
HAL Id: hal-02388791
https://hal.sorbonne-universite.fr/hal-02388791

Submitted on 2 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Incremental Approval Voting for Multi-agent Knapsack
Problems

Nawal Benabbou, Patrice Perny

To cite this version:
Nawal Benabbou, Patrice Perny. Incremental Approval Voting for Multi-agent Knapsack Problems.
International Workshop on Computational Social Choice (COMSOC’16), Jun 2016, Toulouse, France.
�hal-02388791�

https://hal.sorbonne-universite.fr/hal-02388791
https://hal.archives-ouvertes.fr

Incremental Approval Voting
for Multi-agent Knapsack Problems

Nawal Benabbou and Patrice Perny

Sorbonne Universités, UPMC Univ Paris 06
CNRS, LIP6 UMR 7606

4 Place Jussieu, 75005 Paris, France
nawal.benabbou@lip6.fr, patrice.perny@lip6.fr

Abstract

In this paper, we study approval voting for multi-agent knapsack problems under incomplete
preference information. The agents consider the same set of feasible knapsacks, implicitly
defined by a budget constraint, but they possibly diverge in the utilities they attach to items.
Individual utilities being difficult to assess precisely and to compare, we collect approval state-
ments on knapsacks from the agents with the aim of determining the optimal solution by ap-
proval voting. We first propose a search procedure based on mixed-integer programming to
explore the space of utilities compatible with the known part of preferences in order to deter-
mine or approximate the set of possible approval winners. Then, we propose an incremental
procedure combining preference elicitation and search in order to determine the set of approval
winners without requiring the full elicitation of the agents’ preferences.

1 Introduction
Collective decision making on a combinatorial domain appears in various contexts such as invest-
ments planning, resource allocation or group configuration. Due to strategic aspects often surround-
ing group decision-making and the possible divergences in individual values, developing formal
methods and tools for modeling preferences and solving multi-agent combinatorial optimization
problems is a critical issue. This has motivated a lot of work in the recent years, in the field of com-
putational social choice [Brandt et al., 2016]. We focus here on the multi-agent knapsack problem
which consists of determining, given a finite set of items, a subset of maximal utility under a budget
constraint. This is a standard example of combinatorial problem with many potential applications
such as project selection, portfolio management or committee election, see e.g. [Lu and Boutilier,
2011b, Klamler et al., 2012, Elkind et al., 2014, Oren and Lucier, 2014, Skowron et al., 2015a] for
examples of recent contributions.

In combinatorial optimization problems, the agents cannot be expected to provide extensive pref-
erence models. Compact representations are needed to handle individual and collective preferences.
Usually, in knapsack problems, preference over subsets of items are represented by additive utility
functions. More precisely, the utility of a subset of items for an agent is defined as the sum of the util-
ities of its elements. Individual utilities are difficult to assess, especially on a combinatorial domain.
Although the elicitation task is simplified when utilities are decomposable, elicitation methods based
on systematic pairwise comparisons are practically unfeasible due to the large amount of feasible
subsets and their implicit definition. Hence we are interested in designing incremental elicitation
procedures, in which preference queries are selected iteratively, to be as informative as possible at
every step, so as to progressively reduce the set of admissible utility profiles until the set of optimal
knapsacks can be determined. This approach has been successfully used in AI for additive utility
elicitation on explicit sets [Chajewska et al., 2000, Wang and Boutilier, 2003, Boutilier et al., 2006],
but also on combinatorial solution spaces [Gelain et al., 2010, Benabbou and Perny, 2015].

We remark that, even if numerical representations of individual preferences are accessible under

the form of utility functions, they are generally constructed independently for each agent. Hence, it
is unlikely that such representations allow the welfare of individuals to be compared. In this context,
the definition of a social utility as the sum of individual utilities (utilitarism), for example, would
be meaningless. Assuming that utilities of items are expressed on the same scale or that utilities are
normalized would not be sufficient to overcome the problem, as shown by the following example:

Example 1. Consider a multi-agent knapsack problem involving 3 items and 2 agents with utilities:
u1 = u1

1x1 + u1
2x2 + u1

3x3 and u2 = u2
1x1 + u2

2x2 + u2
3x3 to be maximized under the constraint

x1 + x2 + x3 ≤ 2, where xi ∈ {0, 1}, i = 1, 2, 3, are the decision variables and uij represents
the utility of item j for agent i. This problem could appear to elect a committee of size 2, given
3 candidates and 2 voters. Assume that individual preference orders over committees have been
elicited, and are equal to {2, 3} �1 {1, 3} �1 {1, 2} and {1, 2} �2 {1, 3} �2 {2, 3} for agents
1 and 2 respectively. One possible numerical representation of these preferences (using the same
utility scale for the two agents) is given by: (u1

1, u
1
2, u

1
3) = (1, 2, 4) and (u2

1, u
2
2, u

2
3) = (4, 2, 1)

which leads to the following utilities for solutions of size 2:

{1, 2} {2, 3} {1, 3}
u1 3 6 5
u2 6 3 5

Note that these individual values are consistent with preference orders �1 and �2. Now, if we are
utilitarian, we could be tempted to deduce that {1, 3} is the optimal knapsack because it maximizes
the total utility (5 + 5 = 10). However, such a conclusion would be meaningless, it is only due
to the particular numerical representation chosen for individual utilities. Let us change the initial
numerical scale by replacing numbers (1, 2, 4) by (0, 3, 4). In this case we obtain two new utility
functions characterized by (u1

1, u
1
2, u

1
3) = (0, 3, 4) and (u2

1, u
2
2, u

2
3) = (4, 3, 0) which leads to the

following utilities for solutions of size 2:

{1, 2} {2, 3} {1, 3}
u1 3 7 4
u2 7 3 4

Note that these new individual values are still consistent with preference orders �1 and �2. Yet,
with the same utilitarian principle, we should admit now that {1, 3} is the least preferred knapsack.
Therefore, choosing the solution maximizing the sum of individual utilities would not be a good
procedure. It would merely be a consequence of arbitrary choices of numerical representations of
preferences rather than a robust conclusion derived from the observed preference profile. Note that
the problem persists if we normalize u1 and u2 utilities to obtain value 1 for set {1, 2, 3}. Other
examples could be found for other aggregators than the sum (e.g. the minimum for an egalitarian
aggregation).

