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A closed form of the disentangling theorem is used to derive an exact expression for the quantum mechanical
intermediate scattering function describing long-range coherent quantum tunneling. The result applies to a single
particle in a large periodic nearest-neighbor tight-binding system in one spatial dimension, with one localized
site per unit cell. The result is exact up to the assumption of orthogonal localized states and the substitution
of the coordinate operator with a discrete representation diagonal in the on-site basis. The intermediate
scattering function is expressed in terms of modified Bessel functions, and consists of a symmetric real part
and antisymmetric imaginary part. The real and imaginary parts both exhibit decaying oscillations reflecting the
oscillatory dynamics among neighboring sites combined with the long-term spreading of the wave function from
any initial site. The imaginary part is significant only when the thermal energy is comparable to or smaller than
the width of the tight-binding energy band, and represents quantum recoil or the asymmetry of energy exchange
probability in quasielastic scattering from the coherent system. The one-dimensional result is extended, in the
form of k-space integrals, to describe the coherent tunneling dynamics in hexagonal and honeycomb systems.
The prospects for observing the phenomenology of the analytical line shapes are discussed with respect to the
practical implementation of helium-3 surface spin echo spectroscopy.
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I. INTRODUCTION

The phenomenon of quantum tunneling, the passage of a
quantum system through a configuration forbidden by clas-
sical mechanics, is relevant to a huge range of physical pro-
cesses. Examples include alpha decay [1], nuclear fusion [2],
intermolecular hydrogen transfer [3], bimolecular chemical
reactions [4], the dynamics of superconducting junctions [5],
surface diffusion [6], and the postulated future decay of the
entire Universe [7]. Tunneling is a clear manifestation of
completely nonclassical behavior in physical systems and
acts as an important conceptual reference point between the
diverse mathematical approaches to quantum mechanics. For
example, tunneling is describable by delocalized stationary
states in wave mechanics [8], or instantons and bounces in the
path integral formalism [9–11]. Alternatively, a very efficient
description of tunneling can be achieved by a finite basis ma-
trix mechanics representation in which the sole dynamics of
the system are those induced by tunneling. In any formalism,
the extent of quantum coherence in tunneling in the presence
of a dissipative environment is a key issue when trying to de-
scribe real systems, and coherent tunneling is highly relevant
to fields such as quantum computing [12], quantum biology
[13,14], and transport in organic semiconductors [15]. In the
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present work a recently derived form of the Baker-Hausdorff
disentangling theorem for exponentiated operators is used to
derive an exact scattering function for coherent tunneling in a
periodic system described by a single tight-binding band. The
result is relevant to experimental investigations of quantum
diffusion using spectroscopic, quasielastic scattering methods.

Experimental surface dynamics measurements can be
broadly divided into real-space techniques such as micro-
scopies, and scattering measurements providing informa-
tion in reciprocal space. Scanning tunneling microscopy has
been widely applied to study quantum diffusion at surfaces
[6,16,17], but the relatively long accessible timescales and
the invasive effect of the tip limit the prospects for observing
coherent dynamics. By contrast, quasielastic scattering tech-
niques provide full access to coherent dynamics of diffusing
species, for example, via the intermediate scattering function
(ISF) which is accessible in Fourier transform methods based
on the spin-echo principle [18–20]. Quasielastic neutron scat-
tering has previously been used to observe partially coherent
two-state tunneling dynamics of hydrogen atoms near bulk
impurities [21] and to investigate the associated predictions
of two-state dissipative tunneling theory [22] in a metallic
environment. The depth of physical information available
from such measurements motivates the further development
of theoretical line shapes for scattering experiments capable
of resolving coherent tunneling dynamics. In surface diffu-
sion on close-packed metal substrates, appreciable tunneling
amplitudes are expected for atomic tunneling between equiv-
alent adsorption sites that form an extended periodic system
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(a)

(b)

FIG. 1. Illustration of the ISF (31) describing coherent tunneling
in a tight-binding system, with parameters δ = 0.01 meV, �K =
1.8 Å

−1
, a = 2.7 Å, T = 4.0 K. The analytical formula is repre-

sented by solid curves. (a) The real part is shown in the upper plot;
(b) the imaginary part in the lower plot. The real (imaginary) part
is symmetric (antisymmetric) with respect to the correlation time
t . Numerical results obtained by evaluating the expression (10) in
a large finite basis are shown as open circles. The imaginary part
becomes insignificant when kBT � h̄δ.

[23,24] rather than a two-state system. Therefore, in principle,
motion linked to long-range coherent tunneling could be
observed in surface-specific experiments under appropriate
conditions. High-resolution measurement of reciprocal-space
surface dynamics is possible using helium-3 surface spin-echo
spectroscopy (HeSE) [20], and the interpretation of HeSE data
generally relies on models for the ISF. Scientific progress
associated with the technique is not driven simply by an
accumulation of systems measured, but by the development of
analytical models for potentially observable surface dynami-
cal processes [25–30] in parallel with ongoing improvements
in instrumentation [31–35], data acquisition routines [36,37],
and analysis methods [38,39]. The main analytical result and
method presented here provides a new class of contribution in
that context. The extent to which observation of the analytical
phenomenology may be observable with current instrumenta-
tion will be discussed further in Sec. III.

