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Abstract. In 2017, NIST shook the cryptographic world by starting a process
for standardizing post-quantum cryptography. Sixty-four submissions have been
considered for the first round of the on-going NIST Post-Quantum Cryptography
(PQC) process. Multivariate cryptography is a classical post-quantum candidate
that turns to be the most represented in the signature category. At this stage of
the process, it is of primary importance to investigate efficient implementations of
the candidates. This article presents MQsoft, an efficient library which permits to
implement HFE-based multivariate schemes submitted to the NIST PQC process such
as GeMSS, Gui and DualModeMS. The library is implemented in C targeting Intel
64-bit processors and using avx2 set instructions. We present performance results for
our library and its application to GeMSS, Gui and DualModeMS. In particular, we
optimize several crucial parts for these schemes. These include root finding for HFE
polynomials and evaluation of multivariate quadratic systems in F2. We propose a
new method which accelerates root finding for specific HFE polynomials by a factor of
two. For GeMSS and Gui, we obtain a speed-up of a factor between 2 and 19 for the
keypair generation, between 1.2 and 2.5 for the signature generation, and between 1.6
and 2 for the verifying process. We have also improved the arithmetic in F2n by a
factor of 4 compared to the NTL library. Moreover, a large part of our implementation
is protected against timing attacks.
Keywords: MQsoft · efficient software implementation · constant-time · HFEv- · GeMSS
· Gui · DualModeMS · root finding · binary fields

Introduction
The recent progress on the development of quantum computers has motivated NIST
[39] to start a standardization process for post-quantum cryptography. In this paper,
we are interested in the category of multivariate signature schemes. The choice of the
best candidate is based on its security and its performance. At this stage, the security
parameters of the candidates are already fixed, but the implementations can be improved.
In this article, we study the efficient implementation of multivariate schemes.
We present here software tools that allow the efficient implementation of HFE-based
schemes (using arithmetic in F2n). In particular, our software tools allow to speed-up
the GeMSS [15], Gui [17] and DualModeMS [25] signature schemes, which are candidates
submitted to the NIST post-quantum cryptography standardization process [39]. The
advantage of F2n is that each element can be represented as a vector of bits, which
corresponds to the architecture of binary computers and can be naturally improved by
vector instructions. The signature generation requires arithmetic in F2n [X], and its
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implementation is already provided by various libraries. Among the best, NTL [43] provides
high quality implementations of state-of-the-art algorithms. But these algorithms are not
specialized for the case of sparse polynomials in F2n [X]. Moreover, the implementations
are not constant-time and so are vulnerable to timing attacks. For these reasons, we need
to adapt the algorithms used. We have chosen to create a new library, which is based on
constant-time arithmetic in F2n . Unlike NTL, which offers a general implementation, our
library is specialized for a value of n, permitting more efficient arithmetic. Moreover, we
exploit the sparse polynomial structure to improve the performance. More generally, our
implementation uses the Intel vector instructions to obtain interesting speed-ups.
Our library also supports DualModeMS [25], which is a candidate in the NIST PQC
standardization process. It is a modified HFE-based signature scheme which permits
to decrease the size of the public-key, but by increasing the size of the signature. The
parameters are chosen to minimize the sum of both sizes. By improving the implementation
of HFE-based schemes, we automatically improve the implementation of DualModeMS.

Evaluation of multivariate quadratic systems. Many multivariate cryptosystems require
to evaluate a multivariate quadratic system (MQS) to encrypt data or verify a signature
(e.g. [17, 15, 19]). Encryption uses secret data and should be performed in constant-
time, whereas verification is a public process and does not have this constraint. In
HFEv- signature schemes, the evaluation step is the main part of verification. Efficient
implementations of evaluation have been studied in [7, 16, 19, 20]. The authors of [7]
propose different strategies for the evaluations in F2,F24 and F28 . In [16], the evaluation
is vectorized with ssse3 instructions in F31,F16 and F256. In [19], the authors propose to
optimize the evaluation in F31 and F2256 by evaluating the public-key equations one-by-one.
Their implementation is vectorized with the avx2 instructions set. In [20], the authors
present a faster evaluation with the same instructions set. To do so, they use a “monomial
representation” of the public-key: for each monomial, the corresponding coefficients in
each equation are stored together. We optimize the evaluation with this representation to
obtain new speed records.

Root finding of a HFE polynomial. The main part of the signature generation in Gui
and GeMSS is to find the roots of a polynomial F in F2n [X] with a specific form. Root
finding is a fundamental problem in computer algebra with various applications in discrete
mathematics. A survey of the main root finding methods can be found in [46]. Recently,
the successive resultants algorithm (SRA) [41] has been proposed to find the roots of a
polynomial in small characteristic, and this work has been extended for split polynomials
in general finite fields. In [22], root finding is improved for split and separable polynomials,
when the cardinality of multiplicative group is smooth.
In the case of the HFE polynomial F in F2n [X], F has a sparse structure and its coefficients
are in a field of small characteristic. Moreover, the number of roots is generally small (it
is almost always less than 10 for our parameters). The main challenge is to exploit the
sparse structure of F to improve the complexity of the root finding: it should depend
on the number of coefficients of F and not on its degree. In practice, the Berlekamp
algorithm [46, Algorithm 14.15] is used, which computes GCD(F, (X2n −X) mod F ). The
most costly task is the computation of X2n mod F , also called the Frobenius map, and the
HFE structure can be exploited during the modular reduction by F . In [42], the authors
propose a method to compute the Frobenius map with multi-squaring tables, which is
interesting when the degree of F is (approximately) smaller than n. We study how to
implement the Frobenius map efficiently, optimizing as a function of the parameters.

Arithmetic in F2n . Arithmetic in F2n is a critical part of the root finding algorithm,
because all operations in F2n [X] require it, and is studied in [4, 3, 45, 11]. In particular,
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multiplication in F2n is the most critical operation. This is a well-known task and is
studied in [14, 23, 37, 18]. We choose here to use the PCLMULQDQ instruction (Section 1.7)
to obtain an efficient implementation. This instruction computes the product of two binary
polynomials, each of degree strictly less than 64.

Organization of the Paper and Main Results
We present MQsoft [2]: an efficient open-source library in C for HFE-based schemes such as
GeMSS, Gui and DualModeMS. MQsoft is an improved version of the GeMSS additional
implementation submitted to the NIST post-quantum cryptography competition [39]. Our
library permits to improve the fastest known implementations for GeMSS and Gui, as
well as the signature generation of DualModeMS. The performance results are studied in
Section 5. Table 1 summarizes the obtained speed-ups. For the levels of security 128 and
192 bits of Gui, we modify slightly a security parameter to improve the performance (cf.
Section 5.2).

Table 1: Speed-up of GeMSS, Gui and DualModeMS (best implementation provided for
the NIST submissions versus our implementation). We use a Haswell processor (ServerH).

scheme sec. level key gen. signature gen. signature verif.
GeMSS 128 2.8 1.57 1.98

192 2.4 1.25 1.83
256 2.3 1.23 1.75

Gui 128 13 1.73 1.74
192 14 1.21 1.59
256 19 2.5 1.59

Inner.DualModeMS 128 2.2 1.30 2.1
DualModeMS 128 1.00 1.32 1.00

The structure of MQsoft is depicted in Figure 1 which summarizes the main tasks required
for each cryptographic operation. The critical part of an operation is represented by a
plain arrow, whereas less important operations are represented by dotted arrows.

It is clear from Figure 1, that HFE-based schemes require an efficient implementation of
arithmetic in F2n [X] and so in F2n . This is studied in Section 2. We have implemented state-
of-the-art algorithms for arithmetic in F2n that use vectorization (sse2 and avx2) and the
PCLMULQDQ instruction to improve multiplication in F2n (Section 2.2). The multiplication
is computed with the schoolbook algorithm in blocks of 64 bits for n ≤ 384 and with
Karatsuba otherwise. When PCLMULQDQ is not available, MQsoft uses the multiplication
in F2[X] of the gf2x library (Section 1.7). The modular inverse is computed with the
Itoh-Tsujii Multiplicative Inversion Algorithm (Section 2.5) together with multi-squaring
tables (Section 2.4).
To optimize the arithmetic in F2n , the choice of n must be made before the compilation.
This permits the specialization of the implementation. The library is flexible and allows to
the choice of any n ≤ 576. F2n is built as F2 quotiented by an irreducible polynomial f of
degree n. When it is possible, we choose an irreducible trinomial for f to accelerate the
modular reduction (Section 2.3). The modular reduction by f is vectorized for trinomials
such that the degree of f(x) − xn is strictly less than 128, and for the parameters of
studied schemes. We have vectorized the modular reduction by a pentanomial exclusively
for n ∈ {184, 312, 448, 544}, because they are the parameters of Gui and DualModeMS256.
Otherwise, the modular reduction is implemented for pentanomials such that the degree
of f(x)− xn is strictly less than 33. For n ≤ 576, 56% of the finite fields can be created
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Figure 1: Dependencies between the different operations performed in MQsoft.

with an irreducible trinomial. Our library vectorizes modular reduction for 92% of these
cases. We obtain approximately a speed-up of a factor of 4 compared to the arithmetic in
F2n of NTL.

In Section 4.2, the verifying process is accelerated via an efficient evaluation of multi-
variate quadratic systems using avx2 set instructions. We obtain new speed records
for the constant-time and variable-time evaluations of binary multivariate polynomials.
To do this, we have chosen to use the “monomial representation” as in [20]. For this,
we have stored multivariate quadratic systems of m equations in F2[x1, . . . , xn+v] as a
pair (C,Q) ∈ F2m ×Mn+v(F2m), where Q is a upper triangular matrix such that Qi,j

corresponds to the term xixj , and C is the constant term. Since the multivariate quadratic
systems will be evaluated in Fn+v

2 , x2
i = xi and so, the linear term xi is stored with

the term x2
i of Q. With this representation, the evaluation in x ∈ Fn+v

2 is computed
as C + xQxt. For 256 equations and 256 variables in F2, our variable-time evaluation
is 1.38 times faster than in [20]. To obtain this, we use unrolled loops and a specific
way to extract the terms xi. For the constant-time evaluation, we obtain a performance
similar to [20], which targets Haswell processors. However, on Skylake processors, the
evaluation can be faster by using vector instructions in a specific way, as explained in
Section 4.2. This method saves a factor 1.1 on Skylake (for 256 equations and 256 variables).

The core of the signing process is to find the roots of a univariate HFE polynomial F in
F2n [X], which has a special structure. In particular, F is in the following note:∑

06j<i<n

2i+2j6D

Ai,j X
2i+2j

+
∑

06i<n

2i6D

Bi X
2i

+ C ∈ F2n [X].

Our goal is to exploit this structure to accelerate the root finding. We address this question
in Section 3. We have been able to tweak Berlekamp’s algorithm [46, Algorithm 14.15] to
take advantage of the sparse structure of F .
When D > n, the computation of X2n mod F is done with the repeated squaring algorithm
[46, Algorithm 4.8]. The core of this algorithm is to compute the modular reduction of
the square of an element B ∈ F2n [X] by F . The classical Euclidean division of B2
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by F requires to compute B2 − QF , where Q is the quotient of this division. With a
naive implementation, the multiplication of Q by F costs O(D2) field multiplications.
Using a sparse representation of F , the multiplication costs only O(D log2(D)2) field
multiplications.
So, with a sparse polynomial, the computation of the roots is faster. This suggests to
consider sparse HFE polynomials. In Theorem 1, we prove that making F more sparse
improves the complexity. Because F is a part of the secret-key, the nature of this change
requires a new analysis of security. We observe in practice that removing a small number of
odd degree terms appears not to affect the security. However, the security of this method
must be studied in depth. With Theorem 1, we can save 43.75% of the computations we
would have done by removing only three terms having an odd degree in F . The general
idea to make F more sparse has already been proposed in HFEBoost1, but independently
of this, the proof of Theorem 1 makes explicit a method to improve the complexity. It has
the advantage of being in constant-time because the useless computations are known and
so can be avoided.

Theorem 1. Let H be a HFE polynomial of degree D in F2n [X] where the k-th terms of
highest odd degree have been removed (k ∈ J0, dlog2(D)e − 1K), and let A ∈ F2n [X] be
a square of degree at most 2D − 2. If D is even, then the computation of the classical
Euclidean division (Algorithm 8) of A by H can be accelerated by a factor (D − 1)/( D

2 +
b2dlog2(D)e−k−2c).

When D < n, the strategy of [42] becomes more efficient for computing the Frobenius
map. The idea is to compute a table of X2i mod F to accelerate the modular reduction.
Thus, the squaring modulo F is computed by multiplying its i-th coefficient by the element
X2i mod F from the table for i ∈ J0, D − 1K. The authors of [42] also suggest to do
several squarings in one step, with multi-squaring tables. In Section 3.5, we make an
explicit strategy for doing this efficiently (by exploiting the HFE structure of F when it
is possible), and how to choose the number of squarings to do before the modular reduction.

The performance of both strategies described above depends on the required number of
field multiplications. In Section 3.5, we compute accurately the number of multiplications
of each method, in order to choose the best strategy as a function of the parameters.

1 Preliminaries
We briefly recall here the principle of a signature scheme based on HFEv- [34]. The
public-key in HFEv- is given by a set of m quadratic equations in F2[x1, ..., xn+v]. These
equations are derived from a single polynomial F ∈ F2n [X] (Section 1.2). Verification
requires to evaluate the public polynomials (Section 1.4). We need to compute the roots
of F in order to generate a signature (Section 1.3). From now, we always assume that the
base field is F2. In Section 1.5, we introduce the specificities of GeMSS and Gui which are
two submissions to the NIST PQC process based on HFEv-.

1.1 Main Parameters
The main parameters involved are:

• D, a positive integer that corresponds to the degree of a secret polynomial. D is
such that D = 2i for i ≥ 0, or D = 2i + 2j for i 6= j, and i, j ≥ 0,

• m, number of equations in the public-key,
1https://www-polsys.lip6.fr/Links/hfeboost.html

https://www-polsys.lip6.fr/Links/hfeboost.html
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• n, the degree of a field extension of F2,

• v, the number of vinegar variables,

• ∆, the number of minus (the number of equations in the public-key is such that is
m = n−∆),

• nb_ite ≥ 1, number of iterations in the verification and signature processes.