In order to be able to compare the solutions of a knapsack problem when individual utility scales
are not commensurate and/or not rich enough to allow the construction of a social utility, it seems
natural to resort to a voting rule. The main advantage of a voting rule is indeed to perform an
ordinal aggregation procedure. There is no need to know how the welfare of individuals should
be compared, we only need to elicit individual preference orders. Preference elicitation can be
performed incrementally so as to determine the winner with a reduced amount of preference queries.
Various incremental elicitation procedures have been proposed and studied in the context of single-
winner elections with incomplete preferences [Kalech et al., 2010, Lu and Boutilier, 2011a, Dery
et al., 2014]. In this setting, several contributions study the determination of possible and necessary
winners from a partial preference profile, e.g., [Konczak and Lang, 2005, Xia and Conitzer, 2011,
Lang et al., 2012, Ding and Lin, 2013], when the set of candidates is defined explicitly.

In knapsack problems however, solutions are numerous and defined implicitly, which is an ad-
ditional challenge for the winner determination. This explains the current interest for incremental

voting procedures on combinatorial domains and the purpose of this paper. Our aim here is to pro-
pose an incremental voting rule in which individual preferences are progressively revealed until a
collective decision can be made, and to apply this procedure on the multi-agent knapsack problem,
taking advantage of the fact that individual preferences are representable by additive utilities.

It is important to note that implementing a voting rule is not in contradiction with the represen-
tation of individual values by utilities. Individual utility functions are indeed seen as convenient
representations of individual preference orders, and their use will significantly contribute to relieve
the preference elicitation burden. In the standard knapsack problem, due to the linearity of pref-
erences, the set of all preference orders compatible with a given partial order can be characterized
by a convex polyhedron in the utility space. This makes it possible to resort to mathematical pro-
gramming to explore all possible completions of any partially known preference profile, but also to
look for possible winners, and to develop an efficient incremental elicitation procedure for winner
determination, as it will be seen later in the paper.

Implementing a voting rule for the knapsack problem with a partially specified preference pro-
file could be related to multi-winner voting rules studied in the field of computational social choice.
Most approaches recently proposed for multi-winner elections assume that individual preferences
over items are sufficient to explain preference over subsets because they derive satisfaction from
their most preferred candidate (see e.g., [Chamberlin and Courant, 1983, Monroe, 1995, Potthoff
and Brams, 1998, Procaccia et al., 2008, Meir et al., 2008, Lu and Boutilier, 2011b, Betzler et al.,
2013, Elkind et al., 2014, Skowron et al., 2015b], and see [Lu and Boutilier, 2013] for incremental
elicitation of voter preferences). This assumption is well-suited to the election of representatives.
However, for any agent, it may happen that the selection of the most preferred candidate is not suffi-
cient to counterbalance the presence of multiple least preferred candidates in the elected committee.
This limitation also applies to the selection of items in the multi-agent knapsack problem.

In this paper, we focus on approval voting because this is a simple rule that can be decisive
even if only a part of the preference profile is known. In approval voting, we only need to learn,
for every agent, which are the approved or disapproved subsets, so as to elect a solution receiving
the maximal support. We therefore investigate incremental procedures for approval voting and their
application to the knapsack problem. This work differs from multi-winner approval voting [Kilgour,
2010] which only collects approval statements over items instead of feasible subsets of items.

The paper is organized as follows: after introducing our framework for preference elicitation
in multi-agent knapsack problems in Section 2, we study the determination of possible winners for
approval voting in Section 3. Then, an incremental voting procedure to determine the set of winners
are proposed in Section 4 and experimented in Section 5.

2 The General framework
We consider a collective decision problem where a set of agents N = {1, . . . , n} has to jointly
select a set of items (e.g., candidates, projects, objects) in a set P = {1, . . . , p}. Any subset of
items can be represented by a solution vector x = (x1, . . . , xp) ∈ {0, 1}p where xj = 1 if item
j is in the subset and xj = 0 otherwise. Some linear constraints on variables xj , j ∈ P , are
imposed to define the admissible solution vectors. For instance, one may want to impose cardinality
constraints to control the size of the set and/or to ensure gender parity in the elected committee;
there may also exist budget constraints (e.g., when the decision is subject to a maximum total cost)
or capacity constraints as in knapsack problems, making some subsets of items unfeasible. For
the simplicity of the presentation, we will only consider the standard knapsack constraint of the
form

∑
j∈P wjxj ≤ W where wj is the (positive) weight of item j and W is a positive value

representing the maximum total weight; the set of feasible solutions will be denoted by X in the
sequel. Our purpose and the algorithms proposed in the paper also apply when additional (linear)
feasibility constraints are considered.

