporous systems and NMRD 

 

As first shown by Kimmich et al [7,8], it is possible to follow by NMRD the dynamics of 

a molecule near a solid interface through the evolution of the fluctuating intra-dipolar 

magnetic interaction H(t). This interaction at low magnetic field is essentially related to 

the rotational dynamics of water molecules. It was shown that H(t) is mainly sensitive (in 

the slow dynamics limit) to the time evolution of the surface director probed by the 

molecule during its self-diffusion [15]. Such type of magnetic fluctuation was first 

discussed by Kimmich et al [2] by introducing the concept of reorientation mediated by 

translation displacement (RMTD). Looking at low frequency domain of fluctuation 

(coarse grain picture), H(t) takes a series of values during each adsorption step directly 

related to the local surface orientation and another value in the confined bulk phase. 

Curvature, persistence length and roughness of a surface can then be probed by following 

the intermittent dynamics close to it. A schematic evolution of H(t) is shown in Fig. 3. In 

general, and compared to Fig. 2, H(t) can continuously evolve during an adsorption step 

and get different values from one adsorption event to another one. This evolution is 

mainly driven by the curvature field of the poral interface coupled to molecular surface 

diffusion. 

As for I(t), a sensitive way to probe temporal fluctuations of H(t) is to look at the spectral 

density of this magnetic noise, noted ( )HJ  . This noise induces a nuclear magnetic 
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relaxation process at the Larmor frequency or f=Using field cycling NMR 

spectroscopy, the related spin-lattice relaxation rate R1( can be measured over a large 

range of frequencies, mainly from few kHz to several tens of MHz. This frequency range 

allows probing correlation times ranging from 1ns to tenths of s. In the following, we 

will use a normalization of the spectral density such as: 

      
( )

( ) 1HJ d


 


      (6) 

Without considering the contribution of the confined fluid in the bulk (which is 

essentially constant at low magnetic field) but considering the intermittence process only, 

the spin-lattice relaxation rate is written after the former normalization as [16]: 

                                                       1R ( ) ( ) 4 (2 )N
H HJ J        (7) 

 

4. Interplay between surface curvature and molecular intermittence. 

 

Looking at Fig. 3, H(t) can be written as H(t)=(O(t).I(t)). O(t) is the contribution of the 

surface curvature of the poral interface coupled with molecular surface diffusion. 

Following former analysis [4], the autocorrelation of H(t) can be approximated as 

   ( ). (0) ( (0). (0)).( ( ). ( )) (0). ( ) (0). ( )H H O I O I O O I I       (8) 

Then the spectral density of H(t) reads 

      ( ) ( )* ( )H OJ C J        (9) 

( )OC   is the Fourier transform of ( ) (0). ( )OC O O  . * stands for the convolution 

operator. The constant of proportionality in Eq. 9 is defined according to eq. (6). ( )OC 

takes into account the fluctuation of the surface director and its time correlation during a 

surface diffusion without desorption. In the laboratory framework and following various 

works of Halle [17], we propose to write 

     *
2 2( ) ( (0)). ( ( ))m m

O s sC Y Y       (10) 

with m=1. ( )s  are the Euler angles between the constant magnetic field axis and the 

surface director where the molecule is located at time If the interfacial medium is 

statistically isotropic, the evolution of ( )OC  is similar for m=0,1,2. For a set of randomly 

oriented flat or cylindrical surfaces, ( )OC   is a constant in time and ( ) ( )OC    . Then,   


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      ( ) ( )HJ J   .    (11) 

Reciprocally for a diffusion inside the adsorption layer without desorption, I() is a 

constant and ( ) ( )J    . Then 0( ) ( )HJ C   . 