1.2 Keypair Generation
Secret-key. It is composed by a couple of invertible matrices2 (S,T) ∈ GLn+v (F2) ×
GLn (F2) and a polynomial F ∈ F2n [X, v1, . . . , vv] with the following structure:∑

06j<i<n

2i+2j6D

Ai,j X
2i+2j

+
∑

06i<n

2i6D

βi(v1, . . . , vv)X2i

+ γ(v1, . . . , vv), (1)

where Ai,j ∈ F2n ,∀i, j, 0 6 j < i < n, each βi : Fv
2 → F2n is linear and γ(v1, . . . , vv) :

Fv
2 → F2n is quadratic. The variables v1, . . . , vv are called the vinegar variables. We shall

say that a polynomial F ∈ F2n [X, v1, . . . , vv] with the form of (1) has a HFEv-shape. The
particularity of a polynomial F (X, v1, . . . , vv) with HFEv-shape is that for any specialization
of the vinegar variables the polynomial F becomes a HFE polynomial [40], i.e. univariate
polynomial of the following form:∑

06j<i<n

2i+2j6D

Ai,j X
2i+2j

+
∑

06i<n

2i6D

Bi X
2i

+ C ∈ F2n [X], (2)

with Ai,j , Bi, C ∈ F2n ,∀i, j, 0 6 j < i < n. By abuse of notation, we will refer to D as the
degree of the HFEv polynomial.
The special structure of (1) is chosen such that its multivariate representation over the
base field F2 is composed by quadratic polynomials in F2[x1, . . . , xn+v]. This is due to the
special exponents chosen in X that have all a binary decomposition of Hamming weight at
most 2.
Let θ = (θ1, . . . , θn) ∈ (F2n)n be a basis of F2n over F2. We set

ϕ : E =
n∑

k=1
ek · θk ∈ F2n −→ ϕ(E) = (e1, . . . , en) ∈ Fn

2 .

We can now define a set of multivariate polynomials f = (f1, . . . , fn) ∈ F2[x1, . . . , xn+v]n
derived from a HFEv polynomial F ∈ F2n [X, v1, . . . , vv] by:

F

(
n∑

k=1
θkxk, v1, . . . , vv

)
=
∑n

k=1 θkfk . (3)

For easing the notations, we now identify the vinegar variables (v1, . . . , vv) = (xn+1, . . . , xn+v).
Besides, we shall say that the polynomials f1, . . . , fn ∈ F2[x1, . . . , xn+v] are the components
of F over F2.
In the implementation, we compute the components of F by using directly Equation (3).
We replace X by

∑n
k=1 θkxk, v1, . . . , vv in the expression of F , then we use a rearrangement

of terms which minimizes the number of multiplications. This is detailed in Section 4.1.
2In full generality, one can have affine transformations. We choose linear transformations for the sake

of simplicity.
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Public-key. It is given by a set of m quadratic square-free non-linear polynomials p =
(p1, . . . , pm) ∈ F2[x1, . . . , xn+v]m. It is obtained from the secret-key by taking the first
m = n−∆ polynomials of:(

f1
(
(x1, . . . , xn+v)S

)
, . . . , fn

(
(x1, . . . , xn+v)S

))
T, (4)

and reducing it modulo the field equations, i.e. modulo 〈x2
1 − x1, . . . , x

2
n+v − xn+v〉.

We summarize the public-key/secret-key generation in Algorithm 1. In practice, we merge
the steps 6 and 7 by removing the ∆ last columns of T during the vector matrix product.

Algorithm 1 PK/SK generation in HFEv- schemes
1: procedure KeyGen
2: Randomly sample (S,T) ∈ GLn+v (F2)×GLn (F2)
3: Randomly sample F ∈ F2n [X, v1, . . . , vv] with HFEv-shape of degree D
4: sk← (F,S,T) ∈ F2n [X, v1, . . . , vv]×GLn+v (F2)×GLn (F2)
5: Compute f = (f1, . . . , fn) ∈ F2[x1, . . . , xn+v]n such that:

F

(
n∑

k=1
θkxk, v1, . . . , vv

)
=

n∑
k=1

θkfk

. See Section 4.1 for details on Step 5.
6: Compute (p1, . . . , pn) =(

f1
(
(x1, . . . , xn+v)S

)
, . . . , fn

(
(x1, . . . , xn+v)S

))
T mod 〈x2

1−x1, . . . , x
2
n+v−xn+v〉 ∈ F2[x1, . . . , xn+v]n

7: pk← p = (p1, . . . , pm) ∈ F2[x1, . . . , xn+v]m . Take the first m = n−∆
polynomials computed in Step 6.

8: return (sk, pk)
9: end procedure

1.3 Signing process
The main step of the signature process requires to invert the public-key, that is to say
solving:

p1(x1, . . . , xn+v)− d1 = 0, . . . , pm(x1, . . . , xn+v)− dm = 0. (5)

for d = (d1, . . . , dm) ∈ Fm
2 .

To do so, we randomly sample r = (r1, . . . , r∆) ∈ F∆
2 and append it to d. This gives

d′ = (d, r) ∈ Fn
2 . We compute then D′ = ϕ−1(d′ × T−1) ∈ F2n and try to find a root

(Z, z1, . . . , zv) ∈ F2n × Fv
2 of the multivariate equation:

F (Z, z1, . . . , zv)−D′ = 0.

To solve this equation, we take advantage of the special HFEv-shape. That is why, we
randomly sample v ∈ Fv

2 and consider the univariate polynomial F (X,v) ∈ F2n [X]. This
yields a HFE polynomial according to Section 1.2. We then find the roots of the univariate
equation:

F (X,v)−D′ = 0.
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If there is a root Z ∈ F2n , we return (ϕ(Z),v)× S−1 ∈ Fn+v
2 .

A core part of the signature generation is then the computation of the roots of FD′(X) =
F (X,v)−D′. To this end, we use the Berlekamp algorithm as described in [46, Algorithm
14.15], which requires mainly to compute:

GCD(X2n

−X mod FD′ , FD′).

We provide in Section 3.1 the best methods to compute X2n mod FD′ and the GCD (both
in function of n and D).

We can now present a way to define the inversion function (Algorithm 2):

Algorithm 2 Inverse map of the public-key
1: procedure Invp(d ∈ Fm

2 , sk = (F,S,T) ∈ F2n [X, v1, . . . , vv]×GLn+v (F2)×GLn (F2))
2: repeat
3: r ∈R F∆

2 . The notation ∈R stands for randomly sampling.
4: d′ ← (d, r) ∈ Fn

2
5: D′ ← ϕ−1(d′ ×T−1) ∈ F2n

6: v ∈R Fv
2

7: FD′(X)← F (X,v)−D′
8: (·,Roots)← FindRoots(FD′) . Call to Algorithm 6.
9: until Roots 6= ∅
10: Z ∈R Roots
11: return (ϕ(Z),v)× S−1 ∈ Fn+v

2
12: end procedure

The signing algorithm in GeMSS and Gui is an iterative process. The basic idea is to call
Invp nb_ite times. More precisely, the signing process is in the following algorithm:

Algorithm 3 Signing process
1: procedure Sign(M ∈ {0, 1}∗, sk ∈ F2n [X, v1, . . . , vv]×GLn+v (F2)×GLn (F2) , Invp)
2: H← HASH(M)
3: S0 ← 0 ∈ Fm

2
4: for i from 1 to nb_ite do
5: Di ← first m bits of H . Si ∈ Fm

2 and Xi ∈ F∆+v
2

6: (Si,Xi)← Invp(Di ⊕ Si−1) . ⊕ is the component-wise XOR
7: H← HASH(H)
8: end for
9: return (Snb_ite,Xnb_ite, . . . ,X1)
10: end procedure

nb_ite is a parameter that can be easily computed from m and the level of security.

1.4 Verifying process

Naturally, the verifying process is also iterative as shows in Algorithm 4. The main part
of this process is still to evaluate the public-key. We describe how to implement this step
efficiently in Section 4.2.
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Algorithm 4 Verifying process
1: procedure Verify(M ∈ {0, 1}∗,nb_ite > 0, sm ∈ Fm+nb_ite(∆+v)

2 , pk = p ∈
F2[x1, . . . , xn+v]m)

2: (Snb_ite,Xnb_ite, . . . ,X1)← sm
3: H← HASH(M)
4: D1 ← first m bits of H
5: for i from 2 to nb_ite do
6: H← HASH(H)
7: Di ← first m bits of H
8: end for
9: for i from nb_ite− 1 to 0 do

10: Si ← p(Si+1,Xi+1)⊕Di+1
11: end for
12: return VALID if S0 = 0 and INVALID otherwise.
13: end procedure

1.5 GeMSS and Gui

GeMSS and Gui are essentially based on the same principle. They still differ in the choice
of parameters.

Choice of parameters. Table 26 summarizes the performance of the best implementations
of GeMSS and Gui provided for the NIST submissions, in function of the parameters.
For GeMSS, we consider the additional implementation. For Gui, we take the PCLMULQDQ
additional implementation. Gui is implemented with the modified algorithms to achieve
EUF-CMA security property [17, Section 1.6]. It is not the case for the GeMSS imple-
mentation. For this reason, we have modified the Gui additional implementation. This
implementation provides the cryptographic operations of Gui with and without the EUF-
CMA security property. We just replace the algorithms by their version without this
property. Compared to the original implementation, this implies mainly a speed-up during
the signature generation.
In Gui, the parameters are chosen to minimize the time of signing and verifying a signature.
To do it, small values of D are chosen, and larger values of m are used. This choice implies
to increase n, and so the size of the public-key. In GeMSS, it is the opposite. The goal
is to minimize the size of the public-key. This leads to smaller values of n. This choice
implies to take larger values of D.
As soon as m is fixed, the number of iterations required can be derived. In fact, the original
parameters of Gui do not always provide the claimed security. The attack described in
[21, Theorem 6.2.1] has a complexity O(2m nb_ite

nb_ite+1 ). So, with m = 168 and nb_ite = 2,
the original parameters of Gui-184 provide a security of only 112 bits. This problem has
been mentioned in NIST’s pqc-forum mailing list by W. Beullens the 04/27/2018. The
Gui designers have answered the 06/15/2018, and choose to set the parameter nb_ite to 3.
However, this provides only 126 bits of security. To reach 128 bits of security, we should
set nb_ite to 4 (or to set m to 171). For completeness, we have measured Gui-184 for
these three values of nb_ite. The modification slows down a factor nb_ite

2 the signature
generation and the verifying process of Gui-184.

To find a root of F (X, v) − D′. During the signature generation, F (X,v)−D′ cannot
have solution. In GeMSS, r and v are changed while F (X,v) −D′ does not have roots
(cf. Algorithm 2). Then, when there are roots, one is deterministically chosen for fixed
D′, by using the SHA-3 of D′ as a randombytes generator. In Gui, v is changed while
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F (X,v)−D′ does not have a unique root.
In practice, d is generated from the hash of a document. To do it, GeMSS uses SHA-3,
whereas Gui uses SHA-2. The output size of the hash functions is the double of the level of
security. In MQsoft, we have chosen the SHA-3 function from the Keccak Code Package
[26] and the SHA-2 function from OpenSSL.

1.6 Data Structure
We describe here the data structure used to store elements of F2n and F2n [X]. This
representation is crucial for the efficiency of our implementation. This is especially true for
binary fields since operations in F2 can be naturally vectorized. The arithmetic in F2n [X]
is used during the root finding of a HFE polynomial. To be efficient, it is important to
distinguish dense polynomials which appear during the computation of the Frobenius map
and the GCD, from a HFE polynomial which is used to reduce X2n −X. We can notice that
the HFE polynomial is sparse since it has only K = O(log2(D)2) non-zero coefficients.

Representation of elements in F2n . The field F2n is defined as F2[X]
f(x) with f(x) being

an irreducible polynomial of degree n in F2[x]. We have chosen the polynomial basis [31].
An element of F2n is represented by a polynomial in F2[x] of degree at most n− 1. The
coefficients are stored as a vector of bits, requiring

⌈
n
w

⌉
words, where w is the word size

(in bits). The j-th bit of the i-th word is the coefficient of the term of degree wi+ j, for
i ∈ J0,

⌈
n
w

⌉
− 1K and j ∈ J0, w − 1K. It is setting to zero when (wi+ j) ≥ n.

Example 1. Let w = 64 and P = x36 +x4 ∈ F240 . To simplify the notations, we represent
vectors of bits as 64-bit integers. P is stored as 0x0000001000000010. In particular, the
bits from 37 to 63 are setting to zero.

Representation of dense polynomials in F2n [X]. An element of F2n [X] is represented
by its degree δ and a vector of (δ + 1) coefficients. The coefficients are stored from lower
to higher degree of the corresponding terms in a buffer. The degree is stored in a local
variable, excepted for the implementation of the fast GCD in Section 3.6, because it requires
matrices inM2(F2n [X]). In this case, we use a C structure to store the degree and the
pointer toward the coefficients buffer.

Example 2. Let P = X8 +αX7 + (α+ 1)X6 +X5 +αX ∈ F4[X] and f(α) = α2 +α+ 1.
P is stored as 8, (0, α, 0, 0, 0, 1, α+ 1, α, 1).

Representation of HFE polynomials in F2n [X]. In HFEv scheme, the HFEv polynomial
is a part of the secret-key. During the signature generation (cf. Section 1.3), the vinegar
variables of the HFEv polynomial are evaluated to obtain a HFE polynomial. Its degree D
is a parameter of security and is assumed to be known. It is defined by the C directive
#define. A HFE polynomial in F2n [X] is represented as a vector of coefficients where only
terms X0, X2i and X2i+2j are stored. It is chosen monic and so the leading term is not
stored. If P is in F2n [X], we denote by PHFE its HFE representation.

Example 3. Let P = X16 + αX12 + (α+ 1)X10 + αX ∈ F4[X] and f(α) = α2 + α+ 1.
PHFE is stored as (0, α, 0, 0, 0, 0, 0, 0, 0, α+1, α). Only the coefficients of terms with a degree
in {0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12} are stored.

1.7 Experimental Platform and Benchmarked Libraries
Tables 2 and 3 summarize the main informations about the platform used in the exper-
imental measurements. LaptopS is used for all measurements, excepted in Section 4.2
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Table 2: Processors.

Computer Processor Frequency Max freq. Architecture
LaptopS Intel(R) Core(TM) i7-6600U CPU 2.60 GHz 3.40 GHz Skylake
ServerH Intel(R) Xeon(R) CPU E3-1275 v3 3.50 GHz 3.90 GHz Haswell
DesktopH Intel(R) Core(TM) i7-4790 CPU 3.60 GHz 4.00 GHz Haswell
DesktopS Intel(R) Core(TM) i7-6700 CPU 3.40 GHz 4.00 GHz Skylake

Table 3: OS and Memory.