In the present work, coherent tunneling in a large periodic
system of N equivalent sites is modeled using a tight-binding
Hamiltonian. In the tight-binding model, a restricted basis

set of one localized state per unit cell is assumed, and the
localized states are coupled with a parameter that controls
the mobility of the particle, or the bandwidth. The tight-
binding concept may be familiar as a model for electronic
band structure evaluation [40,41], but can equally well be
used as a generic model for tunneling in a multisite system
[42–44]. In the special case N = 2, the tight-binding model
describes a two-state system, for which the dynamical struc-
ture factor is already known [45,46], and describes confined
coherent oscillations between neighboring sites with no long-
term spreading of the wave function. The derivation of the
dynamical structure factor in the two-state example is facili-
tated by convenient mathematical properties of Pauli matrices.
By contrast the calculation for large N , which describes the
interplay of local coherent oscillations combined with the
long-term spreading of the wave function in coherent quan-
tum diffusion, can be conveniently carried out using results
from a different branch of quantum operator theory, namely
the Baker-Campbell-Hausdorff (BCH) distentangling theorem
[47–49].

The disentangling theorem, an infinite-series expression
for ln(eXeY ) for noncommuting operators X and Y , is a
common feature in previous analytical derivations of quantum
intermediate scattering functions [50–52]. The disentangling
operation for canonical operators whose commutator [X, Y ] is
a complex number leads to the appearance of an antisymmet-
ric imaginary part in the correlation function. The imaginary
part is required by the detailed balance constraint in quasielas-
tic scattering from a thermal system [50], and can also be
interpreted in terms of the recoil of the scattering centres to
conserve momentum when imparting a momentum transfer to
a scattering probe. The imaginary part vanishes if h̄ → 0, and
is therefore referred to as quantum recoil [51]. Although the
closed form of the disentangling theorem for complex-number
commutators [X, Y ] is a standard and widely known result
[53], further closed formulas and algorithms for evaluating
the BCH series are still being actively developed and clas-
sified in the framework of group theory [54–57]. In Sec. II,
a recent closed-form version of the disentangling theorem
[54], which holds under a more general class of commutation
relations, is used to derive the exact real and imaginary parts
of the intermediate scattering function for a particle in a
tight-binding system. In Sec. III the potential generalization of
the result is discussed along with prospects for observing the
coherent phenomenology in surface diffusion experiments.
The conclusions are summarized in Sec. VI.

II. QUANTUM MECHANICAL SCATTERING FUNCTION

For a particle with position operator x in a quantum system
with one spatial dimension, governed by a time-independent
Hamiltonian H , the quantum ISF is defined in terms of the
Heisenberg representation of time evolution [49]. A general
operator A evolves according to

A(t ) = exp

(
iH t

h̄

)
A(0) exp

(−iH t

h̄

)
. (1)

The ISF is a function of a correlation time t and a momen-
tum transfer �K . Additionally, as an equilibrium correlation
function the ISF depends on the temperature T of the system,
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more conveniently expressed via the inverse temperature β =
(kBT )−1. Using x(t ) to represent the time evolution of x the
particle position operator, the quantum ISF can then be written
as [51]

I (�K, t ) = tr{ei�Kx(t )e−i�Kx(0)e−βH }
tr{e−βH } . (2)

The form (2) defines the ISF is the Fourier transform to
the time domain of the dynamical structure factor S(�K,ω)
[50,58], which is expressed in terms of the global energy
eigenstates {|k〉} and {|k′〉} of energies {h̄ωk} and {h̄ωk′ }:
S(�K,ω) ∝

∑
k,k′

e−βh̄ωk′ |〈k|ei�Kx |k′〉|2δ(ω − [ωk − ωk′]),

(3)

where δ(ω) represents a Dirac delta function. The normaliza-
tion in the definition (2) ensures that I (�K, 0) = 1. When
the number of accessible energy eigenstates of the system is
finite, elastic contributions (ωk = ωk′) will typically represent
a finite fraction of S(�K,ω) whereas for large N it is possible
for the elastic contribution to vanish, which will be a major
difference between the N = 2 two-state system result and the
large-N result for long-range tunneling.

Here the ISF is computed from the definition (2) for
coherent tunneling in an extended N -site tight-binding system
with one accessible energy band [40,41]. Let {|n〉} be the
localized states of the system associated with the accessible
band, that is, the Wannier states of the band. We will assume
that the Wannier states are mutually orthogonal, which is
a good approximation for strongly localized states. Let δ

represent the matrix element 〈n|H |n + 1〉 of the Hamiltonian
operator H between neighboring Wannier states. We will
assume for simplicity that δ is real, and that the Hamiltonian
matrix elements coupling more distant neighbors are all zero.
Let φ and χ represent the auxiliary operators φ and χ , finite
translation operators in the positive and negative directions,
respectively,

φ =
∑

n

|n + 1〉〈n| ; χ =
∑

n

|n − 1〉〈n|. (4)

Then, the model Hamiltonian reads

H = (φ + χ )δ. (5)

It is convenient to define also the discrete position operator n

whose eigenvalues are the indices of the localized sites in the
system

n =
∑
n′

n′|n′〉〈n′|. (6)