We assume that the preference of agent i can be represented by a function ui : {0, 1}p → R
measuring the overall utility of any solution. Hence, given two solutions x, y representing two
subsets of items, x is at least as good as y for agent i ∈ N whenever ui(x) ≥ ui(y). Here
ui(x) =

∑
j∈P u

i
jxj , where uij ∈ R represents the utility of item j for agent i. The profile

(u1, . . . , un) of utility functions will be denoted by u. Note also that ui, as a numerical representa-
tion of a preference order, is generally not unique and any transform preserving inequalities of type
ui(x) ≥ ui(y) for all solutions x, y could be considered as well.

Nevertheless, numerical representations of individual preferences by utility functions ui, i ∈ N ,
can be used in approval voting. Recall that approval voting is a single-winner voting method which
allows each agent to approve of (vote for) as many candidates as she wishes. The candidate with
the most approval votes is the winner of the election [Brams and Fishburn, 1978]. Under the
assumption that individual preferences are represented by utility functions ui, i ∈ N , a solution x
is approved by agent i if and only if ui(x) ≥ δi where δi ∈ R is an approval (or utility) threshold
that separates approved and non-approved solutions. The profile of thresholds (δ1, . . . , δn) will be
denoted by δ in the sequel. The pair (u, δ) characterizes approved and non-approved solutions for
all agents and enables the computation of approval scores for any feasible solution x. This score is
given by f(x, u, δ) = |{i ∈ N, ui(x) ≥ δi}|, and the winner of the election is a feasible solution
maximizing this score; various tie-breaking rules can be considered. The approval multi-agent
knapsack problem can be defined as follows:

APPROVAL MULTI-AGENT KNAPSACK PROBLEM (AMKP)
Input: Finite set P of items, for each j∈P , a weight wj and a positive integer W ; a finite set N of
agents, for each i ∈ N , an approval threshold δi, for each j ∈ P , a utility value uij and a positive
integer K.
Question: Is there a subset X⊆P such that

∑
j∈X wj≤W and |{i ∈ N,

∑
j∈X u

i
j ≥ δi}| ≥ K?

This problem is NP-complete, due to a simple reduction from the knapsack decision problem.
Testing the existence of an admissible knapsack having a utility greater or equal to a given value K ′

is indeed equivalent to solving an instance of the AMKP problem involving a single agent with the
same utilities over items, an approval threshold equal to K ′ and with K = 1. Therefore, finding the
knapsack maximizing the approval score is NP-hard.

Moreover, well-known pseudo-polynomial solution methods for the knapsack problem based on
dynamic programming are no longer valid for the approval winner determination problem, as shown
by the following example:

Example 2. Consider a collective decision problem where 2 agents have to choose 2 representatives
from a pool of 3 candidates, i.e. N = {1, 2} and P = {1, 2, 3}. Assume that utilities and approval
thresholds are the following:

u1
1 u1

2 u1
3 δ1 u2

1 u2
2 u2

3 δ2

0.5 0.3 0.2 0.5 0.1 0.5 0.3 0.7

In this case, we have f({1}, u, δ) = 1 > 0 = f({2}, u, δ) but f({1, 3}, u, δ) = 1 < 2 =
f({2, 3}, u, δ). We observe a preference reversal because {1} is preferred to {2} whereas {2, 3} is
preferred to {1, 3}. Thus, preferences induced by the approval score are not additive with respect to
union with disjoint items. This precludes to construct the optimal knapsack from optimal subsets of
items.

Nevertheless, the winner can be obtained by solving the following mixed integer program:

max
∑
i∈N

ai

s.t.
∑
j∈P

uijxj − δi ≥M(ai − 1), ∀i ∈ N

∑
j∈P

wjxj ≤W

xj ∈ {0, 1}, ai ∈ {0, 1}, ∀i ∈ N, ∀j ∈ P

The first constraint allows the introduction of a boolean variable ai which is equal to 1 if and only
if agent i approves solution x. The second constraint is the knapsack constraint. Finally, M is a
constant greater than max{δi − ui(x), i ∈ N}.

However, in practice, the full elicitation of individual utilities and approval thresholds is too
expensive. Usually, we can observe simple preference statements of type “I prefer solution x to
solution y”, and in the case of approval voting, “I approve solution x”, or “I don’t approve solution
y”. These preference statements enable to restrict the sets of possible utility functions but generally
do not allow to derive a precise utility function for each agent (see Example 1). Instead, uncertainty
sets representing all possible utility functions compatible with the preference information obtained
so far must be considered. The same observation applies to approval thresholds. Under such utility
uncertainty, we investigate now the determination of possible winners.

3 Determination of Possible Approval Winners
In this section, we propose an algorithm that enables to compute the set of possible approval winners
given some partial knowledge of the agents’ preferences. More precisely, the input of the algorithm
consists of three sets of preference information for each agent i ∈ N : a setAi (resp. Āi) of solutions
that are known to be approved (resp. not approved) by agent i, and a set Pi of pairs (y, z) such that
solution y is known to be preferred to solution z by agent i. The elements of Pi are not explicit
approval statements, but can be used to derive new positive or negative approval statements from
those included in Ai and Āi.