Computer OS RAM L1d L1i L2 L3
LaptopS Ubuntu 16.04.5 LTS 32 GB 32 KB 32 KB 256 KB 4096 KB
ServerH CentOS Linux 7 (Core) 8192 KB
DesktopH Debian GNU/Linux 9 16 GB
DesktopS

and in Section 5. For this latter, we present the performance of MQsoft in function of the
processor. Our implementation targets Intel 64-bit processors that support the PCLMULQDQ
instruction. This allows to improve the performance of multiplication in F2n (cf. Section
2.1 and 2.2). We also take advantage of the sse2, ssse3 and avx2 instruction sets to
speed-up the implementation of arithmetic in F2n (Section 2), the vector matrix product
in F2 during the keypair generation (Section 5.4), and the evaluation of the public-key
during the verifying process (Section 4.2). We explain here the main vector instructions3

that MQsoft exploits:

• PCLMULQDQ: this instruction computes the product of two binary polynomials such
that their degree is strictly less than 64.

• PSHUFB: this instruction from ssse3 takes 16 indices on 4 bits, and searches the
corresponding 8-bit elements in a table of size 128 bits.

• VPSHUFB: this instruction from avx2 performs two times PSHUFB.

• PSLLDQ and PSRLDQ: these instructions from sse2 computes respectively the left and
right shift of a 128-bit register by a multiple of 8 bits.

• PALIGNR: this instruction from ssse3 concatenates two registers 128 bits, shifts the
concatenation at right by a multiple of 8 bits, then return the 128 lower bits of the
result.

• VPBROADCASTQ: this instruction from avx duplicates four times a 64-bit integer on a
256-bit register.

• VPERMQ: this instruction from avx2 permutes the 64-bit parts of a 256-bit register.
In particular, it can duplicate one 64-bit part four times.

• VPMASKMOVQ: this instruction from avx2 loads four contiguous 64-bit integers from a
buffer, then applies a mask which permits to set to zero 64-bit parts.

• POPCNT: this instruction counts the number of bits set to 1 in 64-bit integers. It is
used to speed-up the dot product of vectors in F2.

3For more informations, we refer to the Intel Intrinsics Guide (https://software.intel.com/sites/
landingpage/IntrinsicsGuide/#).

https://software.intel.com/sites/landingpage/IntrinsicsGuide/#
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#
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We benchmarked our software toolkit against the following softwares or libraries.

• Magma ([12], version 2.23-6). Magma is a computer algebra software, well-known to be
very efficient over finite fields.

• NTL ([43], version 10.5.0), installed with GMP ([28], version 6.1.2). NTL is one of the
best library for number theory. It is implemented in C++.

• gf2x ([14],version 1.2). gf2x is a C implementation of the state-of-the-art multiplica-
tions in F2[X]. The multiplication algorithm depends on the degree of the operands
and the vector instructions set available. When PCLMULQDQ is not available, MQsoft
uses the gf2x multiplication.

Magma is running with magma.avx64.dyn.exe to take advantage of vector instructions. In
our tests, the avx64 version optimizes mainly the performance of multiplication in binary
fields.
The measurements used one core of the CPU, and the C code was compiled with gcc
-O4 -mavx2 -mpclmul -mpopcnt -funroll-loops. We use the version 6.4.0 of gcc. Turbo
Boost and Enhanced Intel Speedstep Technology are disabled to have more accurate
measurements, excepted when we use DesktopH and DesktopS. In practice, Turbo Boost
generates a speed-up of 1.2 on LaptopS and 1.1 on ServerH.

2 Efficient Arithmetic in F2n

Arithmetic in F2n is the core of the signature generation (Section 1.3) and the computation
of f during the keypair generation (Section 1.2). The main involved parameters (Section
1.1) are n the degree of the field extension, v the number of vinegar variables, D the degree
of the HFEv polynomial and nb_ite a constant between two and four in GeMSS and Gui.
In Section 4.1, we explain how to generate efficiently the inner secret polynomials of f
(Equation (3)). This requires O(n log2(D)) squarings in F2n , O(n log2(D)(n+ v+ log2(D))
multiplications in F2[X] and O(n(n + v + log2(D))) modular reductions. In Section 3,
the signature generation requires O(nb_ite× (nD log2(D)2 +D2)) field multiplications,
O(nb_ite× nD) field squarings and O(nb_ite×D) field inversions.
We use the polynomial representation defined in Section 1.6. It is the most efficient
representation when PCLMULQDQ is available [45]. To compute the square (respectively
the multiplication) of B in F2n , we choose to compute the square (respectively the
multiplication) of B in F2[X] before to reduce the reduction by the univariate polynomial
defining the extension.

Table 4: Performance of the PCLMULQDQ instruction in function of the architecture, as
presented in the Intel Intrinsics Guide.

Architecture Skylake Broadwell Haswell Ivy Bridge
Latency 7 5 7 14
Throughput (CPI) 1 1 2 8

Table 4 presents the cost of PCLMULQDQ in function of the architecture. The choice of the
best algorithm of multiplication in F2n depends on the processor. Our choices target the
Skylake processors, which use only one CPI (cycle per instruction).

2.1 Squaring in F2n

Squaring is used during the root finding algorithm (Section 3) which is the core of the
signature generation (Section 1.3). It is also used during the so called Itoh-Tsujii algorithm
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[33] which computes the modular inverse in F×2n (Section 2.5).
In binary fields, the squaring of B =

∑n−1
i=0 αix

i ∈ F2n can be performed in linear time
[35]. The linearity of the Frobenius endomorphism implies that B2 =

∑n−1
i=0 αix

2i. Since
we have stored B as a vector of bits, squaring is the equivalent to insert a null bit between
each bit of B.

Example 4. Let B = x3 +x2 + 1 ∈ F24 . B is stored as the binary integer 1101. Its square
is B2 = x6 + x4 + 1, which is represented as 1010001.

To compute the square of a n-bit element, we divide it into words of 64 bits. For each one,
the PCLMULQDQ instruction computes directly the binary polynomial multiplication of the
64-bit element by itself. This method requires

⌈
n
64
⌉
calls to PCLMULQDQ.

We have compared this method to table lookups of square [3]. We have implemented
Algorithm 1 of [3] which uses sse2 instructions and PSHUFB from ssse3, and an avx2
version that uses the VPSHUFB instruction. The PSHUFB instruction performs the search
of the square of 16 elements on 4 bits in a table in constant-time, and the VPSHUFB
instruction performs two times PSHUFB. On Skylake, both are less efficient than the
PCLMULQDQ instruction, whereas on Haswell, we observe the opposite behavior because
PCLMULQDQ is slower (Table 4).
Table 5 summarizes the performance of squaring functions which are proposed in our
library. The experimental process consists to compute the square of elements from a small
buffer, then to measure the average cost of one operation. In order to compute the square
with table lookups, the PSHUFB instructions must be used by pair: one computes the
square of lower 4-bit elements of each byte, whereas the second is used for the higher 4-bit
elements. For this reason, the squaring performance using PSHUFB depends only on

⌈
n

128
⌉
.

For the squaring using PCLMULQDQ, the implementation for
⌈

n
64
⌉
equals to 3 is slower than

for
⌈

n
64
⌉
equals to 4. Indeed, 3 is odd and the 128-bit load and store instructions are less

efficient when they are used to load and store a 64-bit element. The best squaring is the
one using the PCLMULQDQ instruction: on the Skylake processors, it costs only one cycle of
throughput, but seven cycles of latency (Table 4). However, the latency can be used to do
other instructions, which improves the performance.

Table 5: Number of cycles for computing the square of an element of F2[X] of degree
n− 1, with MQsoft. We use a Skylake processor (LaptopS).⌈

n
64
⌉

Squaring
PSHUFB VPSHUFB PCLMULQDQ

1 5.6 × 2.2
2 5.7 × 4.6
3 8.9 × 6.6
4 9.0 7.8 5.8
5 13.2 × 6.9
6 13.2 × 7.9
7 17.5 × 9.2
8 17.5 12.2 10.5
9 21.9 × 11.5

2.2 Multiplication in F2n

The multiplication of two distinct elements in F2n is a central operation involved in the
keypair generation and the signing process. In MQsoft, we adapt the multiplication algo-
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rithm in function of n. We target the Skylake processors.

When n ≤ 384, we use a schoolbook multiplication by blocks of 64 bits. We use the
PCLMULQDQ instruction for multiplying each block. Then,

⌈
n
64
⌉2 calls to PCLMULQDQ are

required. This method is naturally in constant-time. Our implementation uses PCLMULQDQ
which implies to use sse2 instructions. We use also the PALIGNR instruction from ssse3
to improve the implementation. This instruction concatenates two 128-bit registers and
permits to extract 128 bits from the result. We use it to align on 128 bits the results of
the multiplications.

When 385 ≤ n ≤ 576, an element of F2n requires 7, 8 or 9 words, and Karatsuba multipli-
cation [46, section 8.1] becomes faster than the schoolbook method. We split each input in
two: the low bits create a 255 degree polynomial, and the remaining bits create a n− 257
degree polynomial. Thus, the Karatsuba algorithm requires one multiplication of 255
degree polynomials, one multiplication of n−257 degree polynomials and one multiplication
of max(255, n− 257) degree polynomials. These multiplications are computed with the
schoolbook multiplication, requiring 16+

⌈
n−256

64
⌉2+max(16,

⌈
n−256

64
⌉2) calls to PCLMULQDQ.

The trade-off between the schoolbook multiplication and Karatsuba depends on the
performance of PCLMULQDQ (Table 4). For the Skylake processors, this instruction costs one
CPI, which makes schoolbook multiplication more efficient for n ≤ 384. For the Haswell
processors, PCLMULQDQ costs two CPI. This decreases the trade-off because each call to
PCLMULQDQ is more penalizing. When

⌈
n
64
⌉
is equals to 3, we remark that the Karatsuba

multiplication in F2n is already faster on Haswell. In practice, we have compared the
schoolbook multiplication to the three-term Karatsuba-like formulae described in [38,
Equation 3 with C = 0]. The latter is slightly faster and requires only 6 calls to PCLMULQDQ.

Table 6 compares our multiplication with gf2x. As in Section 2.1, we measure the average
cost to multiply elements from a small buffer. The multiplication of gf2x is sometimes
abnormally slow. This probably dues to the fact that the implementation uses vector and
no vector instructions in the same function, which penalizes it. This is probably the first
reason to explain that our multiplication is faster. The second reason is that gf2x uses
Karatsuba, which is slower than schoolbook multiplication for n ≤ 384 on Skylake. We
have also remarked that installing NTL with gf2x decreases slightly the performance. For
this reason, NTL is not installed with gf2x on our experimental platform.

Table 6: Number of cycles to multiply two elements of F2[X] of degree n− 1. We use a
Skylake processor (LaptopS). ⌈

n
64
⌉

gf2x MQsoft
1 3.4 3.4
2 7.7 6.8
3 37.0 15.5
4 23.1 21.9
5 47.0 34.9
6 54.3 45.7
7 142.2 59.2
8 91.1 65.5
9 131.8 93.3
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2.3 Modular Reduction and Field Operation in F2n

In this section, we want to reduce R =
∑2n−2

i=0 rix
i the result of the previous multiplica-

tion/squaring in F2n . The choice of the irreducible polynomial f defining F2n (Section 1.6)
is important for the modular reduction: it is faster when f is a trinomial or pentanomial
[30, 3, 4].

For completeness, we explain here the principle of modular reduction by a trinomial.
The method for pentanomials uses the same idea, and it is explained in Appendix A. Let
f3(x) = xn+xk1 +1 such that 0 < k1 ≤

⌈
n
2
⌉
. Let R0 =

∑n−1
i=0 rix

i, Rk1 =
∑2n−k1−1

i=n rix
i−n

and Sk1 =
∑2n−2

i=2n−k1
rix

i−2n+k1 , we have:

R = R0 + (Rk1 + Sk1x
n−k1)xn. (6)

We do a first step of reduction by f3 by replacing xn by f3(x)− xn in Equation (6). We
obtain:

R = R0 + (Rk1 + Sk1x
n−k1) + (Rk1x

k1 + Sk1x
n) mod f3.

We iterate a new step of reduction:

R = R0 +Rk1 + Sk1x
n−k1 +Rk1x

k1 + Sk1(f3(x)− xn) mod f3. (7)

In Equation (7), the degree of R is max(n − 1, 2(k1 − 1)). So, R is reduced modulo f3
only if 2(k1 − 1) < n. In two steps of reduction, we have then a method to compute the
modular reduction for all trinomial such that 2(k1 − 1) < n.

To optimize the computation of (7), we factorize by (f3(x) − xn). In this way, we can
rewrite R as:

R = R0 + Sk1x
n−k1 + (Rk1 + Sk1)(f3(x)− xn) mod f3. (8)

There are mainly two methods [11] to compute (8). The first is the shift-and-add strategy:
(Rk1 + Sk1)(f3(x) − xn) is computed as Q + Qxk1 with Q = Rk1 + Sk1 . The second
is the mul-and-add strategy: the multiplication by (f3(x) − xn) is computed with the
PCLMULQDQ instruction. In this case, it is recommended to choose k1 strictly less than 64.
In this way, (f3(x)− xn) can be directly used as one of the operand of PCLMULQDQ instruc-
tion. We choose the first method because it requires a small number of low cost instructions.

These methods can be optimized for specific values of k1 and n. Firstly, the case k1 = 1
permits to avoid computations because Sk1 = 0. Secondly, a classical trick is the use of
the PSLLDQ and PSRLDQ instructions which permit to shift 128-bit registers by a multiple
of 8 bits. The PALIGNR instruction can also be used. As it is explained in Section 1.7, it
permits to concatenate two registers 128 bits, then to extract 16 contiguous bytes. We list
here cases where these instructions could be used:

• For the extraction of Rk1 from R when n is a multiple of 8. However, it does not
exist irreducible trinomials such that n is a multiple of 8 [44].

• For the extraction of Sk1 from R when 2n− k1 is a multiple of 8.

• To obtain Sk1x
n−k1 from Sk1 when n− k1 is a multiple of 8.

• For the multiplication by xk1 when k1 is a multiple of 8.
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For the shift-and-add strategy, we can also compute (Rk1 + Sk1)(f3(x)− xn) as Q′

xk1 +Q′

with Q′ = Rk1x
k1 + Sk1x

k1 . In this case, the 128-bit shifts improve the implementation in
the following cases:

• For the extraction of Rk1x
k1 from R when n− k1 is a multiple of 8.