The commutation relations between n, χ , and φ, which gen-
erate the time evolution of n, then follow as

[χ, φ] = 0, [χ, n] = χ, [φ, n] = −φ. (7)

Assuming periodic boundary conditions site N + 1 is
equivalent to site 1 and the eigenstates of H are Bloch states
[40,41] of the form

|k〉 = 1√
N

∑
n

eikn|n〉 (0 � k < 2π ), (8)

where k is a dimensionless crystal momentum. Here N will be
assumed large enough for the allowed values of k to be treated
as a continuum when performing sums in k space. The energy
of the Bloch states is

ε(k) = −2δ cos(k). (9)

Following the treatment of the two-state system briefly
reviewed above [45], the ISF for the tight-binding system can
be approximated by replacing x, the position operator with a
continuous spectrum, with na where a is the lattice parameter
and n is the discrete position operator (6). The quantum ISF
(2) then becomes

I (�K, t ) = tr{ei�Kan(t )e−i�Kan(0)e−βH }/ tr{e−βH }. (10)

The time evolution of n(t ) follows straightforwardly from the
standard operator equation of motion ṅ = i[H, n]/h̄. From
the commutation relations (7) the closed-form evolution of
n(t ) is given in terms of the Schrödinger operator n ≡ n(0)
by

n(t ) = n + iδ

h̄
(χ − φ)t . (11)

After substituting n(t ) into the definition of I (�K, t ), the
derivation proceeds very much like the free-particle ballistic
case [51] by applying the disentangling theorem. We use a
special case [54] of the BCH disentangling theorem. The
special case applies when the commutator of two operators
X and Y is a linear combination of X, Y and the identity
operator I:

[X, Y ] = uX + vY + cI, (12)

where u, v, and c are complex numbers. Under such condi-
tions the product of the exponentiated operators is

eXeY = exp(X + Y + f (u, v)[X, Y ]), (13)

with f (u, v) given by

f (u, v) = (u − v)eu+v − (ueu − vev )

uv(eu − ev )
. (14)

In the present application, the commutation relation can be
specialized to the form

[X, Y ] = uX, (15)

and so the result can be simplified further by taking the limit
v → 0, giving

eXeY = exp[X + Y + uf (u)X], (16)

where the scalar function f (u) = f (u, v → 0) is given by

f (u) = 1 + eu(u − 1)

u(eu − 1)
. (17)

The corresponding Zassenhaus formula [59,60] for exp(X +
Y ) can be derived by inverting Eq. (16), and reads

exp(X + Y ) = exp

[
X

1 + uf (u)

]
exp(Y ). (18)

Equation (18) can reduce the operator appearing inside the
trace of Eq. (10) to a form involving only φ and χ , in-
dependent of n, which allows straightforward evaluation of
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I (�K, t ) in the Bloch basis, by writing out the time-evolved
exponential operator

ei�Kan(t ) = exp

[
i�Kan − �Ka

tδ

h̄
χ + �Ka

tδ

h̄
φ

]
, (19)

and making the substitutions

X = �Ka
tδ

h̄
φ, Y = i�Kan − �Ka

tδ

h̄
χ . (20)

Applying the disentangling result (18) turns the right-hand
side of Eq. (19) into

exp

[
�Katδφ/h̄

1 − i�Kaf (−i�Ka)

]
exp

[
i�Kan − �Ka

tδ

h̄
χ

]
.

(21)

Further applying the disentangling Eq. (18) to Eq. (21) with
the new substitutions

X = −�Ka
tδ

h̄
χ, Y = i�Kan, (22)

gives the fully factorized version of exp [i�Kan(t )]. Intro-
ducing the function

g(u) = 1

1 + uf (u)
, (23)

the result can be written as

ei�Kan(t ) = exp

{
�K

tδ

h̄
a[g(−i�Ka)φ − g(i�Ka)χ ]

}

× ei�Kan(0). (24)

The third and final exponential factor ei�Kan, a function of the
Schrödinger operator n, cancels within the ISF definition (2),
leaving us with

I (�K, t ) =
tr

{
exp

(
�K

tδ

h̄
a[g(−i�Ka)φ − g(i�Ka)χ ]

)
e−βH

}

tr{e−βH } . (25)

Since φ|k〉 = e−ik|k〉 and χ |k〉 = eik|k〉, the trace is conveniently evaluated in the |k〉 basis. Assuming a large number of sites N

giving a continuum of k states, the ISF numerator is given by

1

2π

∫ 2π

0
dk e−2βδ cos(k) exp

{
− tδ

h̄
a�K[g(i�Ka)eik − g(−i�Ka)e−ik]

}
. (26)

g(i�Ka) and g(−i�Ka) are complex conjugates, and so by
breaking g(i�Ka) up into real and imaginary parts g′ and g′′,
respectively, according to

g(i�Ka) = g′ + ig′′, (27)

the integral can be recast as

1

2π

∫ 2π

0
dk exp[A cos(k) + B sin(k)], (28)

where

A = −2βδ − 2i
tδ

h̄
�Kag′′, (29)

and

B = −2i
tδ

h̄
�Kag′. (30)

The integral (28) has a standard special-function represen-
tation in terms of the zeroth-order modified Bessel function of
the first kind I0(x) [61]. The correctly normalized ISF is given
by

I (�K, t ) = I0(
√

A2 + B2)

I0(2βδ)
. (31)

Equation (31), together with the relations (29) and (30) and the
definition of the function g(i�Ka) and its real and imaginary
parts, constitutes the central analytical result of the current
study.