Let U i (resp. ∆i) denote the set of utility functions (resp. approval thresholds) compatible with
the available preference statements Ai, Āi and Pi. Formally, (U i,∆i) is the set of all pairs (ui, δi)
such that: ∀x ∈ Ai, ui(x) ≥ δi; ∀x ∈ Āi, ui(x) < δi and ∀(y, z) ∈ Pi, ui(y) ≥ ui(z), where ui

is a function of the form ui(x) =
∑
j∈P u

i
jxj and δi ∈ R. Let U (resp. ∆) be the cartesian product

U1× . . .×Un (resp. ∆1× . . .×∆n). Given such uncertainty sets, the set PW(X , U,∆) of possible
approval winners is defined as follows:

Definition 1.
PW (X , U,∆) =

⋃
u∈U,δ∈∆

arg max
x∈X

f(x, u, δ)

In other words, the set of possible approval winners is the set of all solutions x ∈ X that maximize
the approval score f(x, u, δ) for some utility profile u = (u1, . . . , un) ∈ U and some approval
threshold vector δ = (δ1, . . . , δn) ∈ ∆. Recall that Example 2 shows that standard dynamic pro-
gramming procedures cannot be used to determine the approval winners when utilities and approval
thresholds are known. This difficulty remains when utilities and/or approval thresholds are partially
known.

The branch and bound approach is the most commonly used tool for solving NP-hard
optimization problems. We propose here a branch and bound procedure to compute the set
PW(X , U,∆), where nodes of the search tree represent partial instances of the decision variable
vector x = (x1, . . . , xp). More precisely, each node η of the tree is characterized by a pair (P 0

η , P
1
η)

where P kη = {j ∈ P, xj = k}, k = 0, 1. Let Pη = P \ (P 0
η ∪ P 1

η) denote the set of all undecided
variables at node η. Thus, each node η is associated with a region of the solution space as follows:
solution x = (x1, . . . , xp) is attached to node η if and only if xj = k for all j ∈ P kη , k = 0, 1. The
set of feasible solutions attached to node η is denoted by Sη hereafter. The main features of the
search procedure are the following:

Initialization. Using a heuristic, a branch and bound procedure determines some feasible solutions
before performing the search so as to define an initial bound on candidate solutions.

In order to obtain such a bounding set for the knapsack problem, denoted by S0 hereafter, we
propose to initially ask the agents to rank all the items by preference order. Let ri(j) denote the rank
of item j in the preference order provided by agent i, we can define the score αi(j) = p−ri(j)

wj
for

each agent i ∈ N and each item j ∈ P representing the tradeoff achieved between preference and
weight. Hence, for each agent i, a “good” solution to the knapsack problem can be obtained by a
greedy algorithm selecting items one by one, by decreasing order with respect to scoring function αi,
skipping elements whose weight is greater than the residual weight capacity. The resulting solution
is inserted in S0 for initialization because it represents a good solution from the point of view of
agent i. This process is repeated for all agents i ∈ N .

Moreover, a similar procedure is used with the average scoring function defined by
α(j) = 1/n

∑n
i=1 α

i(j), to complete S0 with a solution which is likely to be more consen-
sual. This solution will be denoted by s̄ in the sequel.

Evaluation and pruning. Our pruning rule is based on the notion of setwise regret defined as
follows: the setwise max regret R(A,B,U,∆) of a set A ⊆ X with respect to a set B ⊆ X is the
maximal feasible approval score difference between the best solution in B and the best solution in
A. More formally:

R(A,B,U,∆) = max
u∈U,δ∈∆

{
max
b∈B

f(b, u, δ)−max
a∈A

f(a, u, δ)
}

IfR(A,B,U,∆) < 0, then we know thatB does not contain any possible approval winner; it indeed
induces that, for all solutions b ∈ B, for all u ∈ U and for all δ ∈ ∆, there exists a ∈ A such that
f(b, u, δ) < f(a, u, δ).

Let S be the set of solutions found so far (initially S = S0) and O be the current set
of nodes to be explored. We propose to prune a node η ∈ O if the setwise max regret
R(S, Sη, U,∆) of set S with respect to set Sη is strictly negative. Note that R(S, Sη, U,∆) =
maxx∈Sη maxu∈U,δ∈∆ mins∈S{f(x, u, δ) − f(s, u, δ)}. This alternative formulation enables
to compute R(S, Sη, U,∆) as the optimal value of the mixed-integer quadratic program (denoted
MIQPη) given in Figure 1.

In this program, ξ > 0 is an arbitrary small value allowing us to model strict inequalities.
Equations (5-7) enable to restrict utility functions and approval thresholds to those compatible with
the available preference information. Since preferences of agent i, for any i ∈ N , are invariant
by positive affine transformations jointly applied to function ui and threshold δi, we can assume
without loss of generality that utilities are positive and bounded above by a constant M > 0 (cf.
Equation (4)). Moreover, ais is a boolean variable equal to 1 iff agent i approves solution s, s ∈ S,
and ai is a boolean variable equal to 1 if agent i approves solution x. Finally, Equation (1) introduces
variable t ∈ R representing the smallest approval score difference between solution x and solution
s, s ∈ S.

max t

s.t. t ≤
∑
i∈N

ai −
∑
i∈N

ais, ∀s ∈ S (1)

∑
j∈P1

η

uij +
∑
j∈Pη

uijxj − δi ≥M(ai − 1), ∀i∈N (2)

∑
j∈P

uijsj − δi + ξ ≤Mais, ∀s∈S, ∀i∈N (3)

∑
j∈Pη

wjxj +
∑
j∈P1

η

wj ≤W

∑
j∈P

uij = M, ∀i ∈ N (4)

∑
j∈P

uijyj ≥ δi, ∀i ∈ N, ∀y ∈ Ai (5)

∑
j∈P

uijyj ≤ δi − ξ, ∀i ∈ N,∀y ∈ Āi (6)