• For the extraction of Sk1x
k1 from R when 2n− 2k1 is a multiple of 8.

• To obtain Sk1x
n−k1 from Sk1x

k1 when n− 2k1 is a multiple of 8.

• For the division by xk1 when k1 is a multiple of 8.

We have implemented the shift-and-add method for trinomials with different SIMD instruc-
tion sets. ssse3 is used to improve the implementation with the PALIGNR instruction. We
have also implemented the shift-and-add method for pentanomials, but it is vectorized only
for n ∈ {184, 312, 448, 544}, because they are the parameters of Gui and DualModeMS256.
For the implementation of HFE-based schemes, we estimate that the best strategy is to
choose n such that it exists an irreducible trinomial of degree n.
The performance of the modular reduction depends on the context. In Table 7, we reduce
products from a small buffer, then we measure the cost of one modular reduction on
average. We have removed the optimizations using PSLLDQ and PSRLDQ to have comparable
measurements. In practice, they are used (for example, the ssse3 modular reduction for
n = 375 takes 12.2 cycles with these optimizations). The ssse3 version is two times faster
that without vector instructions because sse2 permits to perform two 64-bit instructions in
one instruction. The avx2 implementation is slightly faster than ssse3 version, probably
because the avx2 is faster to load and store data.

Table 7: Number of cycles to compute the modular reduction of an element F2[X] of
degree 2n− 2 by f , with MQsoft. We use a Skylake processor (LaptopS).

(n, k1) Rem
Without SIMD ssse3 avx2

(62, 29) 6.6 6.6 ×
(126, 21) 10.9 7.2 ×
(191, 9) 14.5 10.7 10.8
(252, 15) 19.2 11.1 10.2
(314, 15) 24.1 14.6 ×
(375, 16) 29.5 14.9 ×
(441, 7) 34.2 17.8 ×
(511, 10) 37.1 18.6 16.9
(574, 13) 40.3 24.5 ×

In Table 8, the modular reduction is also measured when it is used with multiplication in
F2[X]. The performance of multiplication in F2n depends on the context. For this reason,
we measure it in two ways:

• Left value: we measure the cost of one field multiplication on average during the
computation of the naive exponentiation function (xi is computed as xi−1x). Each
result depends on the previous result, and the data are already loaded.

• Right value: we measure the cost of one field multiplication on average to compute
the multiplication of elements of two buffers. The data are independent but each
multiplication requires to load input and to store output.
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Table 8: Number of cycles to compute the multiplication in F2n in function of the modular
reduction, with MQsoft. We use a Skylake processor (LaptopS).

(n, k1) Rem
ssse3 avx2

exp. buffer exp. buffer
(62, 29) 17.3 8.5 × ×
(126, 21) 26.6 14.8 × ×
(191, 9) 32.8 25.9 44.7 27.2
(252, 15) 40.2 35.6 53.7 36.9
(314, 15) 55.0 51.5 × ×
(375, 16) 65.9 65.8 × ×
(441, 7) 80.2 82.8 × ×
(511, 10) 90.7 91.5 103.7 95.3
(574, 13) 114.9 120.3 × ×

We remark that for n less than 375, the multiplication on independent data is faster. It is
probably caused by the latency of the PCLMULQDQ instruction. The field multiplication with
modular reduction using sse2 is the fastest, because the PCLMULQDQ instruction requires
to use 128-bit registers. When sse2 is used with avx2, the implementation pays a penalty.
However, this problem will be solved with the VPCLMULQDQ instruction on the future Ice
Lake processors [1].

In Table 9, the modular reduction is measured when it is used with squaring in F2[X]. As
for the multiplication in F2n , the performance of squaring depends on the context. For
this reason, we measure it in two ways:

• Left value: we measure the cost of one field squaring on average during the raising of
an element of F2n at the power 2i (x2i is computed as (x2i−1)2). Each result depends
on the previous result, and the data are already loaded.

• Right value: we measure the cost of one field squaring on average to compute the
squaring of elements of one buffer. The data are independent but each squaring
requires to load input and to store output.

Table 9: Number of cycles to compute the squaring in F2n in function of the enabled
instructions, with MQsoft. We use a Skylake processor (LaptopS).

(n, k1) PSHUFB VPSHUFB PCLMULQDQ PCLMULQDQ, avx2
multi-sqr buffer multi-sqr buffer multi-sqr buffer multi-sqr buffer

(62, 29) 14.9 9.2 × × 17.3 7.6 × ×
(126, 21) 18.6 11.8 × × 21.5 10.0 × ×
(191, 9) 24.0 18.4 × × 23.3 14.1 35.0 15.7
(252, 15) 25.2 20.0 30.8 16.8 23.9 14.7 37.4 16.3
(314, 15) 29.1 26.3 × × 25.2 22.0 × ×
(375, 16) 28.9 27.0 × × 25.8 21.3 × ×
(441, 7) 34.8 34.8 × × 27.4 25.1 × ×
(511, 10) 38.4 36.4 35.7 28.7 26.7 24.2 39.8 28.0
(574, 13) 45.5 43.5 × × 29.7 31.2 × ×

Table 9 shows the performance of squaring in F2n . The squaring using PCLMULQDQ is the
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most efficient. For the same reasons that for the multiplication in F2n , the best modular
squaring is the one using only sse2 modular reduction. This is the default setting in MQsoft.

All measured functions in this Section are available is our library. They are implemented
in constant-time. The modular reduction by pentanomials is also available to make the
library more complete, but is not yet vectorized (excepted for n ∈ {184, 312, 448, 544}).

2.4 Multi-squaring in F2n

The multi-squaring [45] is an operation computing successively several squarings. This
operation is important to compute the inverse in F×2n (in Section 2.5). Algorithm 5 requires
to compute B2i , for B ∈ F2n and various values of i. For small i, the best way is to
raise B at the power two i times (as in Section 2.3). For larger i, the best method is to
use precomputed multi-squaring tables. Let B =

∑n−1
k=0 αkx

k ∈ F2n for F2n = F2/(f(x))
(Section 1.6), then B2i = (

∑n−1
k=0 αkx

k2i) mod f . The idea of multi-squaring tables is to
store xk2i mod f for k ∈ J0, n− 1K. Then, multi-squaring is equivalent to the dot product
of the vectors (α0, . . . , αn−1) and (1, x2i mod f, . . . , x(n−1)2i mod f). The table requires
to store n− 1 elements in F2n (1 is not formally stored), and the multi-squaring requires
n − 1 multiplications between elements of F2 and F2n and n − 1 additions in F2n . In
a variable-time implementation, the multiplication by αk can be done by a conditional
statement. In a constant-time implementation, the value of αk is duplicated in the mask
variable, in the way to replace the multiplication by a bitwise AND with this mask. This
process is explained in Section 4.2.

In variable-time implementation, the performance can be improved with larger tables [36].
Rather that to compute αkx

k2i mod f coefficient by coefficient, the coefficients can be
grouped by block of B, and the 2B possibility of

∑B−1
k=0 αjB+kx

(jB+k)2i can be precomputed
for j ∈ J0,

⌈
n
B

⌉
− 1K. This method cannot be used in a constant-time implementation

because of the timing attack on the memory latency. It permits to attack the index of
the precomputed table. In our implementation, we use a constant-time implementation of
multi-squaring.

2.5 Modular Inverse in F×
2n

The computation of the inverse in F×2n is often required for the arithmetic in F2n [X]. In our
case, it is required to compute the GCD (Section 3.6). To compute the modular inverse of
A ∈ F×2n , there are mainly two methods. The first is to use extended Euclidean algorithm
(EEA) [46, Algorithm 3.6]. This method is not constant-time. The second is to compute
A−1 = A2n−2 by Fermat’s little theorem. The exponentiation can be done with the square
and multiply method [46, Algorithm 4.8], costing n− 1 squarings and n− 2 multiplications
in F2n . The Itoh-Tsujii Multiplicative Inversion Algorithm (ITMIA) [33] permits to modify
the way to compute the power with an addition chain. It requires n − 1 squarings and
only O(log2(n)) multiplications in F2n . The number of multiplications depends on the
length of the chosen addition chains. ITMIA is described in Algorithm 5 for a specific
addition chain which consists to read the bits of n− 1 from MSB to LSB. At the end of
the each iteration, the variable inv is always A2val−1.
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Algorithm 5 ITMIA for a specific addition chain.
function Inverse(A ∈ F×2n)

val← 1 . Case i = blog2(n− 1)c
inv← A . A2val−1 = A
for i from blog2(n− 1)c − 1 to 0 by −1 do

tmp← (inv)2val
. Multi-squaring to obtain A22val−2val .

inv← tmp× inv . A22val−1.
val←

⌊
n−1
2i

⌋
if ((val mod 2) == 1) then

inv← (inv)2 ×A . (A2val−1−1)2 ×A = A2val−1

end if
end for . val = n− 1 and so inv = A2n−1−1

return (inv)2 . A2n−2 = A−1

end function

ITMIA requires to compute val successive squarings. The multi-squaring can be computed
more quickly with precomputed tables (cf. Section 2.4).

Algorithm 5 is useful because it proposes automatically an addition chain for all values of
n, but it is not always optimal. To choose the best addition chain is not easy, because
it depends on the performance of multiplication, squaring and multi-squaring. Moreover,
there is a large set of possible addition chains. This problem is studied in [36], which
proposes a software generating an efficient C++ inversion code. This software searches the
addition chain which maximizes the performance of the generated code. However, the
generator does not proposes implementation of multi-squaring tables in constant-time.
For the moment, MQsoft uses Algorithm 5, but we propose in Appendix B examples of
addition chains chosen to minimize the number of field multiplications. We have improved
Algorithm 5 with multi-squaring tables to compute the variable tmp when i is zero or one.
Because multi-squaring tables are huge, we use it only for the parameters of GeMSS, Gui,
DualModeMS, and for the values of n used to evaluate the performance of MQsoft. The
corresponding file in MQsoft requires 1.7 MB for 44 tables.

2.6 Performance of the Arithmetic in F2n

Table 10 compares the performance of arithmetic operations in our library with respect to
several open source libraries (listed in Section 1.7). We choose the irreducible trinomial
f(x) = xn + xk1 + 1 with k1 ∈ J2, 32K to create the field F2n . All operations use modular
reduction. We have measured the performance of FLINT [32, version 2.5.3] (it is a C
library), but the times are not relevant in our context. It turns that for n = 252, NTL is
100 to 200 times faster than FLINT. The main reason is that FLINT does not have special
implementation for binary fields. We have used the type fq_nmod_t which store each
element of F2n as a polynomial in F2[X] where each coefficient is stored on one word.
Magma is also taken into account. The results are not significant because Magma is slowed
down by its user interface. We remark that the squarings and multiplications of NTL are
faster for n = 126 than for n = 62. It can be probably explained by the fact that NTL does
not use trinomial for n = 62. Our implementation is 3.5 to 4.5 times faster than NTL for
multiplication and 5 to 6 times faster for squaring. We think that NTL is slowed down by
its C++ interface. For the inversion, the measurements are not comparable because NTL is
not in constant-time. However, we have a speed-up of two on average.
We compare now MQsoft to the constant-time arithmetic of [11], when trinomials are used
to build F2n . In F2233 , they compute the squaring in 18 cycles and the multiplication in 38
cycles. We have approximately the same performance for n = 252: MQsoft is slower with
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Table 10: Number of cycles by operation in F2n . We use a Skylake processor (LaptopS).

(n, k1) Operation Magma NTL MQsoft (PCLMULQDQ + avx2)
dependencies buffer

(62, 29) Squaring 416 220 14.9 7.6
Mul 444 231 17.3 8.5
Inverse 13,183 1,868 × 1,154

(126, 21) Squaring 440 105 18.6 10.0
Mul 494 124 26.6 14.8
Inverse 27,353 3,457 × 1,731

(191, 9) Squaring 437 119 23.3 14.1
Mul 529 144 32.8 25.9
Inverse 40,200 4,918 × 2,706

(252, 15) Squaring 455 128 23.9 14.7
Mul 558 169 40.2 35.6
Inverse 51,720 7,809 × 3,647

(314, 15) Squaring 480 139 25.2 22.0
Mul 629 211 55.0 51.5
Inverse 66,220 9,515 × 5,096

(375, 16) Squaring 490 150 25.8 21.3
Mul 653 238 65.9 65.8
Inverse 76,704 11,813 × 6,364

(441, 7) Squaring 500 163 27.4 25.1
Mul 714 286 80.2 82.8
Inverse 94,846 14,974 × 7,755

(511, 10) Squaring 510 174 26.7 24.2
Mul 761 320 90.7 91.5
Inverse 115,681 18,601 × 8,825

(574, 13) Squaring 521 201 29.7 31.2
Mul 922 579 114.9 120.3
Inverse 129,266 23,185 × 11,329

dependencies but faster with buffers. In F2409 , they compute the squaring in 28 cycles and
the multiplication in 97 cycles. MQsoft is slightly faster (we compare to the measurements
in F2441). For the inversion, [11] is approximately two times slower. Our library takes
advantage of using of multi-squaring tables. We replace n− 1 squarings by approximately
1
4n squarings and two multi-squarings.

3 Efficient Implementation of Root Finding in F2n[X]
The most expensive part of the signature generation is to find the roots of a HFE polynomial
F ∈ F2n [X] as defined in Equation (2). F is a D degree monic polynomial which is sparse
because it has approximately log2(D)2

2 non-zero coefficients. We have chosen to implement
Berlekamp’s algorithm [46, Algorithm 14.15] which finds the roots with an asymptotic
complexity of O(nD2 + (n + log(s))s2 log(s)) operations in F2n , where s is the number
of roots of F [46, Theorem 14.11 adapted for r = s and d = 1]. For HFE polynomials,
the factor O(nD2) can be easily improved in O(nD log2(D)2 +D2) operations in F2n , by
using the sparse structure of F (Section 3.5). Moreover, the HFE polynomial does not
have many roots, so we can assume that s is negligible, yielding a final complexity of
O(nD log2(D)2 +D2) operations in F2n .



