C. K. Rofer-depoorter, . Comprehensive-mechanism-for-the-fischer?tropsch, G. P. Synthesis-;-van-der-laan, A. A. Beeneckers, B. H. Davis et al., A Quantitative Determination of Reaction Mechanisms from Density Functional Theory Calculations: Fischer?Tropsch Synthesis on Flat and Stepped Cobalt Surfaces, Synthesis: Current Mechanism and Futuristic Needs. Fuel Process. Technol, vol.81, pp.287-297, 1981.

C. Escudero and M. Salmeron, From Solid?Vacuum to Solid?Gas and Solid?Liquid Interfaces: In Situ Studies of Structure and Dynamics under Relevant Conditions, Surf. Sci, vol.607, issue.2?9, 2013.

D. F. Ogletree, H. Bluhm, G. Lebedev, C. S. Fadley, Z. Hussain et al., A Differentially Pumped Electrostatic Lens System for Photoemission Studies in the Millibar Range, Rev. Sci. Instrum, p.3872, 2002.

A. Knop-gericke, M. Havecker, T. Schedel-niedrig, and R. Schlogl, High-Pressure Low-Energy XAS: A New Tool for Probing Reacting Surfaces of Heterogeneous Catalysts, Top. Catal, vol.10, pp.187-198, 2000.

M. Salmeron and R. Schlogl, Ambient Pressure Photoelectron Spectroscopy: A New Tool for Surface Science and Nanotechnology, Surf. Sci. Rep, vol.63, pp.169-199, 2008.

D. Bazin and L. Guczi, Soft X-Ray Absorption Spectroscopy in Heterogeneous Catalysis, Appl. Catal., A, vol.213, pp.147-162, 2001.
URL : https://hal.archives-ouvertes.fr/cea-00442986

S. R. Bare, N. Yang, S. D. Kelly, G. E. Mickelson, and F. S. Modica, Design and Operation of a High Pressure Reaction Cell for in Situ X-Ray Absorption Spectroscopy, Catal. Today, vol.126, pp.18-26, 2007.

C. Escudero, P. Jiang, E. Pach, F. Borondics, M. W. West et al., A Reaction Cell with Sample Laser Heating for in Situ Soft X-Ray Absorption Spectroscopy Studies under Environmental Conditions, J. Synchrotron Radiat, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02384097

E. Iglesia and . Design, Synthesis, and Use of Cobalt-Based Fischer? Tropsch Synthesis Catalysts, Appl. Catal., A, vol.161, pp.59-78, 1997.

G. L. Bezemer, J. H. Bitter, H. P. Kuipers, H. Oosterbeek, J. E. Holewijn et al., Cobalt Particle Size Effects in the Fischer?Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts, J. Am. Chem. Soc, vol.128, pp.3956-64, 2006.

T. Herranz, X. Deng, A. Cabot, J. Guo, and M. Salmeron, Influence of the Cobalt Particle Size in the CO Hydrogenation Reaction Studied by in Situ X-Ray Absorption Spectroscopy, J. Phys. Chem. B, vol.113, pp.10721-10728, 2009.

G. Prieto, A. Martínez, P. Concepcio?, and R. Moreno-tost, Cobalt Particle Size Effects in Fischer?Tropsch Synthesis: Structural and in Situ Spectroscopic Characterization on Reverse Micelle-Synthesized Co/ITQ-2 Model Catalysts, J. Catal, vol.266, pp.129-144, 2009.

V. Iablokov, S. K. Beaumont, S. Alayoglu, and V. Pushkarev,

C. Specht, J. Gao, A. P. Alivisatos, N. Kruse, and G. A. Somorjai, Size-Controlled Model Co Nanoparticle Catalysts for CO 2 Hydrogenation: Synthesis, Characterization, and Catalytic Reactions, Nano Lett, vol.12, pp.3091-3097, 2012.

D. M. Alonso, S. G. Wettstein, and J. A. Dumesic, Bimetallic Catalysts for Upgrading of Biomass to Fuels and Chemicals, Chem. Soc. Rev, vol.41, pp.8075-8089, 2012.

J. K. Nørskov, F. Abild-pedersen, F. Studt, and T. Bligaard, Density Functional Theory in Surface Chemistry and Catalysis, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.937-980, 2011.

N. Mouaddib, V. Perrichon, and G. A. Martin, Characterization of Copper-Cobalt Catalysts for Alcohol Synthesis from Syngas, Appl. Catal., A, vol.118, pp.63-72, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00005949

A. L. Rocha, I. G. Solo?zano, and J. B. Vander-sande, Heterogeneous and Homogeneous Nanoscale Precipitation in Dilute Cu?Co Alloys, Mater. Sci. Eng., C, vol.27, pp.1215-1221, 2007.

G. Li, Q. Wang, D. Li, X. Lu, and J. He, Structure Evolution during the Cooling and Coalesced Cooling Processes of Cu?Co Bimetallic Clusters, Phys. Lett. A, vol.372, pp.6764-6769, 2008.

