G. A. Somorjai and Y. Li, Introduction to Surface Chemistry and Catalysis

G. W. Huber, J. W. Shabaker, and J. A. Dumesic, Raney Ni-Sn Catalyst for H2 Production from Biomass-Derived Hydrocarbons, Science, vol.300, 2003.

F. Maroun, F. Ozanam, O. M. Magnussen, and R. J. Behm, The Role of Atomic Ensembles in the Reactivity of Bimetallic Electrocatalysts, Science, vol.293, pp.1811-1814, 2001.

D. I. Enache, J. K. Edwards, P. Landon, B. Solsona-espriu, A. F. Carley et al., Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts, Science, vol.311, pp.362-365, 2006.

R. Ferrando, J. Jellinek, and R. L. Johnston, Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles, Chem. Rev, vol.108, pp.845-910, 2008.

A. V. Ruban, H. L. Skriver, and J. K. Nørskov, Surface segregation energies in transition-metal alloys, Phys. Rev. B: Condens. Matter Mater. Phys, vol.59, pp.15990-16000, 1999.

G. Bozzolo, J. Ferrante, R. D. Noebe, B. Good, F. S. Honecy et al., Surface segregation in multicomponent systems: Modeling of surface alloys and alloy surfaces, Comput. Mater. Sci, vol.15, pp.169-195, 1999.

A. M. Molenbroek, S. Haukka, and B. S. Clausen, Alloying in Cu/Pd Nanoparticle Catalysts, J. Phys. Chem. B, vol.102, pp.10680-10689, 1998.

G. Schmid, A. Holewinski, J. Idrobo, S. Linic, and . Erratum, Highperformance Ag-Co alloy catalysts for electrochemical oxygen reduction, Nat. Chem, vol.3, issue.10, pp.941-941, 1999.

T. Yamauchi, Y. Tsukahara, K. Yamada, T. Sakata, and Y. Wada, Nucleation and Growth of Magnetic Ni?Co (Core?Shell) Nanoparticles in a One-Pot Reaction under Microwave Irradiation, Chem. Mater, vol.23, pp.75-84, 2011.

K. Asazawa, K. Yamada, H. Tanaka, A. Oka, M. Taniguchi et al., A Platinum-Free Zero-Carbon-Emission Easy Fuelling Direct Hydrazine Fuel Cell for Vehicles, Angew. Chem., Int. Ed, vol.46, pp.8024-8027, 2007.

S. Carenco, A. Tuxen, M. Chintapalli, E. Pach, C. Escudero et al., Dealloying of Cobalt from CuCo Nanoparticles under Syngas Exposure, J. Phys. Chem. C, pp.117-6259, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02384121

R. C. Tiruvalam, J. C. Pritchard, N. Dimitratos, and . Lopez,

J. A. Sanchez, J. K. Edwards, A. F. Carley, G. J. Hutchings, and C. J. Kiely, Aberration corrected analytical electron microscopy studies of solimmobilized Au + Pd, Au{Pd} and Pd{Au} catalysts used for benzyl alcohol oxidation and hydrogen peroxide production, Faraday Discuss, vol.152, pp.63-86, 2011.

S. Mandal and K. M. Krishnan, CocoreAushell nanoparticles: evolution of magnetic properties in the displacement reaction, J. Mater. Chem, vol.17, pp.372-376, 2007.

X. Zheng, S. Liu, X. Chen, J. Cheng, Y. Qing et al., In-situ observation of Cu-Pt core-shell nanoparticles in the atomic scale by XAFS, J. Phys.: Conf. Ser, p.12038, 2013.

P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More et al., Lattice-strain control of the activity in dealloyed core?shell fuel cell catalysts, Nat. Chem, vol.2, pp.454-460, 2010.

A. Holewinski, J. Idrobo, and S. Linic, High-performance Ag? Co alloy catalysts for electrochemical oxygen reduction, Nat. Chem, vol.6, pp.828-834, 2014.

H. L. Xin, S. Alayoglu, R. Tao, A. Genc, C. Wang et al., Revealing the Atomic Restructuring of Pt?Co Nanoparticles, Nano Lett, vol.14, pp.3203-3207, 2014.