Jean-Charles Faugère, Ludovic Perret and Jocelyn Ryckeghem 21

For the general polynomials, the author of [41] proposes in 2014 the successive resultant
algorithm (SRA). It requires O(n3D2 + n4) operations in F2 to find roots, or Õ(n2D+ n3)
with the fast arithmetic. The step in O(n4) (or Õ(n3)) can be precomputed for a fixed
finite field. In comparison to Berlekamp, SRA is interesting only when the polynomial
has many roots. In [29] and [22], the root finding is improved for split and separable
polynomials, and when the cardinality of multiplicative group is smooth. In our case, this
method is not interesting because the HFE polynomials does not have many roots.
Improving root finding for sparse polynomials is a hard problem. In [10], the authors
propose the first sub-linear (in q) algorithm which detects the existence of roots for t-
monomials in Fq[X]. The complexity is of 4t+o(1)q

t−2
t−1 +o(1) bit operations. This method

is not interesting for a HFE polynomial because it is not enough sparse and also because
in practice n is greater that the level of security. The algorithm costs approximately
4o(1)2n+o(n)Dlog2(D) bit operations in our case.
In this section, we will remind the Berlekamp’s algorithm. For each operation required, we
study the different possible methods and compare their practical performance to choose
the best. We specify how these methods can be tuned for a HFE polynomial.

3.1 Description of Berlekamp’s Algorithm in F2n[X]
Algorithm 6 describes Berlekamp’s algorithm [46, Algorithm 14.15]. The main idea is to
remark that all elements of F2n vanish on X2n −X. We can then compute G the GCD on
F with X2n −X. G has the same roots than F but with a minimal degree (which is the
number of roots). In general, the degree of G is small. The strategy is then to apply the
so-called equal-degree factorization to find all roots. This is turned to be cheap. Indeed, let
s be the degree of G, the equal-degree factorization costs (n+ log(s))s2 log(s) operations
in F2n [46, Theorem 14.11 adapted for r = s and d = 1]. Because the degree of X2n −X is
big, we reduce X2n −X by F by using the repeated squaring algorithm in F2n [X], before
computing the GCD.

Algorithm 6 Algorithm to find the roots of a univariate polynomial.
function FindRoots(F ∈ F2n [X])

Xn ← X2n −X mod F . Step 1: Computation of the Frobenius map.
G← GCD(F,Xn) . Step 2: Computation of the GCD.
if degree(G) > 0 then

Roots ← List of all roots of G, computed by the equal-degree factorization
algorithm described in [46, Section 14.3]. . Call to Algorithm 7.

return (degree(G),Roots)
end if
return (degree(G), ∅)

end function

Thereafter, we will study the choice of the algorithms only for the steps one and two. The
computation of equal-degree factorization is negligible since G has a small degree. For the
set of completeness, the equal-degree factorization algorithm is summarized in Algorithm
7. We will compare the classical and fast algorithms and we optimize them for a HFE
polynomial which is sparse, i.e. which has O(log2(D2)) coefficients in comparison to a
dense polynomial that has D + 1 coefficients.

3.2 Polynomial Squaring in F2n[X]
Step 1 of Algorithm 6 requires to compute repeated squarings in F2n [X]. In binary fields,
squaring of B =

∑D−1
i=0 αiX

i ∈ F2n [X] is linear. Similarly to Section 2.1, it holds that
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Algorithm 7 Algorithm to find the roots of a split monic univariate polynomial.
function FindRootsSplit(F ∈ F2n [X])

if degree(F ) < 1 then
return ∅

else if degree(F ) == 1 then
return List(F.cst) . F.cst is the constant term of F , we create a list with the

root of F and return it.
else

repeat
r ∈R F2n . The notation ∈R stands for randomly sampling.
H ←

∑n−1
i=1 ((rX)i mod F )

G← GCD(F,H) . We can assumed that G is chosen monic.
until G is a non trivial divisor of F
return Concat(FindRootsSplit(G),FindRootsSplit( F

G )) . The concatenation of the
lists is returned.

end if
end function

B2 =
∑D−1

i=0 α2
iX

2i. This operation requires D squaring in F2n .

3.3 Euclidean Division in F2n[X]
Let P ∈ F2n [X] be a univariate polynomial. The notation coefi(P ) will denote the coeffi-
cient of the term of degree i in P . Step 1 of Algorithm 6 requires to compute the modular
reduction of a polynomial P of degree at most 2D − 2 by a monic polynomial F . The
classical algorithm [46, Algorithm 2.5] uses O(D2) multiplications in F2n .

Algorithm 8 computes the modular reduction specialized for HFE polynomials. Let K be the
number of terms of FHFE (Section 1.6). For a fixed i, each term of (FHFE −XD)Xi−D is
multiplied by −coefi−D(Q). Then, the result is added to R, requiring K−1 multiplications
and additions in F2n . Since K − 1 = O(log2(D)2) coefficients, the Euclidean division
requires (D − 1)(K − 1) = O(D log2(D)2) multiplications in F2n . This method is in
constant-time because we compute the multiplication by coefi−D(Q) even when it is null.

Algorithm 8 Euclidean division by a monic polynomial.
function Euclidean(P, FHFE ∈ F2n [X])

R← P
for i from 2D − 2 to D by −1 do

coefi−D(Q)← coefi(R)
R← R− coefi−D(Q)× (FHFE −XD)Xi−D . Computation in constant-time.
coefi(R)← 0 . The new R has a degree at most i− 1.

end for
return Q,R

end function

3.4 Improving Euclidean Division for Special HFE Polynomials
The previous method does not exploit that during Step 1 of Algorithm 6, the dividend is a
square. Terms of odd degree are null. We show here that the complexity can be divided
by two, in function of the term of higher odd degree of the divisor. For this, we introduce
a new notation. Let P ∈ F2n [X], we denote by D(P ) the largest odd integer i such that
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coefi(P ) 6= 0. If it does not exist, we set D(P ) = −∞. The following lemma permits to
demonstrate the main result (Theorem 1) of this part.

Lemma 1. Let A ∈ F2n [X] be a polynomial of degree at most 2D−2 such that D(A) = −∞,
H ∈ F2n [X] be of degree D, Q,R ∈ F2n [X] be respectively the quotient and remainder of
the Euclidean division of A by H and d = D(H). If D is even then D(Q) ≤ d− 2.

Proof. Let H =
∑D

j=0 hjX
j and Q =

∑D−2
j=0 qjX

j . By definition of D, D(Q) ≤ d − 2 is
equivalent to qi = 0 for all odd i such that i > d−2. By definition of Q, qi = 0 for i < 0 and
i > D− 2, so we show the lemma for the values of qi such that D− 2 ≥ i > max(−1, d− 2).
For this, we use a proof by induction on an odd j such that D − 1 ≥ j > max(−1, d− 2).
The base case is trivial since qj = 0 for j > D − 2. Assume that qk = 0 for all odd k such
that D − 2 ≥ k > j > max(−1, d − 2). To show that qj = 0, firstly we show these two
properties:

(1) coefD+j(HQ) = 0.

(2) coefD+j(HQ) = qjhD.

Proof of these two properties:

(1) By definition, A = HQ+R and so A−R = HQ. Because D(A) = −∞ by hypothesis,
D(A−R) = D(R) ≤ D − 1 < D + j and D + j is odd so coefD+j(A−R) = 0.

(2) HQ =
∑2D−2

r=0
∑r

`=0 q`hr−`X
r, so coefD+j(HQ) =

∑D+j
`=0 q`hD+j−`. But q` = 0 for

` > D − 2 and hD+j−` = 0 for D + j − ` > D, so coefD+j(HQ) =
∑D−2

`=j qjhD+j−`.
When ` > j is odd, q` = 0 by induction hypothesis. When ` is even, hD+j−` = 0
because D + j − ` is odd and D(H) = d < D + j − `. So

∑D−2
`=j q`hD+j−` = qjhD.

These two properties implies coefD+j(HQ) = qjhD = 0. Because hD 6= 0, this implies that
qj = 0.

We can now demonstrate Theorem 1.

Theorem 1. Let H be a HFE polynomial of degree D in F2n [X] where the k-th terms of
highest odd degree have been removed (k ∈ J0, dlog2(D)e − 1K), and let A ∈ F2n [X] be
a square of degree at most 2D − 2. If D is even, then the computation of the classical
Euclidean division (Algorithm 8) of A by H can be accelerated by a factor (D − 1)/( D

2 +
b2dlog2(D)e−k−2c).

Proof. During Algorithm 8, A is a square so D(A) = −∞, and so Lemma 1 can be applied
it. Let d = D(H), the iterations where i is odd and strictly greater than D + d − 2
can be removed because coefi−D(Q) = 0. So, the number of iterations when i is odd is
max( (D+d−2)−(D−1)

2 , 0) = max( d−1
2 , 0), whereas the number of iterations when i is even

is D
2 . So, Algorithm 8 can be used with max( D+d−1

2 , D
2 ) iterations. Next, H is a HFE

polynomial so d = 1 or d = 2j + 1 for j > 0. By removing the 2j + 1 degree terms for j
from dlog2(D)e − 1 to dlog2(D)e − k by −1, d equals 1 or 2dlog2(D)e−k−1 + 1. It implies
that the number of iterations can be written as D

2 + b2dlog2(D)e−k−2c. Algorithm 8 requires
D − 1 iterations, so the proposed modification accelerates it of a factor (D − 1)/( D

2 +
b2dlog2(D)e−k−2c). This factor is at most 2.

Let K be the number of terms of the HFE polynomial (without removed terms), and k be
the number of removed terms. For k = 0, the modular reduction costs (D − 1)(K − 1)
multiplications in F2n (Section 3.3), whereas by removing terms (with even D), the cost
is max( D+d−1

2 , D
2 )(K − 1 − k) multiplications. The main gain comes from the fact to
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decrease the number of round loops during Algorithm 8. However, there is also a slight
speed-up generated by the fact that terms are removed.

When F has exactly zero term of odd degree, we obtain that during the computation of
X2n mod F , none of the odd degree terms appear because R = A − FQ and A,F and
Q do not have odd degree terms. This result allows to do computations only for even
degree terms, dividing by 2 the cost of the squaring and of the modular reduction. But in
practice, to remove all terms of odd degree of the HFE polynomial decreases the security.
By applying to F the change of variable X2 = Y , the degree of the result is only D

2 . We
will show in Table 11 that in this case, D must be multiplied by two to obtain the original
security.

Table 11 studies the impact of d = D(F ) on the theoretical speed-up over the classical
Euclidean division compared to the case D = 513, and on the security. We have done an
experimental test to analyse the degree of regularity [24, 5, 6, 9] in function of the number
of removed terms. The degree of regularity is a tool to analyse the security of HFE-based
scheme against Gröbner basis attacks. We measure it during the Gröbner basis attack on
HFE for n = m = 30. We observe in practice that removing a small number of odd degree
terms appears not to affect the security. The security is decreased when the second to last
term is removed. The results confirm that the security to attack F of degree D without
odd degree terms is the same that attack a HFE polynomial of degree D

2 : the degree of
regularity increases between D

2 = 512 and D
2 = 513. The case d = 1 seems to have the

same behavior, but in the general case, the regularity degree does not decrease necessarily
(for D = 130, the degree of regularity is 4 for d = −∞ but 5 for d = 1).
The column speed-up on i corresponds to obtain speed-up by decreasing the number of
iterations during Algorithm 8. The other column speed-up is the total speed-up, which
uses the fact that remove terms decreases the number of multiplications for one iteration.
To remove the higher terms generates the main part of the maximal speed-up. In practice,
we propose to choose d = 63. This implies to remove one term when D = 130 and three
terms when D = 514.

Table 11: Impact of d on the performance and on dreg the degree of regularity.

D d removed terms dreg nb. of iterations speed-up on i speed-up
512 257 none 5 384 25% 27%
513 513 none 6 512 Ref. Ref.
514 257 X513 6 385 25% 25%

129 X513, X257 321 37% 39%
65 X513, X257, X129 289 44% 46%
33 X513, X257, X129, X65 273 47% 50%
17 X513, X257, X129, X65, X33 265 48% 53%
9 X513, X257, X129, X65, X33, X17 261 49% 54%
5 all odds excepted X5, X3, X 259 49% 56%
3 all odds excepted X3, X 258 50% 57%
1 all odds excepted X 5 257 50% 58%
−∞ all odds 257 50% 59%

1024 1 all odds excepted X 5 512 0% 0%
−∞ all odds 512 0% 2%

1026 1 all odds excepted X 6 513 0% −4%
−∞ all odds 513 0% −2%
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3.5 Frobenius Map in F2n[X]
The core of Algorithm 6 (Section 3.1) is to compute X2n mod F during Step 1. As in
Section 2.4, we compare the classical repeated squaring algorithm with the version using
multi-squaring tables. The main differences with Section 2.4 is that the coefficients are
not in F2 but in F2n . So, the tables are too large to be precomputed. However, they can
be computed more quickly by exploiting the HFE structure of F . Both presented methods
are in constant-time.

Classical repeated squaring algorithm. We can compute X2n mod F using repeated
squaring algorithm [46, Algorithm 4.8]. This requires n steps of modular squaring. More
precisely, the number of steps is n−blog2(D)c because the modular reduction is useless when
the degree of X2i , 1 ≤ i ≤ n, is less than D. So, we compute (X2blog2(D)c)2n−blog2(D)c mod F
(or (F − XD)2n−blog2(D)c mod F when D is a power of two). This remark permits to
avoid useless computations in the constant-time implementations. This method requires
(n− blog2(D)c)D field squarings and (n− blog2(D)c) call to Algorithm 8 (Section 3.3). It
does (n− blog2(D)c)(D− 1)(K − 1) = O(nD log2(D)2) field multiplications. This method
can be improved with the trick from Section 3.4. To improve the performance, we compute
the repeated squaring in-place. To do it, we allocate a buffer of 2D − 1 coefficients in F2n .
The squaring and the modular reduction modify directly the current result.

Repeated squaring algorithm with multi-squaring tables. The authors of [42] propose
to compute several squarings before reducing by F . Set i this number of times. To
compute i squarings creates a result of degree (D − 1)2i, but only the terms Xj2i for
j ∈ {0, . . . , D−1} are not null. To compute the reduction, firstly compute one time a table
of (Xj2i mod F ) for j ∈ {0, ..., D− 1}, then multiply each coefficient by the corresponding
element in the table. The table is computed one time for all and is re-used for each modular
reduction.
To create the table, we compute each Xj2i mod F as (X(j−1)2i mod F )X2i mod F . The
multiplication by X2i is just a shift of 2i, and all terms of degree strictly greater than
D − 1 are reduced with Algorithm 8 (by replacing 2D − 2 by D − 1 + 2i). The table is
useful only when Xj2i is not already reduced by F , so when 2ij ≥ D and implies j ≥

⌈
D
2i

⌉
.