∑
j∈P

uijyj ≥
∑
j∈P

uijzj , ∀i ∈ N, ∀(y, z) ∈ Pi (7)

xj ∈{0, 1}, ∀i∈N, ∀j∈Pη
ai∈{0, 1}, ais∈{0, 1}, ∀i∈N,∀s∈S

uij ≥ 0, δi ≥ 0, ∀i∈N, ∀j∈P

Figure 1: Problem MIPη

Note that constraints given in Equation (2) include quadratic terms of type uijxj , j ∈ Pη , since uij
are also variables of the optimization problem. In order to linearize theses constraints, we introduce
positive variables vij , i ∈ N, j ∈ Pη, representing the product uijxj and Equation (2) is replaced by
the following constraints: ∑

j∈P 1
η

uij +
∑
j∈Pη

vij − δi ≥M(ai − 1), ∀i∈N

vij ≤ uij , ∀i ∈ N, ∀j ∈ Pη
vij ≤Mxj , ∀i ∈ N, ∀j ∈ Pη
vij − uij ≥M(xj − 1), ∀i ∈ N, ∀j ∈ Pη

The resulting mixed-integer linear program is denoted by MIPη in the sequel.

Branching. Values R(S, Sη, U,∆) available for all nodes η ∈ O is also used to select the next
node to be explored. We select here a node η ∈ O which maximizes R(S, Sη, U,∆). This selection
strategy aims at maximally improving the current solution set S. The optimal solution of MIPη
indeed maximizes the gap f(x, u, δ) − maxs∈S f(s, u, δ) over all u ∈ U , all δ ∈ ∆ and all
x ∈

⋃
η′∈O Sη′ . Then, set Sη is split in two by considering possible instantiations of a new variable

xj , j ∈ Pη . This variable is chosen among those equal to 1 in the optimal solution of MIPη .

Filtering. As we will see in Proposition 1, the proposed Branch and Bound outputs, in general,
a superset of the set of possible approval winners. To remove undesirable elements, we use a fi-
nal filtering process which deletes solution s′ ∈ S such that R(S\{s′}, {s′}, U,∆) < 0, using a
simplified version of MIPη .

The algorithm implementing these principles is referred to AS (Approval-based Search) in the
sequel and it is summarized by Algorithm 1.

Algorithm 1: Possible Approval Winners Determination
Input: S0: initial solutions
Output: PW(X , U,∆)

1 S ← S0

2 η ← [∅, ∅]
3 O ← {η}
4 while O 6= ∅ do
5 Select a node η ∈ O
6 if Pη = ∅ then
7 S ← S ∪ Sη
8 else
9 Select an item j ∈ Pη

10 Generate the nodes η′ = [P 0
η ∪ {j}, P 1

η] and η′′ = [P 0
η , P

1
η ∪ {j}]

11 if Sη′ 6= ∅ and R(S, Sη′ , U,∆) ≥ 0 then
12 O ← O ∪ {η′}
13 end
14 if Sη′′ 6= ∅ and R(S, Sη′′ , U,∆) ≥ 0 then
15 O ← O ∪ {η′′}
16 end
17 end
18 O ← O \ {η}
19 end
20 Filter the solution set S
21 return S

This algorithm is justified by the following proposition:

Proposition 1. AS returns the set PW(X , U,∆).

Proof. Since the pruning rule only discards nodes including no possible approval winner, we know
that S is a superset of PW(X , U,∆) at the end of the while loop. Let x be an element inserted in S
such that x 6∈ PW(X , U,∆), if it exists. Since x is not a possible winner, we know that, for all u ∈ U
and for all δ ∈ δ, there exists x′ ∈ PW(X , U,∆) ⊆ S such that f(x, u, δ) < f(x′, u, δ). Therefore,
x is necessarily removed from S during the filtering by definition of the filtering process.

Depending on the uncertainty sets (U and ∆) implicitly defined by the available preference
information, possible approval winners might be too numerous to be enumerated efficiently. In
order to save time, one may be interested in approximating the set of possible approval winners with
performance guarantee. We propose below a variant of Algorithm AS for approximating possible
winners with some guarantee on the quality of the output.

Approximation. Given a constant ε > 0, a set X ⊆ X is an (1 + ε)-approximation of the set
of possible winners if, for all x ∈ X , all u ∈ U and all δ ∈ ∆, there exists x′ ∈ X such that
f(x, u, δ) ≤ (1 + ε)f(x′, u, δ). In order to compute an (1 + ε)-approximation of the set of possible
winners, we introduce an approximate version of the setwise max regret. The setwise max ε-regret
Rε(A,B,U,∆) of a set A ⊆ X with respect to a set B ⊆ X is defined as follows:

Rε(A,B,U,∆) = max
u∈U,δ∈∆

{
max
b∈B

f(b, u, δ)− (1 + ε) max
a∈A

f(a, u, δ)
}

If Rε(A,B,U,∆) ≤ 0, then we know that, for all b ∈ B, all u ∈ U and all δ ∈ ∆, there exists
a ∈ A such that f(b, u, δ) ≤ (1 + ε)f(a, u, δ). Therefore, we propose a variant of AS where a node
η ∈ O is discarded if Rε(S, Sη, U,∆) ≤ 0. This pruning rule is sharper than the previous one and
is more likely to discard nodes in the search tree. The implementation is simple within Algorithm
AS: computations of R values must simply be replaced by computations of Rε values. Moreover,
the value Rε is obtained using MIPη in which Equation (1) is replaced by:

t ≤
∑
i∈N

ai − (1 + ε)
∑
i∈N

ais, ∀s ∈ S

The resulting algorithm is denoted by ASε in the sequel. Then, the following proposition holds.

Proposition 2. ASε returns an (1 + ε)-approximation of the set PW(X , U,∆).

Proof. Let x be a solution that does not belong to S at the end of the search procedure. Let u ∈ U
and δ ∈ ∆. We want to prove that f(x, u, δ) ≤ (1 + ε)f(s, u, δ) for some s ∈ S.