P. Lu, M. Chandross, T. J. Boyle, B. G. Clark, and P. Vianco, Equilibrium Cu-Ag nanoalloy structure formation revealed by in situ scanning transmission electron microscopy heating experiments, APL Mater, vol.2, p.22107, 2014.

Y. Ding, F. Fan, Z. Tian, and Z. L. Wang, Atomic Structure of Au? Pd Bimetallic Alloyed Nanoparticles, J. Am. Chem. Soc, vol.132, pp.12480-12486, 2010.

A. O. Yalcin, B. De-nijs, Z. Fan, F. D. Tichelaar, D. Vanmaekelbergh et al., Core?shell reconfiguration through thermal annealing in Fe x O/CoFe 2 O 4 ordered 2D nanocrystal arrays, Nanotechnology, p.55601, 2014.

W. Liu, K. Sun, and R. Wang, In situ atom-resolved tracing of element diffusion in NiAu nanospindles, Nanoscale, vol.5, pp.5067-5072, 2013.

J. Yang and J. Y. Ying, Diffusion of Gold from the Inner Core to the Surface of Ag2S Nanocrystals, J. Am. Chem. Soc, vol.132, 2010.

D. Grodzinska, F. Pietra, M. A. Van-huis, D. Vanmaekelbergh, and . De-mello-donega,

, PbSe/CdSe core/shell quantum dots into PbSe/CdSe bi-hemisphere hetero-nanocrystals, J. Mater. Chem, 2011.

T. Mokari, A. Aharoni, I. Popov, and U. Banin, Diffusion of gold into InAs nanocrystals, Angew. Chem., Int. Ed, vol.45, pp.8001-8005, 2006.

S. Duan and R. Wang, Au/Ni12P5 core/shell nanocrystals from bimetallic heterostructures: in situ synthesis, evolution and supercapacitor properties, NPG Asia Mater, vol.6, p.122, 2014.

Y. Yu, G. Jin, Y. Wang, and X. Guo, Synthesis of natural gas from CO methanation over SiC supported Ni?Co bimetallic catalysts, Catal. Commun, vol.31, pp.5-10, 2013.

V. Sanchez-escribano, M. A. Vargas, E. Finocchio, and G. Busca, On the mechanisms and the selectivity determining steps in syngas conversion over supported metal catalysts: An IR study, Appl. Catal., A, vol.316, pp.68-74, 2007.

A. Y. Khodakov, W. Chu, and P. Fongarland, Advances in the Development of Novel Cobalt Fischer?Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels, Chem. Rev, vol.107, pp.1692-1744, 2007.

N. Kumar, M. L. Smith, and J. J. Spivey, Characterization and testing of silica-supported cobalt?palladium catalysts for conversion of syngas to oxygenates, J. Catal, vol.289, pp.218-226, 2012.

H. Wang, W. Zhou, J. Liu, R. Si, G. Sun et al., Platinum-Modulated Cobalt Nanocatalysts for Low-Temperature Aqueous-Phase Fischer?Tropsch Synthesis, J. Am. Chem. Soc, vol.135, pp.4149-4158, 2013.

M. S. Aw, I. G. Osojnik-c?rnivec, and A. Pintar, Tunable ceria? zirconia support for nickel?cobalt catalyst in the enhancement of methane dry reforming with carbon dioxide, Catal. Commun, vol.52, pp.10-15, 2014.

S. Zhou, M. Wen, N. Wang, Q. Wu, Q. Wu et al., Highly active NiCo alloy hexagonal nanoplates with crystal plane selective dehydrogenation and visible-light photocatalysis, J. Mater. Chem, vol.22, pp.16858-16864, 2012.

S. Mourdikoudis, V. Colliere, P. Fau, and M. L. Kahn, A study on the synthesis of Ni50Co50 alloy nanostructures with tuned morphology through metal-organic chemical routes, vol.43, pp.8469-8479, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02023142

S. Carenco, C. Wu, A. Shavorskiy, S. Alayoglu, G. A. Somorjai et al., Synthesis and Structural Evolution of Nickel?Cobalt Nanoparticles Under H2 and CO2, vol.11, p.3045, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02383953

D. Frank-ogletree, H. Bluhm, E. D. Hebenstreit, and M. Salmeron, Photoelectron spectroscopy under ambient pressure and temperature conditions, Nucl. Instrum. Methods Phys. Res., Sect. A, vol.601, pp.151-160, 2009.