This table requires to store (D−
⌈

D
2i

⌉
)D elements of F2n , and D−

⌈
D
2i

⌉
calls to Algorithm

8 are required to generate it, costing O(2i(K − 1)(D −
⌈

D
2i

⌉
)) field multiplications.

To compute X2n mod F , we take X2blog2(D−1)c+i mod F from the table, then we compute⌊
n−i−blog2(D−1)c

i

⌋
steps of modular multi-squarings. Each step requires to raise D elements

of F2n at the power 2i, then to multiply each by the corresponding elements of the table. It
costs iD field squarings and (D −

⌈
D
2i

⌉
)D field multiplications. To obtain X2n mod F , we

terminate by ((n− i− blog2(D− 1)c) mod i) steps of modular squarings with the classical
repeated squaring algorithm.
The final cost of this method is (n − i − blog2(D − 1)c)D = O(nD) field squarings and
(D−

⌈
D
2i

⌉
)(2i(K−1)+D

⌊
n−i−blog2(D−1)c

i

⌋
)+((n−i−blog2(D−1)c) mod i)(D−1)(K−1) =

O(2iD log2(D)2 + n
i D

2) field multiplications.

To choose the best algorithm for the Frobenius map, we just choose the one which minimizes
the number of field multiplications. In practice, the repeated squaring algorithm is the best
when approximately D ≥ n, whereas the multi-squaring version is the best when n > D.

Table 12 summarizes the performance of both strategies for the Frobenius map, and
compares our implementation to NTL and Magma. We use the Modexp function from Magma
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and the PlainFrobeniusMap function from NTL, both computing X2n mod F . We have
studied also the strategy from Section 3.4 which permits to improve the Frobenius map
by removing odd degree terms in the HFE polynomial. We choose d = 65, which requires
to remove one term when D = 130 and three terms when D = 514. The results confirm
the theoretical speed-ups: MQsoft saves approximately 25% and 44% of computations by
removing respectively one and three terms for the first strategy. Magma is also improved
by this trick, probably because it uses also the classical Euclidean division, and does not
compute multiplication by zero. It is not the case for NTL because it uses the fast Euclidean
division [46, Algorithm 9.5].

The multi-squaring strategy is the fastest when D is small compared to n. However, for
n = 354 and D = 129, to set d = 65 is enough to change the trade-off between both
strategies. To remove odd degree terms is interesting for HFE-based NIST submissions
which uses D equals to 129 or more. However, this implies to increase by one the original
parameters (D = 129 and D = 513). Without modifying it, our best Frobenius map is 7
to 12 times faster than NTL.

Table 12: Number of mega cycles to compute the Frobenius map of a HFE polynomial.
We use a Skylake processor (LaptopS).

n D d Magma NTL MQsoft (repeated squarings) MQsoft (multi-squaring)
185 33 33 36.3 13.0 2.6 1.4

129 129 169.3 136.5 17.2 18.1
130 65 138.4 142.2 12.9 18.6
513 513 1,000.8 1,092.7 108.9 223.7
514 65 629.8 1,104.8 59.0 223.0

354 33 33 108.5 76.2 13.2 6.2
129 129 559.0 551.0 93.3 79.9
130 65 451.4 628.6 70.9 81.9
513 513 3,371.0 4,107.0 566.0 1,061.5
514 65 2,019.0 4,383.3 312.1 1,053.6

3.6 GCD in F2n[X]

Step 2 of Algorithm 6 requires to compute the GCD of two degree D polynomials in F2n [X].
The NTL library provides only the classical algorithm [46, Algorithm 3.5], which uses O(D2)
field multiplications and O(D) field inversions. We have implemented the half-GCD algo-
rithm ([46, Algorithm 11.8],[13, Algorithm 6.8]), which uses Õ(D) multiplications in F2n .
Our implementation of the half-GCD is based on the Karatsuba polynomial multiplication
(Appendix C) and on the fast Euclidean division (Appendix D). These algorithms are
implemented with constant-time arithmetic, but the GCD is in variable-time because the
number of successive remainders is variable.

Table 13 compares the performance of GCD algorithms. Our classical GCD is three to four
times better than NTL. This results of the difference of performance between our operations
in F2n . The half-GCD becomes faster only for a high degree (approximately 8193).
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Table 13: Number of mega cycles to compute the GCD in F2n [X] of a D degree polynomial
by a D − 1 degree polynomial. We use a Skylake processor (LaptopS).

n D Magma NTL MQsoft (gcd) MQsoft (half-gcd)
185 33 2.2 0.620 0.121 0.535

129 12.0 3.735 0.719 3.661
513 129.9 39.8 7.6 30.2
4097 3,060 2,057 419 726
8193 9,485 8,131 1,838 2,168
16385 27,168 32,175 7,304 6,407

354 33 4.1 1.350 0.276 1.019
129 23.0 7.973 1.870 7.303
513 229.4 82.4 20.8 64.2
4097 8,914 4,078 1,191 1,548
8193 26,035 16,096 4,691 4,575
16385 70,170 64,135 18,734 13,650

3.7 Performance of the Root Finding Algorithm in F2n[X]

Table 14 compares the best implementation of root finding of each library, and for the
parameters of GeMSS and Gui. The results are similar to the performance of Frobenius
map, which is the critical part of the root finding algorithm. MQsoft is five to nine times
faster than NTL.

Table 14: Number of mega cycles to find the roots of a HFE polynomial. We use a Skylake
processor (LaptopS).

n D d Magma NTL MQsoft
174 513 513 1,130 1,089 116.0

514 65 751.5 1,096 67.1
185 33 33 39.0 14.0 1.7
265 513 513 2,472 2,252 361.0

514 65 1,559 2,304 203.3
313 129 129 451.3 352.3 62.3

130 65 356.7 388.5 53.1
354 513 513 3,765 4,369 589.1

514 65 2,341 4,392 329.2
448 513 513 4,673 5,313 1,051.0

514 65 2,821 5,464 581.5

We have presented in this section the main algorithms that we have implemented in MQsoft
to obtain an efficient root finding for HFE polynomials. However, our library proposes
extra functions. The half-gcd requires to implement Karatsuba multiplication and fast
Euclidean division, in both F2n [X]. So, we propose a fast version of the root finding, based
on a Frobenius map using the fast Euclidean division. This permits to have an efficient
implementation of root finding for general applications, using a constant-time arithmetic
in the base field.



28 Software Toolkit for HFE-based Multivariate Schemes

4 Generation and Evaluation of the Public-key
In this section, we study how implement efficiently important steps of the keypair generation
and verifying process. Both are based on multivariate quadratic systems that we represent
as quadratic forms.

4.1 Generation of the Inner Secret-key Polynomial f
For the set of completeness, we explain here the method used to compute f during the
keypair generation (Section 1.2). It requires to compute F (

∑n
k=1 θkxk, v1, . . . , vv) (cf.

Equation (3)). As a first step, we assume that F does not have vinegar variables. We use
two classical properties:

• The terms of degree strictly greater than 1 of F can be represented as a quadratic form
XQXt, where X = (X,X2, X22

, X23
, . . . , X2blog2(D)c) and Q ∈Mblog2(D)c+1(F2n) is

upper triangular such that:

Qi,j =

 Bi+1 if i = j
Aj,i if i < j
0 else.

We have the relation F (X) = C +B0X + XQXt. In particular, Qi,j corresponds to
the term X2i+2j of F .

• The linearity of the Frobenius implies X2i = (
∑n

k=1 θkxk)2i =
∑n

k=1 θ
2i

k xk.

With these two properties, it is easy to verify that X = xΓ where x = (x1, . . . , xn) and
Γ ∈Mn,blog2(D)c+1(F2n) is such that Γi,j = θ2j

i+1. So, we deduce the multivariate quadratic
form of F :

XQXt = xQ′xt,with Q′ = ΓQΓt.

We have F = xQ′xt + B0θxt + C. In particular, Q′i,j corresponds to the term xixj of
F . Since x2

i = xi, we can add each B0θi from the linear part to the term Q′i,i of Q′. We
obtain:

F = xQ′′xt + C,with Q′′ such that xQ′′xt = (xQ′ +B0θ)xt.

To simplify the computation of f , θ (Section 1.2) is the same basis that the one used to
represent an element of F2n (Section 1.6). In this way, f = ϕ(xQ′′xt + C) and we store
ϕ−1(f). This is a monomial representation of f .

To compute f , we compute first Γ with O(n log2(D)) field squarings. This matrix does
not depend on F and so it can be precomputed. Then, we compute Γ×Q with classical
matrix product, requiring O(n log2(D)2) multiplications in F2[X] and O(n log2(D)) mod-
ular reductions. Finally, we multiply the previous result by Γt, requiring O(n2 log2(D))
multiplications in F2[X] and O(n2) modular reductions.

Now, we consider vinegar variables. γ(v1, . . . , vv) (Equation (1)) is quadratic in vine-
gar variables. We store it as a upper triangular matrix W ∈ Mv(F2n) such that
γ(v1, . . . , vv) = vWvt + C where v = (v1, . . . , vv) and C ∈ F2n is the constant term
of F .
For the linear terms, we must compute

∑blog2(D)c
i=0 βiX

2i = Xβt with β = (β0, . . . , βblog2(D)c).
Let V ∈ Mblog2(D)c+1,v(F2n) and βi =

∑v
k=1 Vi,kvk. We have β = vV t, and so Xβt =

xΓV vt. ΓV is the matrix where the coefficient (i, j) corresponds to the term xivj .
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The final result is:

ϕ−1(f) = (x v)
(
Q′′ ΓV
0 W

)
(x v)t + C.

The computation of ΓV requires O(nv log2(D)) multiplications in F2[X] and O(nv)
modular reductions. So, the generation of the inner secret polynomials of f requires
O(n log2(D)) squarings in F2n , O(n log2(D)(n+ v+ log2(D)) multiplications in F2[X] and
O(n(n+ v + log2(D))) modular reductions.

We can notice that this representation of f permits easily to apply the linear change of
variable by the matrix S. Just replace (x v) by (x v)S and we obtain:

(x v)S
(
Q′′ ΓV
0 W

)
St(x v)t + C.

4.2 Evaluation of Multivariate Quadratic Systems in F2

The evaluation of the public-key is the main part of the verifying process (Section 1.4). It
is iterated nb_ite times. Since the verification is a public process, it does not require to be
protected against timing attacks. So, we can exploit the fact that for a random input, the
evaluation of a monomial xixj in F2 has a probability of 75% to be null, and so to avoid
75% of computations. However, the evaluation in constant-time is required during the
signature generation to evaluate the constant of the HFEv polynomial, which is quadratic
in the vinegar variables. It is also used in other contexts, for example to encrypt a message
for the HFE-based encryption scheme. In this section, we both study, variable-time and
constant-time evaluation.

To evaluate the public-key p, we can use different representations. The representation
by equation consists to store the m equations of p separately (p ∈ (F2[x1, . . . , xn+v])m),
whereas the representation by monomial consists to store the monomials of p separately
(p ∈ F2m [x1, . . . , xn+v], cf. Section 4.1).
The authors of [19] proposes a fast evaluation of the public-key with the representation by
equation. In [20], the authors present a faster evaluation. To do so, they use a monomial
representation of the public-key. Both, [19] and [20], have used the avx2 instructions set.
We have chosen the monomial representation as in [20], because it exploits naturally the
fact that on average, 75% of monomials are null.

Our variable-time evaluation uses only the classical method [7]: we initialize an accumulator
acc to the constant term of p, and for each term pi,jxixj with pi,j ∈ F2m , we add pi,j to
acc only if xi = xj = 1. This process is described in Algorithm 9.

We have vectorized Algorithm 9. To do it, we just store acc with 256-bit registers, and
we use 256-bit load, store and bitwise XOR to do vectorial computations. When dm

64e is
not a multiple of 4, we sometimes add the use of 64-bit or 128-bit registers, to speed-up
the implementation. Algorithm 9 is vulnerable to timing attacks, since the addition is
done only if xi = xj = 1. The traditional way to avoid this attack is to replace the
conditional statement by a multiplication by xi (respectively xj). But xi and xj are in
F2, so the multiplication can be accelerated: it is equivalent to apply a mask which is
the duplication of xi (respectively xj)m times. With this strategy, we obtain Algorithm 10.