Figure 1 illustrates the analytical result (31) for the param-
eter set δ = 0.01 meV, �K = 1.8 Å, a = 2.7 Å, T = 4.0 K.
The upper plot shows the real part, which is symmetric with
respect to the correlation time, and the lower plot shows the
imaginary part, which is antisymmetric. In both plots, solid
lines indicate the analytical result. For comparison, numerical
samples obtained by direct matrix evaluation of Eq. (10) in a
finite basis with N = 250 are shown as open circles. Correla-
tion times up to 1 ns are included, consistent with the range of
correlation time currently accessible using present helium-3
surface spin echo spectroscopy instrumentation [20,39,62,63].

III. DISCUSSION

A. Relation to S(�K, ω) and recoil

The main result of the present work is represented by
Eq. (31) and Fig. 1. The result holds for a periodic one-
dimensional tight-binding system with one localized state
per unit cell, a large number of unit cells, and a discrete
approximation for the position operator. The quantum ISF
consists of an oscillatory decaying symmetric real part, and
an oscillatory decaying antisymmetric imaginary part that be-
comes negligible when kBT � h̄δ. An alternative perspective
on the imaginary part, which draws a close connection to
quantum recoil in continuous systems [30,51,52], can be seen
by casting the integral representation (28) in terms of shifted
energy and crystal momentum. Namely, by using standard
double-angle trigonometric identities and the explicit forms
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FIG. 2. The lowest-energy band for a particle in a continuous co-
sine potential as described by the Hamiltonian (33) with parameters
V0 = 50 meV (barrier height 100 meV), and periodicity a = 2.55 Å.
The blue solid curve gives the numerically exact dispersion relation
E(k) as a function of the crystal momentum. The red dashed line
is the tight-binding dispersion relation of Eq. (9) where the tunnel
matrix element δ is chosen to match the bandwidth of the numerical
result.

of g′ and g′′, one finds an integral of the form

1

2π

∫ 2π

0
dk e−βh̄ω(k) exp{it[ω(k) − ω(k − �Ka)]}, (32)

where h̄ω(k) is the energy dispersion (9). The appearance of
the shifted ω(k − �Ka) can be traced back to the conserva-
tion of crystal momentum during scattering from the coherent
system, in analogy to the energy shift in quantum recoil from
a free, ballistic quantum particle [51].

B. Application to cosine potential

We now analyze the case of coherent tunneling in a con-
tinuous cosine potential, using realistic parameters describ-
ing surface diffusion of hydrogen, to confirm that the tight-
binding model provides a good description of the band struc-
ture, and to quantify the effects of dissipation by comparison
to an analytical formula for the incoherent tunneling rate.

We write the Hamiltonian of our continuous system for a
particle of mass m in a cosine potential of periodicity a, as

H = p2

2m
+ V0 cos

(
2πx

a

)
. (33)

To compute the band structure, we choose several values of
the crystal momentum k inside the first Brillouin zone. The
Hamiltonian (33) is known in advance to be block-diagonal
in the basis of crystal momentum eigenstates, which allows
an efficient k-wise computation of the band structure [23,24].
For each k we construct the Hamiltonian matrix in the Fourier
(momentum) basis with eigenvalues h̄(k ± nG), for −F �
n � F where F the number of Fourier basis states is increased
to convergence, and G is the reciprocal lattice vector 2π/a.
The matrix is diagonalized numerically for each value of k.

Figure 2 shows the numerically exact band structure for
the parameters a = 2.55 Å, V0 = 50 meV (barrier height

100 meV), m = 1.0 amu, using 2F + 1 = 41 Fourier basis
states per k value. The numerically converged result is shown
as a solid line. The dashed line shows the band structure
according to the tight-binding model (9) with the parameter
δ fitted from the bandwidth of the numerical results. The
tight-binding model provides a good description of the band
structure.

Coupling to a dissipative environment has the potential
to qualitatively change the nature of the dynamics and the
functional form of the ISF. In particular, dissipation generally
results in incoherent hopping rather than coherent tunneling.
In a one-dimensional system, neglecting quantum recoil ef-
fects, and assuming nearest-neighbor hopping with a rate r ,
the ISF associated with ideal Poissonian hopping transport of
a single particle is given by [64]

I (�K, t ) = exp(−α(�K )|t |), (34)

where

α(�K ) = 4r sin2

(
�Ka

2

)
. (35)

The �K-dependent decay rate α(�K ) is somewhat reminis-
cent of the tight-binding band structure, but the functional
form of the ISF (monotonic decay) reflects the incoherent
dynamics. We use an analytical formula for the hopping
rate to assess the effect of dissipation on the overall decay
rate of the ISF in the presence of Langevin friction. The
temperature-dependent hopping rate r (T ) in a cosine potential
can be computed using instanton methods [65] in terms of a
dimensionless friction strength K