J. Ahmed, A. Ganguly, S. Saha, G. Gupta, P. Trinh et al., Enhanced Electrocatalytic Activity of Copper?Cobalt Nanostructures, J. Phys. Chem. C, pp.115-14526, 2011.

C. A. Chanenchuk, I. C. Yates, and C. N. Satterfield, The Fischer? Tropsch Synthesis with a Mechanical Mixture of a Cobalt Catalyst and a Copper-Based Water Gas Shift Catalyst, Energy Fuels, vol.5, pp.847-855, 1991.

N. D. Subramanian, C. S. Kumar, K. Watanabe, P. Fischer, R. Tanaka et al., A DRIFTS Study of CO Adsorption and Hydrogenation on Cu-Based Core?Shell Nanoparticles, Catal. Sci. Technol, 2012.

D. Bazin, I. Kovacs, L. Guczi, P. Parent, C. Laffon et al., Genesis of Co/SiO 2 Catalysts: XAS Study at the Cobalt L III,II Absorption Edges, J. Catal, vol.189, pp.456-462, 2000.

H. Liu, Y. Yin, A. Augustsson, C. Dong, J. Nordgren et al., Electronic Structure of Cobalt Nanocrystals Suspended in Liquid. Nano Lett, vol.7, 1919.

A. Tuxen, S. Carenco, M. Chintapalli, C. Chuang, C. Escudero et al., Size-Dependent Dissociation of Carbon Monoxide on Cobalt Nanoparticles, J. Am. Chem. Soc, vol.135, pp.2273-2278, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02384068

M. L. Smith, A. Campos, and J. J. Spivey, Reduction Processes in Cu/SiO 2 , Co/SiO 2 , and CuCo/SiO 2 Catalysts, Catal. Today, vol.182, pp.60-66, 2012.

E. De-smit, F. M. De-groot, R. Blume, M. Havecker, A. Knop-gericke et al., The Role of Cu on the Reduction Behavior and Surface Properties of Fe-Based Fischer?Tropsch Catalysts, Phys. Chem. Chem. Phys, vol.12, pp.667-80, 2010.

, AP-XPS conditions, the CO/H 2 ratio was set to 1 to limit the amount of H 2 to be pumped by the turbopumps while recording spectra and to limit gas exposure of the analyzer

M. L. Smith, N. Kumar, and J. J. Spivey, CO Adsorption Behavior of Cu/SiO 2 , Co/SiO 2 , and CuCo/SiO 2 Catalysts Studied by in Situ DRIFTS, J. Phys. Chem. C, vol.116, pp.7931-7939, 2012.

M. Domke, C. Xue, A. Puschmann, T. Mandel, E. Hudson et al., Carbon and Oxygen K-Edge Photoionization of the CO Molecule, Chem. Phys. Lett, vol.173, pp.122-128, 1990.

S. Myneni, Y. Luo, L. Å. Naslund, M. Cavalleri, L. Ojamaë et al., Deactivation Mechanism of Cu/Zn Catalyst Poisoned by Organic Chlorides in Hydrogenation of Fatty Methyl Ester to Fatty Alcohol, 161?174. (b), vol.14, pp.351-357, 2001.

N. Chaabane, R. Lazzari, J. Jupille, and G. Renaud, Avellar Soares, E. CO-Induced Scavenging of Supported Pt Nanoclusters: A GISAXS Study, J. Phys. Chem. C, vol.116, pp.23362-23370, 2012.

S. Vollmer, G. Witte, and C. Woll, Determination of Site Specific Adsorption Energies of CO on Copper, Catal. Lett, vol.77, pp.97-101, 2001.

K. Liao, V. Fiorin, D. S. Gunn, S. J. Jenkins, and D. A. King, Single-Crystal Adsorption Calorimetry and Density Functional Theory of CO Chemisorption on fcc Co{110}, Phys. Chem. Chem. Phys, vol.15, pp.4059-4065, 2013.

G. Wu, Y. Li, H. Xiang, Y. Xu, Y. Sun et al., Density Functional Investigation on Copper Carbonyl Complexes, J. Mol. Struct.: THEOCHEM, vol.637, pp.101-107, 2003.

W. G. Frankenburg, Advances in Catalysis and Related Subjects

, 40) Detection of gas-phase Co 2 (CO) 8 is challenging considering the tiny amounts involved in this study and because it deposits back on any cold surface, vol.4, p.403, 1952.

I. Wender, H. W. Sternberg, R. A. Friedel, S. J. Metlin, and R. E. Markby, The Chemistry and Catalytic Properties of Cobalt and Iron Carbonyls, U.S. Government Printing Office, p.15, 1962.

P. J. Cardner, A. Gartner, R. G. Cunninghame, and B. H. Robinson, Bond Energies in Dicobalt Octacarbonyl and Bromo-and Chloro-Methylidynetricobalt Enneacarbonyls, J. Chem. Soc, p.2582, 1975.