To vectorize Algorithm 10, acc and acc_i are stored in 256-bit registers. However, the
optimal choice to put each mask in a 256-bit register is not trivial. On the one hand, we
can store 256-bit masks in the buffer mask. In this way, one load permits to create the
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Algorithm 9 Evaluation of the public-key in variable-time.
function General_evaluation(p ∈ F2m [x1, . . . , xn+v],x = (x1, . . . , xn+v) ∈ Fn+v

2 )
acc← p.cst . p.cst is the constant term of p.
for i from 1 to n+ v do

if xi == 1 then
acc+=pi,i . Addition in F2m (bitwise XOR).
for j from i+ 1 to n+ v do

if xj == 1 then
acc+=pi,j

end if
end for

end if
end for
return acc

end function

Algorithm 10 Evaluation of the public-key in constant-time.
function Constant_evaluation(p ∈ F2m [x1, . . . , xn+v],x = (x1, . . . , xn+v) ∈ Fn+v

2 )
for i from 1 to n+ v do

mask[i]← -xi . Duplicate the bit xi to create a mask.
end for
acc← p.cst . p.cst is the constant term of p.
for i from 1 to n+ v do

acc_i← pi,i

for j from i+ 1 to n+ v do
acc_i+=AND(mask[j],pi,j) . Apply the mask on pi,j (compute pi,jxj).

end for
acc+=AND(mask[i],acc_i) . Apply the mask on acc_i (compute acc_i× xi).

end for
return acc

end function

256-bit register. On the other hand, we can store 64-bit masks in the buffer mask. The
creation of the 256-bit register is done by one call to VPBROADCASTQ, which duplicates a
64-bit mask in a 256-bit register. This idea is described in Algorithm 11. We propose
a new idea, described in Algorithm 12. Firstly, we unroll with a depth four the loop in
j. Then, we store 64-bit masks in the buffer mask, but we load four 64-bit masks in one
256-bit register. Then, to create a 256-bit mask from one of the four 64-bit masks, we use
the VPERMQ instruction. It permits to create a 256-bit register where each 64-bit part is
one of the four 64-bit part of the input. In particular, we use it to duplicate one 64-bit part
of the input (which is a mask) in a 256-bit register. This method is the best: it requires
only one load for four masks, unlike the two previous methods which require four loads
(four 256-bit loads for the first method and four 64-bit loads for the second method).
Then, to apply the mask to pi,j , we remark that the VPMASKMOVQ instruction permits to
load data and to apply the mask in only one instruction. It permits to accelerate the
evaluation.
More generally, this new method permits to improve the constant-time vector matrix
product in F2, but is interesting only when the variable buffer is computed one time for
several products using the same vector. We remark that this method is faster on Skylake
processors, but on Haswell processors, the use of VPBROADCASTQ remains faster.
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Algorithm 11 Improvement of Algorithm 10 with avx2, VPMASKMOVQ and VPBROADCASTQ.
for j from i+ 1 to n+ v do

acc_i+=VPMASKMOVQ(pi,j,VPBROADCASTQ(mask[j])) . Compute pi,jxj .
end for

Algorithm 12 Improvement of Algorithm 10 with avx2, VPMASKMOVQ and VPERMQ.
for j from i+ 1 to n+ v − 3 by 4 do

x_256← VMOVDQU(mask+j) . Load mask[j],mask[j+1],mask[j+2],mask[j+3].
mask_256← VPERMQ(x_256,0x00) . Duplicate mask[j].
acc_i+=VPMASKMOVQ(pi,j,mask_256) . Load pi,j and apply the mask.
mask_256← VPERMQ(x_256,0x55) . Duplicate mask[j+1].
acc_i+=VPMASKMOVQ(pi,j+1,mask_256) . Compute pi,j+1xj+1.
mask_256← VPERMQ(x_256,0xAA) . Duplicate mask[j+2].
acc_i+=VPMASKMOVQ(pi,j+2,mask_256) . Compute pi,j+2xj+2.
mask_256← VPERMQ(x_256,0xFF) . Duplicate mask[j+3].
acc_i+=VPMASKMOVQ(pi,j+3,mask_256) . Compute pi,j+3xj+3.

end for
for j until n+ v do

acc_i+=VPMASKMOVQ(pi,j,VPBROADCASTQ(mask[j])) . Compute pi,jxj .
end for

Table 15 shows the performance of the evaluation that uses avx2. To improve the
performance, we use the option -funroll-loops of gcc which unrolls loops to improve the
use of the pipeline. The factor of performance between variable-time and constant-time
implementation depends on m: the factor is two for small values of m and four for high
values. The performance is affected by cache penalty when the public-key is too large. For
m = n+ v = 256, we compare our code with the efficient implementation of [20], by using
a similar processor (ServerH). We have similar times for constant-time implementation,
and a speed-up of 1.38 for variable-time implementation. This speed-up is mainly dued to
unrolled loops. Moreover, we have splitted the loop i (respectively the loop j) in two loops
with an Euclidean division by 64: the first is a loop for iq ∈ J0,

⌊
i

64
⌋
K, and the second is a

loop for ir ∈ J0, 63K. In this way, for extracting xi which is the i-th bit from a vector of
word, we take the ir-th bits of the iq-th word. It permits to simplify the extraction of bits
from 64-bit variables.
For the constant-time evaluation, we have obtained our best times on Haswell by using
Algorithm 11. However, on Skylake, Algorithm 12 is faster. For 256 equations and 256
variables (cf. Table 16), we obtain 61.4 Kc with Algorithm 11 against 55.5 Kc with
Algorithm 12. Since Algorithm 11 is state-of-the-art on Haswell, we have obtained a new
speeding record on Skylake, by a factor 1.1. For comparison, we obtain 23.2 Kc for the
variable-time evaluation.
For m requiring one word (respectively two words), we use the 256-bit registers to do
computations in F2m by pack of four elements (respectively two elements). This method
implies to use masks to compute qi,jxj for four (respectively two) successive values of j.
To optimize the cases m requiring one or two words is important because it permits to
use a new strategy of parallelization: with k cores, the public-key can be splitted in k
packets of 64 equations (respectively 128 equations), and each core can apply one time the
evaluation for its part of the public-key. This method is interesting because the number
of miss in the cache is decreased since each core has just a part of the public-key. In a
general way, m can be splitted in the way to use evaluation algorithms for smaller number
of equations.
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Table 15: Number of kilo cycles to evaluate the public-key with MQsoft, for m = n+ v.
We use a Haswell processor (ServerH) with the avx2 instructions set. Turbo Boost is not
used.

category m = 64 128 192 256 320 384 448 512
constant-time 2.01 14.1 44.7 89.1 196 318 478 853
variable-time 1.15 6.46 17.1 37.3 74.5 120 191 205

Table 16: Number of kilo cycles to evaluate the public-key with MQsoft, for m = n+ v.
We use a Skylake processor (DesktopS) with the avx2 instructions set. Turbo Boost is
used.

category m = 64 128 192 256 320 384 448 512
constant-time 1.49 7.04 30.1 55.5 142 202 341 610
variable-time 0.841 3.87 12.3 23.2 51.0 75.5 133 144

Hybrid representation of the multivariate quadratic systems. When m mod 64 is small,
the monomial representation of the public key is not optimal for the variable-time evaluation.
The addition in F2m can be computed with 64-bit, 128-bit and 256-bit XOR, so when
m mod 64 is small, many bits are unused during the computations. In memory, we use
dm

64e words to store each monomial. The unused bits are set to zero. When m mod 64
is small, to store the m mod 64 last equations separately is more efficient. This permits
to obtain an optimal representation for a large part of equations, then to optimize the
representation of the last remaining equations. We have applied this idea to GeMSS256,
for which m is 324 and so m mod 64 is equal to 4. The 320 first equations are stored by
using the monomial representation, whereas the four last equations are stored one-by-one.
With this method, we save 18% of the pratical size of the public key, and we obtain a
slight speed-up of 5% during the verifying process.

5 Performance of GeMSS, Gui and DualModeMS
In this section, we show the speed-ups obtained for GeMSS, Gui and DualModeMS thanks
to MQsoft. The difference between Gui and GeMSS are explained in Section 1.5. MQsoft
uses the SHA-3 function from the Keccak Code Package [26] and the SHA-2 function
from OpenSSL. Random elements ar generated by the determinist random bytes generator
provided by the NIST during the competition (which is based on AES from OpenSSL).
The original implementation of GeMSS requires NTL library to compute the root find-
ing. In MQsoft, NTL has been completely removed. DualModeMS is based on GeMSS
implementation and so is naturally supported by MQsoft.

5.1 Performance of NIST Implementations
Table 17 summarizes the performance measurements of GeMSS additional (best) im-
plementation and Gui PCLMULQDQ implementation which have been submitted to NIST
PQC standardization process. The measurements of GeMSS have been corrected since
the submission. The parameter D had been set by error at 512 in the implementation
(and during the measurements). Because the Frobenius map has not been implemented
in constant-time, D = 512 allows to save 27% of computations in the critical part of
the signature generation (cf. Table 11). As explained in Section 1.5, we have removed
the EUF-CMA security property of Gui in the PCLMULQDQ implementation, because this
property is not available in GeMSS original implementation. We have also added the
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performance of DualModeMS, which will be studied in Section 5.5. Measurements more
detailed are available in Appendix E.

Table 17: Number of mega cycles (Mc) for each cryptographic operation with a Haswell
processor (DesktopH), followed by the speed-up between Haswell and Skylake processors
(DesktopH versus DesktopS). For example, 110 S: +21% means a performance of 110
Mc on Haswell, and a performance of 110

1.21 = 91 Mc on Skylake.

scheme (n,D,∆, v,nb_ite) key gen. signature gen. signature verif.
GeMSS128 (174, 513, 12, 12, 4) 110 S: +21% 1400 S: +39% 0.14 S: +15%
GeMSS192 (265, 513, 22, 20, 4) 510 S: +19% 3500 S: +35% 0.39 S: +13%
GeMSS256 (354, 513, 30, 33, 4) 1500 S: +27% 6600 S: +63% 0.91 S: +3.2%
Gui-184 (184, 33, 16, 16, 4) 670 S: +9.5% 31 S: +38% 0.16 S: +13%
Gui-312 (312, 129, 24, 20, 2) 4700 S: +13% 450 S: +40% 0.25 S: +7.2%
Gui-448 (448, 513, 32, 28, 2) 27000 S: +3.4% 16000 S: +45% 0.65 S: +6.7%

Inner.DualModeMS128 (266, 129, 10, 11, 1) 410 S: +16% 130 S: +34% 0.083 S: +9.9%
DualModeMS128 (266, 129, 10, 11, 1) 1700000 S: +5.3% 8800 S: +34% 8.2 S: +5.7%

The main difference between Haswell and Skylake processors is the performance of the
PCLMULQDQ instruction (cf. Table 4). This impacts mainly the performance of the signature
generation, but also the one of the keypair generation.

5.2 Performance of MQsoft

We present in Tables 18 and 19 new performance results for GeMSS and Gui. More detailed
measurements are available in Appendix F. The choice of the parameter n in Gui requires,
for all levels of security, to choose irreducible pentanomials to define F2n . This affects
the performance in comparison to GeMSS which uses only irreducible trinomials. For this
reason, we propose to sligthly increase the parameter n in Gui to use trinomials. This
choice does not change the security. For n = 184 and n = 312, we propose respectively
to take n = 185 and n = 313. However, for n = 448, we keep this value since n = 449
increases the cost of the multiplication in F2n . Indeed, the cost of such multiplication
is a function of d n

64e (Section 2.2). In practice, the impact of the modular reduction is
important for small values of n (as n = 185). The obtained speed-up decreases when
n increases, because the multiplication is asymptotically coster than the modular reduction.

Table 18 and 19 summarize also the speed-up between NIST submissions and MQsoft. For
GeMSS, the main part of the implementation which was in variable-time has been modified
to be in constant-time. To obtain these results, we have improved the complexity of the
generation of f by using the method explained in Section 4.1, and we have vectorized the
multiplication by T (cf. Section 5.4). We have improved the arithmetic in F2n with a
better multiplication, a vectorial modular reduction and an inverse computed with ITMIA.
In the first implementation, the GCD was computed by NTL. With our efficient computation
of the inverse in F×2n , the GCD becomes negligible compared to the Frobenius map. The
verifying process is accelerated by a factor between 1.7 and 2, thanks to our vectorial
implementation of the evaluation of the public-key.
For our implementation of Gui, we obtain at least a speed-up of a factor 12 for the keypair
generation, probably because the original implementation uses evaluations of F then an
interpolation to compute f . The signature generation is faster by a factor between 1.2 and
2.5, thanks to our efficient implementation of the arithmetic in F2n . We target the Skylake
processors, whereas the original implementation targets the Haswell processors. For this



34 Software Toolkit for HFE-based Multivariate Schemes

Table 18: Number of mega cycles (Mc) for each cryptographic operation with our li-
brary for a Haswell processor (DesktopH), followed by the speed-up between the best
implementation provided for the NIST submissions versus our implementation. For exam-
ple, 40 δ: +180% means a performance of 40 Mc with MQsoft, and a performance of
40× 2.8 = 110 Mc for the NIST implementations.

scheme (n,D,∆, v,nb_ite) key gen. signature gen. signature verif.
GeMSS128 (174, 513, 12, 12, 4) 40 δ: +180% 860 δ: +57% 0.072 δ: +100%
GeMSS192 (265, 513, 22, 20, 4) 210 δ: +140% 2800 δ: +25% 0.21 δ: +84%
GeMSS256 (354, 513, 30, 33, 4) 620 δ: +130% 5300 δ: +23% 0.52 δ: +76%
Gui-184 (184, 33, 16, 16, 4) 51 δ: +1200% 22 δ: +39% 0.088 δ: +81%
Gui-185 (185, 33, 16, 16, 4) 52 δ: +1200% 18 δ: +72% 0.09 δ: +77%
Gui-312 (312, 129, 24, 20, 2) 340 δ: +1300% 400 δ: +13% 0.15 δ: +64%
Gui-313 (313, 129, 24, 20, 2) 340 δ: +1300% 370 δ: +21% 0.15 δ: +61%
Gui-448 (448, 513, 32, 28, 2) 1400 δ: +1800% 6400 δ: +150% 0.41 δ: +60%

Inner.DualModeMS128 (266, 129, 10, 11, 1) 190 δ: +120% 100 δ: +30% 0.04 δ: +110%
DualModeMS128 (266, 129, 10, 11, 1) 1700000 δ: +0% 6600 δ: +33% 8.2 δ: +0%

reason, the speed-up should be less advantageous on the Haswell processors. However,
the modular reduction of the NIST submission uses PCLMULQDQ. This method is probably
slower on Haswell than the shift-and-add strategy. Moreover, the original implementation
uses multi-squaring tables to compute the Frobenius map (Section 3.5). For the 256-bit
level of security, this is inefficient compared to the classical repeated squaring algorithm
(cf. Table 12 for D = 513). But this error has been corrected in libpqcrypto4, and so
in SUPERCOP5 (SUPERCOP uses the implementation of libpqcrypto). The verifying
process is faster by a factor between 1.6 and 1.9.