If x was inserted in S at some step, then x has necessarily been deleted during the filtering of
S. In that case, by definition of the filtering, we know that there exists s ∈ S such that f(x, u, δ) ≤
f(s, u, δ); hence, f(x, u, δ) ≤ (1 + ε)f(s, u, δ).

Assume now that x was discarded at some step without ever belonging to S. In that case, we
know that, there exists at this step s ∈ S such that f(x, u, δ) ≤ (1 + ε)f(s, u, δ). If solution
s belongs to S at the end of the procedure, then we can directly infer the result. If solution s is
deleted during the filtering, then we know that there exists s′ ∈ S such that f(s, u, δ) ≤ f(s′, u, δ).
Therefore, f(x, u, δ) ≤ (1 + ε)f(s, u, δ) ≤ (1 + ε)f(s′, u, δ) which completes the proof (note that
there is no chaining of errors).

4 Elicitation for Winners Determination
In Section 3, we have introduced a procedure to determine the set of possible approval winners. It
can be used in situations where a significant part of approval judgements is available. However, with
incomplete preference information, the number of possible winners often remains very large, due
to the combinatorial nature of the knapsack problem. Actually, the notion of possible winner (even
its approximate version) is not sufficiently discriminant to support efficiently a collective decision
making process. On the other hand, the full elicitation of approval statements in a multi-agent
knapsack problem requires O(n2p) queries, for n agents and p items. This prevents to perform a
full elicitation of approval statements prior to the aggregation of preferences.

In order to overcome these problems, we propose now an incremental approach that combines
preference elicitation and search to determine the approval winner(s). The basic principle of our
approach is to collect approval statements from individuals so as to progressively reduce the uncer-
tainty attached to approval scores until the actual winners can be determined.

The number of possible winners reduces with the uncertainty about the agents’ preferences.
More precisely, for any U ′ ⊆ U and any ∆′ ⊆ ∆, we have PW(X , U ′,∆′) ⊆ PW(X , U,∆). If
U reduces to a single utility profile and ∆ to a single approval threshold vector, then the possible
winners become the actual winners of the election, i.e. the solutions maximizing the approval score,
among which the final winner is selected using a tie-breaking rule. If we consider an incremental
elicitation procedure which progressively collects preference information so as to reduce sets U and
∆, we will reach a point where all possible winners are necessary winners. This will generally
happen long before reducing U and ∆ to singletons.

We propose now an incremental elicitation procedure progressively reducing uncertainty sets
to U ′ and ∆′ such PW(X , U ′,∆′) = NW(X , U ′,∆′) where NW(X , U ′,∆′) represents the set of
necessary winners, i.e., the set of elements in X which are optimal for all u ∈ U ′ and all δ ∈ ∆′.
Our incremental elicitation algorithm consists in inserting preference queries in Algorithm AS (see

the previous section) so as to discriminate between the current best solutions (those that were stored
in S). In practice, S is now restricted to the most approved solutions found so far. Within this set
we can arbitrarily select a representative, named the incumbent. Initially, the incumbent may be any
feasible solution to the knapsack problem (e.g., solution s̄, see the initialization in Section 3). Each
time a new solution is found (a challenger), it is compared to the incumbent w.r.t. approval scores.

Note that, given the current uncertainty sets U and ∆, a solution x ∈ X is necessarily approved
by an agent i, i ∈ N, if and only if ui(xj) ≥ δi holds for all u ∈ U and all δ ∈ ∆. This can be
checked by solving the following linear program: min

∑
j∈P u

i
jxj − δi subject to Equations (4-7)

and uij ≥ 0, δi ≥ 0, ∀i∈N, ∀j∈P , and testing whether the optimum is positive. Similarly, testing
whether a solution x ∈ X is necessarily disapproved by an agent can be performed using linear
programming. Thus, each time a new solution is found, we can efficiently determine the agents
- if they exist - that necessarily approve/disapprove it. Then, a natural query generation strategy,
denoted by σ0 hereafter, consists in questioning all the other agents to know whether they approve
this solution. The challenger will be inserted in S if it has the same approval score as the incumbent.
If the challenger is strictly better than the incumbent, then S is reinitialized to include only the
challenger. This strategy provides an incremental search algorithm to determine the set of approval
winners, named Algorithm IAS (Incremental Approval-based Search) in the sequel.

Proposition 3. For any initial uncertainty sets U and ∆, IAS terminates with uncertainty sets U ′ ⊆
U and ∆′ ⊆ ∆ such that PW(X , U ′,∆′) = NW(X , U ′,∆′).

Proof. Let s ∈ S be any solution returned by IAS. For all x ∈ X , we want to prove that, at the
end of the search procedure, we have f(s, u, δ) ≥ f(x, u, δ) for all u ∈ U ′ and all δ ∈ ∆′. First,
whenever a node η is pruned at some step k of IAS using the current incumbent sk, we know that,
for all x ∈ Sη , f(x, u, δ) ≤ f(sk, u, δ) for all u ∈ Uk and all δ ∈ ∆k where Uk and ∆k are the
current uncertainty sets at step k. Since U ′ ⊆ Uk and ∆′ ⊆ ∆k, we have f(x, u, δ) ≤ f(sk, u, δ)
for all u ∈ U ′ and all δ ∈ ∆′. Then, according to strategy σ0, we know that sk is such that
f(sk, u, δ) ≤ f(s, u, δ) for all u ∈ U ′ and all δ ∈ ∆′. The result is obtained by transitivity.

5 Numerical Tests
We report here numerical experiments where mixed-integer and linear programs are solved using
the Gurobi Optimizer.