 

5. Numerical simulations versus analytical model 

 

In order to check the level of accuracy of our analytical analysis, we have performed a 

series of numerical simulations of the molecular intermittent dynamics inside a toy model 

mimicking a Vycor glass. This material was previously investigated using transmission 

electron microscopy (TEM), small angle X ray and neutron scattering (SAXS) and was 

free of paramagnetic impurity as shown by EPR at 4K [9]. As described elsewhere [10], a 

3D off-lattice reconstruction of this pore network, defined by a correlated Gaussian field, 

allows obtaining a numerical representation that concurs with SAXS data, pore and solid 

chord length distributions, porosity (0.3), surface area normalized to the full volume (100 

m2/cm3) and pore size distribution (average pore radius of 3 nm) of the chosen Vycor 

porous glass.  A configuration is shown in Fig. 4. The pore network is in white. The edge 

of the cube is 300 nm. The pore network was divided in two regions: the adsorption layer 

with an average thickness =0.3nm and the complementary space which is the distal 

region characterizing bulky confinement. s, the surface molecular compacity compared 

to the bulk confined fluid is set to one. We have simulated the self-diffusion of a fluid 

molecule inside this pore network. Brownian dynamics, with a time step of 2 10-12 s, was 

performed. The self-diffusion coefficient of the fluid in distal region, , Dbulk, is set 

according to the Renkin correction [18] taking into account a molecular radius of 0.15 nm 

and an average accessible pore radius of 2.7 nm. The chosen value is Dbulk=1.74 10-9 

m2/s. Each time a molecule hits the interface, it gets adsorbed for a time t according to the 

pdf ΨA(t), with the possibility to diffuse inside the adsorption layer. Following ref [19], 

the self-diffusion coefficient Dsurf is set to Dbulk/3. We chose an exponential evolution for 

ΨA(t) that is characterized by the average adsorption time A. The p value is computed 

according to Eq.2. 

In Fig. 5, we show the evolution of the relocation p.d.f. ΨR(t) with the average adsorption 

timeA. For very short A, its evolution is very close to the one observed for ΨB(t). ΨR(t) 

evolves first as t-3/2 as found for a flat surface [12]. At longer time, an exponential cutoff 

is observed. These two results are also observed in molecular dynamics simulations 
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performed inside a 2nm thick SiO2 slit pore [5]. As A increases, we observe a shift of 

the curves to higher time and ΨR(t) is essentially dominated by an exponential tail, as 

shown in Fig. 6. Then, the first moment of ΨR(t), R, has the same value as the 

characteristic time of the decreasing exponential tail. Interestingly enough, we see in 

Fig.6 that the numerical simulation and the analytical prediction of ΨR(t) (using Eqs 1-3 

and the reverse Fourier transform of Eq.1) are in very good agreement. As A increases, 

R diverges to larger and larger values. Typically, for A=0.2ns, R=1.2 ns, and for 

A=100ns, R=590 ns. 

We have computed the spin lattice relaxation rate assuming that the mean relaxation 

process is mainly due to intramolecular dipolar interactions. In the low frequency 

domain, we estimate the normalized spin lattice relaxation rate as: 

     1R ( ) ( ) 4 (2 )c
c cJ J         (12) 

where           

    1 1*
2 2( ) ( (0). ( (0))).( ( ( )). ( ))c s sJ FT I Y Y I       

   (13) 

with the normalisation 

      
( )

( ) 1cJ d


 


      (14) 

The term 1 1*
2 2( (0). ( (0))).( ( ( )). ( ))s sI Y Y I    is obtained after averaging on a large 

number of trajectories  

In Fig 7, we compare our numerical simulation with two possible models, using either 

Eqs. 5,6,7,11 where only intermittence is considered (model IT), or Eqs. 5,6,7,9 where 

intermittence and surface curvature are coupled (model IT-SC). First of all, we observe a 

good agreement between numerical simulations and model IT-SC whatever the average 

adsorption time. For short and very short A. (see Fig 7A), IT-SC and IT models evolve 

in a similar way and close to numerical simulations. After a plateau, the dispersion curve 

starts decreasing above a frequency on the order of (R+A)/(2 R.A). For these small 

adsorption times, the curvature of the interface does not play an important role in the 

dispersion curve. Surface diffusion events are too short to build an efficient time surface 

correlation. As A increases, we observe a significant discrepancy between the IT model 

and numerical simulations. For long surface diffusion periods, it is then essential to take 

into account both intermittence and surface curvature. In parallel we observe a shift of the 
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dispersions toward low frequency as A increases. Again, a plateau emerges for 

frequencies lower than about (R+A)/(2 R.A). Finally, for very long adsorption times 