K = mγa2

2πh̄
. (36)

As long as K � 1, the rate can be evaluated in closed form as

r (T ) = γ
K�(1 + K )e−2K

2�
(

1
2

)
�

(
1
2 + K

) h̄γ

πV0

(
KkBT

V0

)2

. (37)

At low temperatures and at moderate values of the friction
γ , suppression of tunneling by the dissipative coupling to the
environment leads to the timescale of incoherent tunneling
being much slower than for incoherent tunneling. To quantify
the wide disparity in time scales, we evaluate the incoherent
rate (37) in a cosine potential of amplitude V0 = 50 meV, at
T = 4 K with dissipation rate γ = 10 ps−1. The numerical
result is r (T ) = 2 × 10−7ps−1. At a scattering condition of

�K = 1.0 Å
−1

, in a one-dimensional system with site sepa-
ration a = 2.55 Å−1, the exponential decay rate of the ISF
as given by Eq. (35) is larger but of the same order, namely
6.5 × 10−7 ps−1. Meanwhile, we can quantify a timescale for
the coherent ISF by the correlation time at which the real
part of I (�K, t ) goes through zero. t0 can be estimated by
inspection of a plot of the coherent result, but with tight-
binding parameter δ = as derived from the corresponding
cosine potential. One finds the first zero at t0 ≈ 250 ps.
So under the conditions considered, the timescale associated
with coherent motion is orders of magnitude faster than the
timescale for incoherent hopping.

At lower values of the friction, but still sufficiently strong
to impose rate dynamics rather than coherent transport, the
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incoherent hopping rate can be computed by direct calculation
of dynamical flux correlation functions [66], but the detailed
comparison of the low-friction and zero-friction results for
realistic surface diffusion potentials is left as further work.

IV. EXTENSIONS

There are several directions in which the central result
can be usefully developed, staying within the framework of
completely coherent diffusion. The assumptions behind the
result (31) are rather specialized, and so we consider two
generalizations of the minimal model (5) of relevance to real
surface systems. First, we extend the result to nonseparable
two-dimensional motion, exemplified by a hexagonal surface.
Second, we extend the result to a system with two degenerate
but symmetrically inequivalent sites per unit cell, as exempli-
fied by a honeycomb system, i.e., a graphene-like system [67]
or the pattern formed by the threefold hollow sites of fcc(111)
and hcp(0001) surfaces.

In the first extension, we derive an expression very similar
in form to the integral representation of the one-dimensional
result. However, due to the nonseparability of the integration,
the final result cannot be expressed in a completely closed
form. In the second extension, the result must take into
account two bands due to two basis sites per unit cell, and the
dynamical structure factor therefore possesses both interband
and intraband terms. Again, the result cannot be evaluated in
a final closed form. Nevertheless the honeycomb system is an
important special case since motion between threefold sites on
fcc(111) and hcp(0001) surfaces provide the leading examples
of quantum tunneling effects associated with surface diffusion
measured by spectroscopic means [24,62,68].

A. Hexagonal lattices

To develop the two-dimensional result it is convenient to
work by generalizing the formula (32). Consider a Hamilto-
nian for a two-dimensional periodic tight-binding system with
one site per unit cell

H = δ
∑

j

∑
n

|rn〉〈rn + j|, (38)

where j are nearest-neighbor vectors. It is readily shown that
the integral formula (32) generalizes so that the ISF for the
two-dimensional tight-binding system reads∫

S
dk e−βh̄ω(k) exp{it[ω(k) − ω(k − �K)]}∫

S
dk e−βh̄ω(k)

, (39)

where S is a primitive unit cell of the reciprocal lattice, and
ω(k) is the two-dimensional dispersion relation.

When the dispersion relation is separable, the ISF factor-
izes into a product of two one-dimensional results. A common
and relevant nonseparable example is provided by the hexag-
onal close-packed lattice. If the Cartesian unit vectors are x̂
and ŷ, the primitive unit cell of the real-space lattice can be
specified by the lattice vectors

a1 = a x̂ ; a2 = a [x̂ cos(60) + ŷ cos(30)]. (40)

The vectors linking nearest-neighbor sites are a1, a2 and
a1 − a2. The primitive unit cell of the reciprocal lattice can
be specified by the reciprocal lattice vectors

b1 = b [x̂ cos(30) + ŷ cos(60)], b2 = b ŷ, (41)

where

b = 4π

a
√

3
. (42)

The eigenstates of the Hamiltonian are still Bloch states with
crystal momentum k:

|k〉 = 1√
N

∑
n

eik·rn |rn〉, (43)

and if we write the crystal momentum in the reciprocal basis
as k = 1

2π
(k1b1 + k2b2) then the dispersion relation can be

compactly written as

E(k) = h̄ω(k) = −δ[cos(k1) + cos(k2) + cos(k1 − k2)].

(44)

The integral over a single unit cell of the reciprocal lattice can
be performed independently over 0 < k1 < 2π and 0 < k2 <

2π , in other words

∫
S
dk1dk2 e−βh̄ω(k1,k2 ) exp{it[ω(k1, k2) − ω(k1 − �K1, k2 − �K2)]}∫

S
dk e−βh̄ω(k)

, (45)

However, the integral itself is nonseparable and to our knowl-
edge cannot be expressed in closed form.