The first series of tests aims at evaluating the computation times (given in seconds) of possible
winners calculation using AS and ASε. In these experiments, instances of the multi-agent knap-
sack problem with p = 12 are generated as follows: weights wj , j ∈ P are uniformly drawn in
{1, . . . , 100}. Then, capacity W is set to d ×

∑
j∈P wj where d = 0.3, 0.4 and 0.5 so as to vary

the number of solutions: for p = 12, the number of feasible solutions is then approximatively equal
to 500, 1000 and 2000 respectively. Moreover, to evaluate the impact of the uncertainty sets, we
randomly generate q = 10, 20 preference statements per agent before running the algorithms. The
computation times obtained by averaging over 50 runs for instances with n = 20 are reported in
Table 1. We also report the average number of possible winners denoted by #S. As expected, we
can see that computation times increase with the size of the problem, and decrease as the number of
available preference statements increase. Moreover, we observe that AS0.1 is drastically faster than
AS. More precisely, AS0.1 determines an 1.1-approximation of possible winners in a few seconds
while AS needs a few minutes on average.

The second series of experiments aims at evaluating the performance of IAS in terms of compu-
tation times (given in seconds) and average number of queries per agent (denoted by #Q hereafter).
We also report the average number of actual winners (denoted by #S hereafter). Initially, only
the preference ranking over single items is available for each agent. Then, answers to approval

d = 0.3 d = 0.4 d = 0.5

method q time #S time #S time #S

AS 10 26.6 19.8 71.8 29.8 614.4 111.4
AS 20 25.2 17.4 55.7 23.9 442.3 90.3

AS0.1 10 1.1 1.9 2.7 3.8 13.9 8.3
AS0.1 20 1.0 1.6 2.3 2.7 9.4 5.0

Table 1: Computations of possible winners (in seconds).

queries are simulated using approval thresholds and utility functions randomly generated with neg-
ative correlations so as to obtain difficult instances. Due to the possibility of collecting preference
information during the search, algorithm IAS is significantly faster than AS and can solve much
larger instances. For example, we report the results obtained for p = 15 and p = 18 (with d = 0.5),
which approximatively represents 2000, 16000 and 130000 feasible solutions respectively. Results
obtained by averaging over 50 runs are reported in Table 2 for instances involving 10 and 30 agents.
We can see that IAS is very efficient both in terms of number of queries per agent and computation
times; for instance, for problems with 10 agents and 18 items (130000 feasible solutions), it enables
to determine the set of optimal knapsacks for approval voting in about 70 seconds with less than
16 queries per agent on average, whereas the full elicitation of approval statements would require
130000 queries per agent.

p = 15 p = 18

n time #S #Q time #S #Q

10 24.3 26.5 10.3 69.8 71.9 15.5
30 90.3 11.4 9.3 314.5 16.8 13.9

Table 2: Computations of necessary winners (in seconds).

We focus now on the evaluation of the branching strategy which is of crucial importance for the
efficiency of the query generation strategy proposed in Section 4. This elicitation strategy indeed
consists in asking agents whether they approve or not some solutions found during the search; these
solutions are obviously dependent on the branching strategy. For comparison, we also consider the
interactive branch and bound procedure (named Random hereafter) that differs from IAS only on the
branching strategy as follows: the next node to be explored and the next variable to be instantiated
are both selected at random. For both branching strategies, each time an agent answers an approval
query during the resolution, we compute the maximum regret attached to the incumbent s, which is
equal to maxx∈X maxu∈U,δ∈∆

{
f(x, u, δ) − f(s, u, δ)

}
. This quantity is an upper bound on the

actual regret when choosing the incumbent instead of any other solution in terms of approval scores.
Whenever this value equals zero, the incumbent is necessarily an approval winner. Regrets are here
expressed on a normalized scale assigning value 1 to the initial maximum regret (computed before
collecting any preference information) and value 0 when the maximum regret is zero. Figure 2 shows
the results obtained by averaging over 30 runs for decision problems involving 30 agents. We can
see that the maximum regret reduces much more quickly with IAS than with Random. For instance,
after 240 queries (i.e., 8 queries per agent) on average, the regret of choosing the incumbent is under
10% of the initial regret, whereas it remains above 65% with the random branching strategy. Hence,
our elicitation strategy is much more informative when using our regret-based branching strategy
rather than the random branching strategy.

Figure 2: Maximum regret attached to the incumbent with respect to the total number of queries
(p = 12, d = 0.4).

6 Conclusion
We have presented a new approach for incremental approval voting on combinatorial domains, illus-
trated on the knapsack problem. The first specificity of this approach is to exploit compact numerical
representations of individual preferences (additive utilities) to propose more efficient elicitation se-
quences. Thus, learning that agent i approves or not solution x is no longer an isolated preference
information; it induces a constraint on the utility space possibly reducing the set of weak-orders
consistent with the observed preferences. This contributes to derive implicitly other approval judge-
ments on other knapsacks, which saves many preference queries.

The second specificity of our approach is to interleave preference elicitation and search. This
makes it possible to elicit preferences on a combinatorial set implicitly defined with a twofold benefit
in view of winner determination: on the one hand, working on partial instances of feasible solutions
in the search tree facilitates the identification of relevant preference queries and relieves the elicita-
tion burden. On the other hand, the search is earlier focused on the relevant part of the solution space
due to the integration of new preference information at any decisive step of the search algorithm,
which saves a significant part of the computational effort. This enables to solve large instances for
which the systematic elicitation of all approval statements is not feasible.