(Fig 7D), the two dispersion curves associated to the numerical simulation and the IT-SC 

model both exhibit a 1/f1/2 evolution. Moreover, these two curves are very close to ( )OC 

. As expected for this adsorption regime, we are essentially probing the effect of surface 

diffusion on the spin-lattice relaxation rate. 

It is interesting to look at the evolution of the IT model with increasing average 

adsorption time. As shown in Fig. 7, the associated dispersion curve rapidly evolves 

toward a Lorentzian shape. In parallel, as shown in Fig. 6, ΨR(t) is dominated by an 

exponential tail with a characteristic time R.  Considering that ΨA(t) is also an 

exponential with an average adsorption time A, it is straightforward using Eq. 5, to show 

that ( )J   and ( )HJ   are Lorentzian functions with a characteristic time equal to 

(R.A)/(R+A). 

 

6. Comparison with experimental RMND data 

 

Several experimental NMRD works [7,8,11] were performed to elucidate the confined 

dynamics of liquid water inside Vycor porous glass. At room temperature, it was shown 

that the frequency dependences of 1H spin-lattice relaxation rate of water inside this 

porous material were mainly evolving as 1/fwith  close to 1/2. Moreover, a very 

striking property was observed [8]. The exponent of the dispersion curve does not change 

when the temperature is decreased below the freezing point of the confined liquid. More 

recently [11], we performed NMRD of both normal and deuterated water saturating 

Vycor. The sample was previously investigated using transmission electron microscopy 

(TEM), small angle scattering and neutron scattering [9]. The sample was free of 

paramagnetic impurities as shown by electron spin resonance spectroscopy. We have 

obtained similar data as those of the Kimmich ‘s group [8], as shown in Fig 8. The 2H 

NMRD of D2O saturating the pore network evolves in a similar way as the 1H NMRD. 

This confirms that the spin-lattice relaxation rate of the proton is essentially dominated by 

intra-dipolar interactions. Moreover, and as proposed earlier [8], the invariance of the 

exponent of algebraic dispersion curves with temperature clearly indicates that NMRD at 

low frequencies is essentially due to a population of molecules diffusing during a long or 
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very long time close to the pore surface, in agreement with the numerical and theoretical 

analysis discussed in the present paper. In this specific regime, relocation dynamics play 

a minor role. What is probed is related to the correlation of surface curvature inside this 

multiconnected system during surface diffusion. A different situation is encountered in 

dilute colloidal systems or for a flat open surface [4,14] where intermittence takes place 

inside an unconfined volume. In these cases, the existence of algebraic tails at long time, 

for ΨB(t) and ΨR(t), is determinant for the analysis of bulk mediated surface diffusion 

proposed in the seminal work of Bychuk and O’Shaughnessy [3] and in NMRD 

experiments. Algebraic evolution of the dispersion curves can be observed, even for short 

value of A [4,14]. 

To end this section, we want to provide some additional remarks on the case of confining 

nanopores where ( )OC   is a constant in time and ( ) ( )OC    . A typical example of 

such a situation can be provided by a set of randomly oriented cylindrical mesopores. 

This can be encountered in the case of a powder of mesoporous materials possessing a 

two-dimensional structure of aligned cylindrical pore channels. In some specific systems 

of this type, it was experimentally shown that intra-dipolar dispersion curve in the low 

frequency regime evolves as a Lorentzian [20]. Looking at the result shown in Fig 7D for 

the IT model, it is then tempting to assign such an evolution to a population of water 

molecules staying for very long time close to the cylindrical surface. At this level, this is 

only a guess that requires further extended analysis 

 

7. Conclusion 

 

In the first part of this work, we have analyzed some properties of intermittent dynamics 

of a confined fluid inside a nanoporous porous media. In contast with the case of large 

macroporous systems or dilute colloidal interfaces, the excursion of molecules in the 

confined bulk between two adsorption events is limited in length with a specific cut-off 

linked to the finite size of the pore. 