Evaluating Eq. (45) in general gives results qualitatively
similar to the one-dimensional case. At diffraction conditions,
where k1 and k2 are both multiples of 2π , the ISF is a
constant. In other words all contributions to S(�K, ω) are
elastic because ω(k) − ω(k − �K) = 0 for all k.

B. Degenerate honeycombs

The honeycomb system is described in real space by a
unit cell as described in the previous section for a hexagonal
surface, but with tight-binding sites at positions (a/2, c/3)
and (a, 2c/3) relative to the lower left corner of each unit

cell, where c = a cos(30). The tight-binding sites therefore
form two interleaved sublattices. Define the nearest-neighbor
jump vectors j1,2,3 as the vectors connecting a site on one
sublattice to the three nearest sites on the other sublattice.
Explicit expressions for j1,2,3 are given in the Appendix.

In previous sections we saw that the ISF for tunneling in
a one-dimensional, one-band system and a two-dimensional,
one-band system, can be expressed succinctly as k-space
integrals. A similar general form gives the ISF for the hon-
eycomb system, and involves both intraband and interband
terms. Let B = 1, 2 be a band index, and the corresponding
dispersion relations of the system be ωB (k). Let uB (k) and
vB (k) be associated functions related to the amplitudes in
the eigenstates associated with the two bands. A detailed
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FIG. 3. The ISF I (�K, t ) for a particle coherently tunneling in
a honeycomb system of degenerate tight-binding sites. The plotted
curves were produced by a numerical integration of Eq. (46) at each
value of the correlation time t . The parameters of the tight-binding
system are δ = 0.01 meV, T = 4.0 K. The blue solid curve shows
the trivial result at �K = 0. The red solid curve shows the ISF
at �K = 0.7 b1, in other words not at any special high-symmetry
condition. The green dot-dashed curve shows the ISF at �K = b1,
and illustrates the decay to a static level greater than zero but less
than unity. The static level is shown by a dashed horizontal line in
each case.

derivation of ωB, uB, vB and the construction of the ISF in
those terms, is given in the Appendix. The final result is

I (�K, t ) =
∫
S
dk |zB,B ′ (k,�K)|2e[it−βh̄]ω(k)e−itω(k−�K)∫

S
dk

∑
B[e−βh̄ωB (k)]

,

(46)

where the complex numbers zB,B ′ (k,�K) that are squared to
give the intensities of the intraband and interband terms are
given by

zB,B ′ (k,�K) = u∗
B (k)uB (k − �K) + v∗

B (k)vB (k − �K),

(47)

and the amplitudes uB and vB are given in terms of the nearest-
neighbor translation vectors j1,2,3 by

uB (k) = 1√
2

; (48)

and

vB (k) = ± 1√
2

e−ik·j1 + e−ik·j2 + e−ik·j3

|e−ik·j1 + e−ik·j2 + e−ik·j3 | . (49)

Figure 3 shows the ISF computed by numerical integra-
tion of the expression (46). To illustrate a major difference
between the Bravais-lattice hexagonal result (45) and the
honeycomb result, the ISF is evaluated at zero momentum
transfer, at a diffraction condition, and at an intermediate
condition. At �K = 0, the ISF for any system is constant
in time by construction. At an intermediate condition the
honeycomb ISF undergoes an oscillatory decay, qualitatively
similar to the one-dimensional and Bravais-hexagonal results.
At the diffraction condition �K = b1, the honeycomb result
is not constant but decays to a static level less than unity.

However, the Bravais-hexagonal result is unity for all time due
to the single-band nature of the system. The perfectly elastic
ISF at diffraction conditions is familiar from jump models of
surface diffusion as the minima in the Chudley-Elliott decay
rate described by Eq. (35). The modification of the ISF for
jump motion on non-Bravais lattice systems, which leads to
nonstatic ISF at diffraction conditions, is also well known in
the context of surface and bulk jump diffusion [27,69]. The
result (46) encodes similar information, but for the opposite
limit of perfectly coherent motion.

The finite static level can be traced back to the intraband
terms, and associated with the periodicity of each individual
band. In contrast, the ISF for free, ballistic quantum motion
does not have a static level at any nonzero �K, which in the
present language is because the free particle has an infinite
number of bands within any (arbitrarily selected) first Bril-
louin zone, which allows the relative contribution of intraband
terms to vanish.

V. EXPERIMENTAL PROSPECTS

The hexagonal and honeycomb examples treated above
are particularly motivated by the potential application to
the two-dimensional surface diffusion of hydrogen on close-
packed surfaces, where adsorption sites are typically [70] the
threefold hollow sites of which there are two symmetrically
inequivalent types per unit cell. In classical or incoherent jump
dynamics, symmetrically inequivalent threefold sites reveal
themselves in the ISF via biexponential decays representing
transfer of probability between different sublattices as well as
among the sites on each sublattice [27,69]. Energetic inequiv-
alence �E between the adsorption sites manifests itself via
occupation probabilities ∝ exp(−β�E) and a corresponding
detailed-balance condition on the jump rates. By comparison,
the band structure of a hydrogen atom on the periodic surface
exhibits an extreme sensitivity to the degree of nondegeneracy
due to the strong dependence of quantum transmission am-
plitudes on barrier thickness [8,49]. For example, distorting a
first-principles potential energy surface for H/Ni(111) to make
both threefold sites degenerate increases the lowest-energy
band width by a factor of 102 [24]. Therefore while studies
of classical jump dynamics offer a method to provide strong
constraints on relative adsorption energies [39,62], quantum
tunneling effects could, in future, provide an even more sensi-
tive indicator of the energetics.