C. J. Powell and A. Jablonski, NIST Electron Inelastic-Mean-Free-Path Database, version 1.2; National Institute of Standards and Technology, 2010.

T. Gross, M. Ramm, H. Sonntag, W. Unger, H. M. Weijers et al., An XPS analysis of different SiO2 modifications employing a C 1s as well as an Au 4f7/2 static charge reference, Surf. Interface Anal, vol.18, pp.59-64, 1992.

D. Blanchard, . Jr, and D. R. Baer, The interactions of Co, Mn and water with calcite surfaces, Surf. Sci. Lett, p.2, 1992.

C. E. Dube, B. Workie, S. P. Kounaves, A. Robbat, M. L. Aksub et al., Electrodeposition of Metal Alloy and Mixed Oxide Films Using a Single?Precursor Tetranuclear Copper?Nickel Complex, J. Electrochem. Soc, vol.142, pp.3357-3365, 1995.

N. S. Mcintyre, D. D. Johnston, L. L. Coatsworth, R. D. Davidson, and J. R. Brown, X-ray photoelectron spectroscopic studies of thin film oxides of cobalt and molybdenum, Surf. Interface Anal, vol.15, pp.265-272, 1990.

K. S. Kim and N. Winograd, X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ionbombardment, Surf. Sci, vol.43, pp.625-643, 1974.

Y. Bao, M. Beerman, A. B. Pakhomov, and K. M. Krishnan, Controlled Crystalline Structure and Surface Stability of Cobalt Nanocrystals, Chemistry of Materials Article, vol.109, 2005.

, Chem. Mater, vol.27, p.6968, 2015.

A. Tuxen, S. Carenco, M. Chintapalli, C. H. Chuang, C. Escudero et al., Size-Dependent Dissociation of Carbon Monoxide on Cobalt Nanoparticles, J. Am. Chem. Soc, vol.135, pp.2273-2278, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02384068

G. Cheng, C. L. Dennis, R. D. Shull, and A. R. Walker, Probing the Growth and Aging of Colloidal Cobalt Nanocrystals: A Combined Study by Transmission Electron Microscopy and Magnetic Measurements, Cryst. Growth Des, vol.9, pp.3714-3720, 2009.

N. F. Mott, Transactions and Communications: Reducibility of oxides and sulphides in metallurgical processes, II. Trans. Faraday Soc, vol.35, issue.48, pp.125-160, 1940.

D. M. Tang, C. Liu, W. J. Yu, L. L. Zhang, P. X. Hou et al., Structural Changes in Iron Oxide and Gold Catalysts during Nucleation of Carbon Nanotubes Studied by In Situ Transmission Electron Microscopy, ACS Nano, vol.8, pp.292-301, 2014.

M. Matsuno, C. S. Bonifacio, J. F. Rufner, A. M. Thron, T. B. Holland et al., situ TEM investigations of reduction oxidation reactions during densification of nickel nanoparticles, vol.27, pp.2431-2440, 2012.

L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kolla?, The surface energy of metals, Surf. Sci, vol.411, pp.186-202, 1998.

Z. A. Munir, Analytical treatment of the role of surface oxide layers in the sintering of metals, J. Mater. Sci, vol.14, pp.2733-2740, 1979.

J. Matos, L. K. Ono, F. Behafarid, J. R. Croy, S. Mostafa et al., In situ coarsening study of inverse micelle-prepared Pt nanoparticles supported on [gamma]-Al2O3: pretreatment and environmental effects, Phys. Chem. Chem. Phys, vol.14, pp.11457-11467, 2012.

L. Guczi, G. Boskovic, and E. Kiss, Bimetallic Cobalt Based Catalysts, Catal. Rev.: Sci. Eng, vol.52, pp.133-203, 2010.

J. Y. Bigot, H. Kesserwan, V. Halte, O. Ersen, M. S. Moldovan et al., Magnetic Properties of Annealed Core-Shell CoPt Nanoparticles, Nano Lett, vol.12, pp.1189-1197, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02183810