In the second part of this paper, we have discussed how NMRD allows probing the 

dynamics of confined fluids with a specific emphasis on intra or quadripolar magnetic 

interactions. The role of pore surface curvature fluctuations is analyzed in relation with 

the level of molecular interaction with the pore surface. An analytical model of the spin-

lattice relaxation dispersion curves is proposed and successfully compared with 
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numerical simulations performed using a 3D-off lattice reconstruction of Vycor glass. In 

the third part, a comparison with experimental measurements, available in the literature, 

was finally performed. It confirms that the low frequency NMRD of water protons inside 

Vycor is essentially due to a population of molecules staying and diffusing in the 

adsorption layer (the proximal zone near the pore wall) for a very long time (some s or 

more). This conclusion is in good agreement with former analysis performed by 

Kimmich’s group [8]. Moreover, our results are in phase with the hypothesis of strongly 

bounded water molecules at the solid interface. Such a hypothesis was recently indirectly 

inferred in spontaneous and forced imbibition experiments on water in Vycor [21,22]. 

The proposed model, involving interplay between molecular intermittence and surface 

curvature can be used to other porous geometries. It is the subject of ongoing work that 

will be published later. 
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Figure 1: Intermittent dynamics near an interface D with a succession of adsorption 

steps and bridges in the pore D. The relocation event between two successive adsorption 

associates several bridges 
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Figure 2: Evolution of the indicator function I(t) equals to one in the adsorption state and 

zero in the confined bulk. This random signal is associated to two probability density 

functions, ΨA(t) and ΨR(t), describing the time distribution of adsorption and relocation 

events. 
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Figure 3: Evolution of the fluctuating intra-dipolar magnetic interaction H(t) during a 

molecular intermittent dynamic I(t). This evolution is mainly driven by curvature field 

of poral interface coupled to molecular surface diffusion.  
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Figure 4: 3D off-lattice reconstruction of a Vycor-like porous glass. 
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Figure 5: Evolution of the relocation p.d.f ΨR(t) with the average adsorption timeA. 

Full circles, A=0.2 ns. Open triangles, A=2 ns. Full line, A=20ns. Dot line, A=100 

ns. 
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Figure 6: Evolution of the relocation p.d.f., ΨR(t), for an average adsorption 

timeA=100ns. Full circles: numerical simulation. Continuous line: analytical 

prediction of ΨR(t) (using Eqs 1-3 and the reverse Fourier Transform of Eq.1). 
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Figure 7: Frequency dependence of spin lattice relaxation rate of a molecule developing 

intermittent dynamics inside the Vycor-like pore network shown in Fig. 4. For the NMR 

relaxation process, the intramolecular dipolar interaction is considered. The average 

adsorption time is varied according to 2 ns in 4-A, 20 ns in 4-B, 100ns in 4-C and 2 s in 

4-D. The numerical simulation using Brownian dynamics (Eqs 12-14) are represented by 

full squares. The dot lines are related to the computation using Eqs 5,6,7,11 (referring to 

an intermittence mode without surface curvature correction; Model IT). The continuous 

lines are related to the computation using Eqs 5,6,7,9 (referring to an interplay between 

surface curvature and molecular intermittence; Model IT-SC). 
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Figure 8: Water spin-lattice relaxation dispersion in fully saturated Vycor glass at 

T=298K adapted from ref. [11]. Open circles, 1H NMRD of H20 saturating the pore 

network. Full squares, 2H NMRD of D20 saturating the pore network. 

 

 
 
 
 
 
 
 
 
 
 
 
 
  



21 
 

Graphical Abstract 

 

 