The prospects for experimental observation of coherent
tunneling using HeSE depend on whether long-range coherent
surface diffusion could actually occur on any specific surface,
and also whether the process could reasonably be observed in
the experiment. The first issue is not at all straightforward to
answer conclusively. It is relevant to note that no specific evi-
dence for coherent motion of hydrogen has been derived from
several previous spin echo observations of hydrogen diffusion
[24,62,71,72] and therefore in a serious search for coherent
effects it would be beneficial to consider all the surface
system properties that could promote coherence, including
minimizing the coverage and temperature, and selecting or
even engineering the surface to maximise the bandwidth of
the lowest-energy band for hydrogen motion. The limiting
factor in the realization of long-range coherent diffusion is
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likely to be the interaction with the substrate heat bath, leading
to dissipation and incoherent tunneling rather than coherent
propagation [42–44,65,73,74]. However, even for the two-
state dissipative system under the standard simplifying model
of a harmonic bath, the transition from coherent to incoherent
relaxation is not straightforward, as it depends on the absolute
strength of coupling to the heat bath, the ω → 0 frequency
dependence of the coupling, and the temperature [22,75].
In addition to affecting the precise interplay between the
system and bath dynamics, changes in temperature can also
have an abrupt effect on the nature of the available substrate
excitations [21], potentially leading to a drastic reduction in
dissipation and dephasing effects at very low temperatures
that could enable long-range coherent motion.

The correlation time plotted in Fig. 1 is routinely achiev-
able using current helium-3 surface spin echo (HeSE) in-
strumentation [20,39,62,63]. Further, the strong off-specular
helium scattering cross sections of isolated adsorbed atoms
[76] allows the measurement of dilute systems as required to
observe long-range independent motion of distinct adsorbates.

Measurements using momentum transfers up to �K ≈ 4 Å
−1

are feasible, and a = 2.7 Å is a reasonable nominal value
for the separation of equivalent adsorption sites on a close-
packed metal substrate. The tight-binding parameter δ can
be interpreted via Eq. (9) as approximately a quarter of
the bandwidth of the lowest band in the dispersion relation
E(K) for surface hydrogen. The width of the lowest band
for H/Ni(111) diffusion has been computed as 5 × 10−4 meV
[24], whereas the plotted value δ = 0.01 is a more optimistic
estimate based on the hypothetical close-packed surface with
degenerate fcc and hcp sites. The pessimistic bandwidth is
comparable to the present energy resolution of the Cam-
bridge HeSE instrument in the sense of complete spectral
reconstruction of S(�K,�ω) [20,77,78], but there is ample
scope for improving the energy resolution with independently
proven instrumentation upgrades, for example, by increasing
the maximum magnetic field integral for the 3He nuclear spin
manipulations [79]. Additionally, since the spin-echo method
operates in a quasitime domain, full spectral reconstruction
is not compulsory to interpret the partial line shape in the
time domain, which leads to a substantially higher effec-
tive resolution given a suitable physical model for the ISF
[19,77,80]. A stronger constraint might be imposed by tem-
perature requirements. Regardless of the effect of temperature
on dissipation, very low temperatures would be required to
observe the imaginary component of the line shape.

VI. CONCLUSION

The real and imaginary parts of the quantum interme-
diate scattering function have been derived for a particle
performing long-range coherent quantum diffusion in tight-
binding systems. Exact closed-form results are given for
a one-dimensional system with one tight -binding site per
unit cell. The derivation can be facilitated by a closed-form
special case of the Baker-Campbell-Hausdorff theorem. The
result has been extended to tunneling in hexagonal lattices
via a k-space integral. The analogous result for tunneling in
degenerate honeycomb systems is expressed in similar terms
by including intraband and interband contributions to the ISF.

The relevance of the analytical result to experimental
measurements of the surface diffusion of hydrogen has been
discussed in the context of the current capabilities of the
helium-3 surface spin echo method, and realistic theoretical
band widths for hydrogen adsorbed on metal surfaces. Co-
herent diffusion effects are on the limit of what could be
observed, in principle, given the present energy resolution of
the Cambridge implementation of the spin-echo method, and
could be brought firmly into the observable range by emi-
nently feasible improvements to the instrumentation, although
the associated temperature and dissipation requirements may
be more difficult to realize and control.
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APPENDIX: ISF IN HONEYCOMB GEOMETRY

The honeycomb arrangement of tight-binding sites,
discussed in Sec. IV B has the same unit cell as the hexagonal
system discussed in Sec. IV A, but each unit cell contains
two inequivalent sites. Introduce states |r〉 to label localized
states at the first type of site, and |s〉 to label the second type.
Introduce also the three vectors j1,2,3 that translate a particle
on sites of type 1 to a nearest-neighbor site of type 2. In terms
of the real-space lattice vectors a1,2 defined in Sec. IV A, the
nearest-neighbor translation vectors in the honeycomb system
are

j1 = 1
3 (a1 + a2), (A1)

j2 = 1
3 (a2 − 2a1), (A2)

j3 = 1
3 (a1 − 2a2), (A3)

which, for example, can be identified with the nearest-
neighbor jump vectors in studies of hopping diffusion
between hollow sites [27].