We see several directions to extend this work. The first one is to relax the additivity of individual
utilities so as to be able to model interactions between items. In this line, it seems natural to use
generalized additive utilities functions (GAI) that could also be elicited incrementally [Braziunas
and Boutilier, 2007]. Another direction would be to consider alternative voting rules using possibly
more information than approval statements. For example, positional scoring rules may be worth
investigating under the assumption that individual preferences are representable by additive utilities.
This is a challenging issue because, when preferences are only partially known, the ranges of possi-
ble ranks of solutions in individual rankings is generally too large to be decisive. Similar difficulties
may also occur with other standard voting rules (e.g., single transferable voting, Copeland’s rule)
when applied to a combinatorial problem.

References
N. Benabbou and P. Perny. Incremental Weight Elicitation for Multiobjective State Space Search.

In Proceeding of AAAI’15, pages 1093–1099, 2015.

N. Betzler, A. Slinko, and J. Uhlmann. On the computation of fully proportional representation.
Journal of Artificial Intelligence Research, pages 475–519, 2013.

C. Boutilier, R. Patrascu, P. Poupart, and D. Schuurmans. Constraint-based Optimization and Utility
Elicitation using the Minimax Decision Criterion. Artifical Intelligence, 170(8–9):686–713, 2006.

S. J. Brams and P. C. Fishburn. Approval voting. The American Political Science Review, 72(3):
831–847, 1978.

F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia. Handbook of Computational Social
Choice. Cambridge University Press, 2016.

D. Braziunas and C. Boutilier. Minimax regret based elicitation of generalized additive utilities. In
Proceedings of UAI’07, pages 25–32, 2007.

U. Chajewska, D. Koller, and R. Parr. Making rational decisions using adaptive utility elicitation. In
Proceedings of AAAI’00, pages 363–369, 2000.

J. R. Chamberlin and P. N. Courant. Representative deliberations and representative decisions:
Proportional representation and the Borda rule. American Political Science Review, 77(03):718–
733, 1983.

L. N. Dery, M. Kalech, L. Rokach, and B. Shapira. Reaching a joint decision with minimal elicitation
of voter preferences. Information Sciences, 278:466–487, 2014.

N. Ding and F. Lin. Voting with partial information: what questions to ask? In Proceedings of
AAMAS’13, pages 1237–1238, 2013.

E. Elkind, P. Faliszewski, P. Skowron, and A. Slinko. Properties of multiwinner voting rules. In
Proceedings of AAMAS’14, pages 53–60, 2014.

M. Gelain, M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Elicitation strategies for soft constraint
problems with missing preferences: Properties, algorithms and experimental studies. Artificial
Intelligence Journal, 174(3-4):270–294, 2010.

M. Kalech, S. Kraus, and G. A. Kaminka. Practical voting rules with partial information. Au-
tonomous Agents and Multi-Agent Systems, 22(1):151–182, 2010.

D. M. Kilgour. Approval balloting for multi-winner elections. In Handbook on approval voting,
pages 105–124. Springer, 2010.

C. Klamler, U. Pferschy, and S. Ruzika. Committee selection under weight constraints. Mathemati-
cal Social Sciences, 64(1):48–56, 2012.

K. Konczak and J. Lang. Voting procedures with incomplete preferences. In Proceedings of IJCAI-
05 Multidisciplinary Workshop on Advances in Preference Handling, volume 20, 2005.

J. Lang, M. S. Pini, F. Rossi, D. Salvagnin, K. B. Venable, and T. Walsh. Winner determination
in voting trees with incomplete preferences and weighted votes. Autonomous Agents and Multi-
Agent Systems, 25(1):130–157, 2012.

T. Lu and C. Boutilier. Robust approximation and incremental elicitation in voting protocols. In
Proceedings of IJCAI’11, pages 287–293, 2011a.

T. Lu and C. Boutilier. Budgeted social choice: From consensus to personalized decision making.
In Proceedings of IJCAI’11, volume 11, pages 280–286, 2011b.

T. Lu and C. Boutilier. Multi-winner social choice with incomplete preferences. In Proceedings of
IJCAI’13, pages 263–270, 2013.

R. Meir, A. D. Procaccia, J. S. Rosenschein, and A. Zohar. Complexity of strategic behavior in
multi-winner elections. Journal of Artificial Intelligence Research (JAIR), 33:149–178, 2008.

B. L. Monroe. Fully proportional representation. American Political Science Review, 89(04):925–
940, 1995.

J. Oren and B. Lucier. Online (budgeted) social choice. Proceedings of AAAI’14, pages 1456–1462,
2014.

R. F. Potthoff and S. J. Brams. Proportional representation broadening the options. Journal of
Theoretical Politics, 10(2):147–178, 1998.

A. D. Procaccia, J. S. Rosenschein, and A. Zohar. On the complexity of achieving proportional
representation. Social Choice and Welfare, 30(3):353–362, 2008.

P. Skowron, P. Faliszewski, and J. Lang. Finding a collective set of items: From proportional
multirepresentation to group recommendation. In Proceedings of AAAI’15, pages 2131–2137,
2015a.

P. Skowron, L. Yu, P. Faliszewski, and E. Elkind. The complexity of fully proportional representation
for single-crossing electorates. Theoretical Computer Science, 569:43–57, 2015b.

T. Wang and C. Boutilier. Incremental Utility Elicitation with the Minimax Regret Decision Crite-
rion. In Proceedings of IJCAI-03, pages 309–316, 2003.

L. Xia and V. Conitzer. Determining possible and necessary winners given partial orders. Journal
of Artificial Intelligence Research (JAIR), 41:25–67, 2011.