We define a convention for the present problem where
sn = rn + j1, in other words one of the three jump vectors
maps between sites in the same primitive unit cell; the other
two jump vectors translate onto sites in neighboring unit cells.
Then, the Hamiltonian of a nearest-neighbor, tight-binding
honeycomb system can be defined by its action on each type
of site

H |r〉 = δ(|r + j1〉 + |r + j2〉 + |r + j3〉), (A4)

H |s〉 = δ(|s − j1〉 + |s − j2〉 + |s − j3〉). (A5)

Bloch states are still guaranteed to be eigenstates of the
system, but must include amplitude on both sublattices. Let n

be a site index running over all sites in the system, and define
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two types of Bloch state |a〉 and |b〉 containing amplitude on
one type of site only

|a〉 = 1√
N

∑
n

eikrn |rn〉, (A6)

|b〉 = 1√
N

∑
n

eiksn |sn〉, (A7)

the action of the Hamiltonian on the states |a〉 and |b〉 can
be worked out by noting that rn + j1 = sn, rn + j2 = sn − a1,
and rn + j3 = sn − a2, with analogous results for translating
from |s〉 sites to |r〉 sites. Introducing an auxiliary factor

A(k) = e−ikj1 + e−ikj2 + e−ikj3 , (A8)

the results can be written as

H |a〉 = δA(k)|b〉, (A9)

H |b〉 = δA∗(k)|a〉. (A10)

Introduce a Bloch state with a band index B = 1, 2 as a linear
combination of |a〉 and |b〉:

|k, B〉 = uB (k)|a〉 + vB (k)|b〉. (A11)

The choices

uB (k) = 1√
2

(A12)

and

vB (k) = ± 1√
2

A(k)

|A(k)| (A13)

make |k, B〉 an eigenstate of H with corresponding eigenvalue

E(k) = ±δ|A(k)|, (A14)

which can be verified by direct substitution. We choose B = 1
to correspond to the positive sign in Eqs. (A13) and (A14), and
B = 2 the negative sign.

To compute the ISF we start from the dynamical structure
factor (3) generalized to two spatial dimensions and including
contributions from two bands

S(�K,ω) ∝
∑

k,B;k′,B ′
e−βh̄ωB′ (k′ )|〈k, B|ei�Kx|k′, B ′〉|2δ{ω − [ω(k) − ω(k′)]}, (A15)

and take the Fourier transform which gives us the normalized ISF as

I (�K, t ) = 1

Z

∑
k,B;k′,B ′

e−βh̄ωB′ (k′ )|〈k, B|ei�Kx|k′, B ′〉|2 exp{it[ω(k) − ω(k′)]}. (A16)

The matrix element 〈k, B|ei�Kx|k′, B ′〉 can be evaluated by inserting

∑
n

|rn〉〈rn| +
∑

n

|sn〉〈sn| (A17)

as a resolution of the identity on either side of the operator ei�Kx. Using 〈rn|rn′ 〉 = 〈sn|sn′ 〉 = δn,n′ and 〈rn|sn′ 〉 = 0, the result
simplifies to

〈k, B|ei�Kx|k′, B ′〉 = 1

N

∑
n

u∗
B (k)uB ′ (k′)e−i{k′−[k−�K]}rn + 1

N

∑
n

v∗
B (k)vB ′ (k′)e−i{k′−[k−�K]}sn . (A18)

The sum
∑

n over all unit cells generates a Kronecker-δ leading to a k-conservation condition. k′ = k − �K, and the subsequent
sum over k′ in the ISF numerator leads to a single k-space sum. Defining the amplitude

zB,B ′ (k,�K) = u∗
B (k)uB ′ (k − �K) + v∗

B (k)vB ′ (k − �K), (A19)

the ISF can be expressed in the succinct form given in the main text

I (�K, t ) =
∫
S
dk |zB,B ′ (k,�K)|2e[it−βh̄]ω(k)e−itω(k−�K)∫

S
dk

∑
B[e−βh̄ωB (k)]

, (A20)

which accounts for all interband and intraband terms.
As for the hexagonal Bravais-lattice calculation (Sec. IV A), the k-space integration can be performed over any primitive

reciprocal space unit cell, such that there is no redundancy in the description of the bands. Writing k in the reciprocal basis
defined in Sec. IV A, that is k = 1

2π
(k1b1 + k2b2), the integrals

∫
S
dk can be expressed as

∫ 2π

0 dk1dk2. The k-dependent functions
in the integrand can be expressed as functions of k1 and k2 using the expansion of the j vectors in the real-space lattice basis
above Eq. (A1), for example,

ω(k) = ±δ|ei(k1+k2 )/3 + ei(k2−2k1 )/3 + ei(k1−2k2 )/3|. (A21)
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