5.3 Statistics on the Performance of GeMSS and Gui

We propose here an other method to evaluate the performance of GeMSS and Gui. The
experimental protocol is the following. Firstly, we measure the performance of a small
number of keypair generation (between 10 and 100). The set of the measurements will
permit to compute the average, the standard deviation, the median as well as the first and
third quartiles. Secondly, for three keypairs, we measure the performance of the signing
and verifying processes on a small number of documents (between 256 and 2048). To
do this, we set the length of each document to 59 bytes, then we generate randomly a
small number of documents, stored in a buffer. Then, we measure the performance of
the signing process on these documents, and each signature is stored in a second buffer.
Finally, we use this buffer to measure the performance of the verifying process. The code
was compiled with gcc -O4 -mavx2 -mpclmul -mpopcnt -funroll-loops. Here, we use
the version 6.5.0 of gcc. In Table 20, we present the results for the 128-bit security level,
with three significant digits. The complete table is on our website [2].
In this section, we only measure the Gui implementation from libpqcrypto. The main
difference with the original implementation is the correction of a mistake in the way to
compute the Frobenius map (as explained in the previous section). This change impacts
only the performance of the signing process of Gui-448.
Then, we have updated MQsoft to achieve the EUF-CMA security property in order to be
comparable to libpqcrypto. The EUF-CMA version implies a slow down of the signing

4https://libpqcrypto.org
5https://bench.cr.yp.to/supercop.html

https://libpqcrypto.org
https://bench.cr.yp.to/supercop.html
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Table 19: Number of mega cycles (Mc) for each cryptographic operation with our li-
brary for a Skylake processor (DesktopS), followed by the speed-up between the best
implementation provided for the NIST submissions versus our implementation. For exam-
ple, 36 δ: +160% means a performance of 36 Mc with MQsoft, and a performance of
36× 2.6 = 94 Mc for the NIST implementations.

scheme (n,D,∆, v,nb_ite) key gen. signature gen. signature verif.
GeMSS128 (174, 513, 12, 12, 4) 36 δ: +160% 600 δ: +64% 0.067 δ: +88%
GeMSS192 (265, 513, 22, 20, 4) 190 δ: +120% 1900 δ: +37% 0.2 δ: +78%
GeMSS256 (354, 513, 30, 33, 4) 560 δ: +100% 3100 δ: +30% 0.45 δ: +96%
Gui-184 (184, 33, 16, 16, 4) 49 δ: +1200% 17 δ: +32% 0.081 δ: +74%
Gui-185 (185, 33, 16, 16, 4) 49 δ: +1100% 13 δ: +68% 0.081 δ: +75%
Gui-312 (312, 129, 24, 20, 2) 310 δ: +1200% 290 δ: +13% 0.13 δ: +85%
Gui-313 (313, 129, 24, 20, 2) 310 δ: +1200% 260 δ: +24% 0.13 δ: +83%
Gui-448 (448, 513, 32, 28, 2) 1300 δ: +1900% 4400 δ: +150% 0.33 δ: +87%

Inner.DualModeMS128 (266, 129, 10, 11, 1) 170 δ: +100% 69 δ: +43% 0.03 δ: +150%
DualModeMS128 (266, 129, 10, 11, 1) 1600000 δ: +0% 4600 δ: +43% 7.8 δ: +0%

process. We do not measure the performance of the NIST submission of GeMSS because it
does not achieve this property.
In Table 20, we remark that the timings for the signing process are really unstable. This
is explained by the fact that during Algorithm 2, the root finding algorithm is reiterated
when any root is found. The verifying process is slightly unstable, since the evaluation of
the public-key is implemented in variable-time.

SUPERCOP benchmarks. We have integrated MQsoft in SUPERCOP. The results are
summarized in Table 21. Here again, we have benchmarked the EUF-CMA versions, and
we compare MQsoft to the Gui implementation of SUPERCOP (which is identical to
libpqcrypto). We give only the measurements to sign and verify a document of length 59
bytes. The complete table is on our website [2].

In this section, we give the results for Skylake processors. We have also made similar
experiments on Haswell and obtained similar ratios. As in the previous section, the signing
process is impacted by the performance of PCLMULQDQ (Table 4).

5.4 Performance of Keypair Generation
Table 22 summarizes the time of most important steps of the keypair generation (Section
1.2). These steps are achieved in constant-time. The generation of f is computed as
explained in Section 4.1. We have vectorized the multiplication by T, which is based on a
vector matrix product in F2 implemented with avx2 instructions set. For the moment, the
multiplication by S is not vectorized. This is the crucial part of the keypair generation
when PCLMULQDQ is available. For the multiplication by T, we have obtained approximately
a factor two with the vectorization. So, we can hope to obtain the same factor for the
multiplication by S.

5.5 Performance of DualModeMS
DualModeMS [25] scheme is a candidate to NIST PQC standardization process. It is
composed by two distinct layers. The first one (Inner.DualModeMS) is a re-parametrization
of GeMSS. The second one (DualModeMS) is a modified HFE-based signature scheme
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Table 20: Statistics in mega cycles (Mc) for each cryptographic operation, for a Skylake
process (LaptopS). For three different keypairs, documents of length 59 bytes are signed
then verified. The EUF-CMA property is implemented for all schemes.

scheme operation average std. deviation first quartile median third quartile
Gui-184 keygen 771 9.62 764 769 776

(libpqcrypto) sign 1 215 201 66.8 154 301
sign 2 225 217 69.4 162 303
sign 3 214 211 67.3 147 288
verify 1 0.298 0.0281 0.285 0.292 0.3
verify 2 0.295 0.02 0.285 0.292 0.299
verify 3 0.296 0.0222 0.285 0.292 0.299

Gui-184 keygen 59.5 4.1 56.4 58.4 62
(MQsoft) sign 1 153 152 44.2 107 208

sign 2 155 146 49.7 109 219
sign 3 154 151 50 108 208
verify 1 0.207 0.0188 0.193 0.205 0.218
verify 2 0.206 0.0196 0.192 0.204 0.217
verify 3 0.207 0.0337 0.192 0.204 0.217

Gui-185 keygen 59.4 3.46 56.5 59.1 60.7
(MQsoft) sign 1 120 115 38.8 86 165

sign 2 125 123 38.7 87.4 165
sign 3 124 120 40.1 88.9 172
verify 1 0.209 0.0199 0.195 0.207 0.22
verify 2 0.21 0.0208 0.195 0.208 0.221
verify 3 0.21 0.0211 0.195 0.208 0.221

GeMSS128 keygen 45.5 1.02 45.2 45.3 45.3
(MQsoft) sign 1 1670 1340 694 1260 2180

sign 2 1700 1400 697 1280 2210
sign 3 1640 1330 689 1260 2070
verify 1 0.182 0.0168 0.17 0.18 0.191
verify 2 0.182 0.0164 0.17 0.18 0.19
verify 3 0.182 0.017 0.17 0.18 0.191

which permits to decrease the size of the public-key, but by increasing the size of the
signature. These parameters are chosen to minimize the sum of both sizes. Since the
NIST submission DualModeMS is based on the GeMSS implementation, MQsoft supports
naturally DualModeMS. The original implementation supported only the 128-bit level of
security. For Inner.DualModeMS, we obtain the original implementation by modifying
only the security parameters in the GeMSS128 implementation. Our new library permits
to support the three levels of security. Table 23 and 24 compare the performance of
DualModeMS between the additional implementation of the NIST submission and MQsoft.
The main part of signature generation is to compute a large number (between 64 and 256)
of HFE-based signatures with Inner.DualModeMS. For a 128-bit level of security, MQsoft
permits to obtain a factor 1.33 on Haswell and 1.43 on Skylake (cf. Table 18 and 19). This
is directly obtained by the improvement of Inner.DualModeMS. These factors are mainly
obtained by using the multi-squaring tables to compute the Frobenius map (Section 3.5).
The original implementation used the classical repeated squaring algorithm.
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Table 21: Median in mega cycles (Mc) for each cryptographic operation, for a Skylake
process (LaptopS). We compare the Gui implementation from SUPERCOP (S) with
MQsoft. For three different keypairs, documents of length 59 bytes are signed then verified.
The EUF-CMA property is implemented for all schemes.

scheme keygen 1 keygen 2 keygen 3 sign 1 sign 2 sign 3 verify 1 verify 2 verify 3
Gui-184 (S) 485 487 488 208 178 130 0.279 0.273 0.285

Gui-184 53.7 54 53.7 73.8 122 129 0.101 0.0998 0.107
Gui-185 55.2 54.7 54.7 105 102 132 0.107 0.102 0.107

GeMSS128 44.8 44.8 44.7 1380 1390 1270 0.0893 0.0961 0.088

Table 22: Number of mega cycles for main steps of keypair generations with MQsoft. We
use a Skylake processor (DesktopS).

scheme sec. level (n,D,∆, v) gen. f apply S apply T keypair gen.
GeMSS 128 (174, 513, 12, 12) 4.04 26.5 5.78 36.2

192 (265, 513, 22, 20) 21.0 144 20.2 189
256 (354, 513, 30, 33) 49.6 446 61.9 564

Gui 128 (184, 33, 16, 16) 2.73 33.1 7.11 48.6
(185, 33, 16, 16) 2.57 33.6 7.16 48.9

192 (312, 129, 24, 20) 22.7 229 39.6 307
(313, 129, 24, 20) 22.7 231 40.3 310

256 (448, 513, 32, 28) 100 1080 120 1340

6 Conclusion
MQsoft is an efficient library to do HFE-based multivariate cryptography. We obtain
interesting speed-ups for GeMSS, Gui and for the signature generation of DualModeMS.
Our library provides an efficient constant-time arithmetic, which is on average four times
faster than NTL. We have proposed a new method to improve the root finding for specific
HFE polynomials, but the security analysis must be studied in depth. We have exploited
the architecture to obtain efficient implementations for the evaluation of multivariate
quadratic systems in F2.
However, our library can be improved again. In fact, the generation of keypair is not
completely vectorized. The library is in constant-time for a large part, but is not completely
protected against timing attacks. The generation and inversion of random invertible
matrices require to use constant-time Gaussian elimination [8]. It is not implemented
in MQsoft for the moment. Moreover, the GCD is implemented in variable-time since the
number of iterations is variable. To solve this problem, the Gui submission proposes a
constant-time implementation which returns a correct GCD only if its degree is one.
During the review process, GeMSS was selected in the second round of the NIST PQC
standardization process. MQsoft will permit to improve the performance of GeMSS, as
well as to propose other trade-offs between security and performance.
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Appendix

A Modular Reduction by a Pentanomial

For completeness, we explain here the principle of modular reduction by a pentanomial. Let
f5(x) = xn + xk3 + xk2 + xk1 + 1 such that 0 < k1 < k2 < k3 ≤

⌈
n
2
⌉
. Let R0 =

∑n−1
i=0 rix

i,
Rkj

=
∑2n−kj−1

i=n rix
i−n and Skj

=
∑2n−2

i=2n−kj
rix

i−2n+kj for j ∈ J1, 3K, we have:

R = R0 + (Rkj
+ Skj

xn−kj )xn. (9)

We do a first step of reduction by f5 by replacing xn by f5(x)− xn in Equation (9). To
compute (Rkj

+ Skj
xn−kj )× (1 + xk1 + xk2 + xk3), we multiply the left operand by xkj

for j ∈ J1, 3K, and we choose j = 1 when we multiply the left operand by 1. We obtain:

R = R0+(Rk1+Sk1x
n−k1)+(Rk1x

k1+Sk1x
n)+(Rk2x

k2+Sk2x
n)+(Rk3x

k3+Sk3x
n) mod f5.

We iterate a new step of reduction:

R = R0+Rk1 +Sk1x
n−k1 +Rk1x

k1 +Rk2x
k2 +Rk3x

k3 +(Sk1 +Sk2 +Sk3)(f5(x)−xn) mod f5.
(10)

In Equation (10), the degree of R is max(n− 1, 2(k3 − 1)). So, R is reduced modulo f5
only if 2(k3 − 1) < n. In two steps of reduction, we have then a method to compute the
modular reduction for all pentanomials such that 2(k3 − 1) < n.

To optimize the computation of (10), we compute Rk1 + Rk1x
k1 + Rk2x

k2 + Rk3x
k3 as

Rk1(f5(x)− xn) mod xn. In this way, we can rewrite R as:

R = R0 + Sk1x
n−k1 + ((Rk1 + Sk1 + Sk2 + Sk3)(f5(x)− xn) mod xn) mod f5. (11)

The product (Rk1 + Sk1 + Sk2 + Sk3)(f5(x)− xn) can be computed with same methods
that in Section 2.3: directly with several calls to PCLMULQDQ instructions, or else with the
shift-and-add strategy. For the moment, our library uses the shift-and-add strategy which
has the advantage to be portable since it does not require PCLMULQDQ.

The parameters of Gui and DualModeMS256 require the use of irreducible pentanomials.
For n ∈ {184, 312, 448, 544}, we have choose respectively x184 + x27 + x24 + x+ 1, x312 +
x128 + x15 + x5 + 1, x448 + x64 + x39 + x33 + 1 and x544 + x128 + x3 + x + 1. For these
values of n, n is a multiple of 8. We speed-up the extraction of Rk1 from R by using shifts
of bytes (PSRLDQ and PSHUFB instructions). For n = 184, we choose k2 = 24 because it is
a multiple of 8. This permits to improve the multiplication by x24 by using shifts of bytes
(PSLLDQ and PSHUFB instructions). For n = 312 and n = 544, we choose k3 = 128. This
improve the multiplication of Rk1 by x128, which does not require shifts when the data
are stored on 64-bit or 128-bit registers. For n = 448, we choose k3 = 64 because n is a
multiple of 64. We use this to simplify the multiplication of Rk1 by x64: instead of doing
this computation, we remark that the result is already available in the input. The result is
aligned on 128 bits in R. For n = 184 and n = 544, the choice of k1 = 1 implies Sk1 = 0.
This saves one instruction in our implementation.
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B Addition Chains for the ITMIA

Table 25: Proposed addition chains to minimize the number of multiplications in F2n .
The bold numbers are used to create some numbers of the chain.

n addition chains nb of mul. used in Algorithm 5
174 1, 2, 4,5, 10, 20, 21, 42, 84, 168, 173 10 no
184 1, 2,3,4,7, 11, 22, 44, 88, 176, 183 10 no
185 1, 2, 4, 5, 10, 11, 22, 23, 46, 92, 184 10 yes
265 1, 2, 4, 8, 16, 32, 33, 66, 132, 264 9 yes
266 1, 2, 4, 8, 16, 32, 33, 66, 132, 264, 265 10 yes
312 1,2, 4,5,7, 14, 19, 38, 76, 152, 304, 311 11 no
313 1, 2, 3,6, 12, 18, 36, 72, 78, 156, 312 10 no
354 1, 2, 4, 5, 10, 11, 22, 44, 88, 176, 352, 353 11 yes
402 1, 2, 3, 6, 12, 24, 25, 50, 100, 200, 400, 401 11 yes
448 1, 2,3, 6, 12, 24, 27, 54, 108, 111, 222, 444, 447 12 no
544 1, 2,3, 6, 12,15, 30, 33, 66, 132, 264, 528, 543 12 no

C Polynomial Multiplication in F2n[X]
Fast algorithms which are presented in Appendix D and Section 3.6 require fast multi-
plications in F2n [X]. The main fast multiplication is the Karatsuba method [46, Section
8.1]. The fast convolution algorithm [46, Algorithm 8.16] that uses Fast Fourier Transform
(FFT) cannot be used here because primitive 2k-th roots of unity do not exist in the binary
field. However, efficient additive FFT in characteristic two have been proposed [27, 8], but
they are probably not invertible or not enough efficient to be used here.

Karatsuba multiplication is well known when the degree of polynomials is a power of two [46,
Algorithm 8.1], and can be easily extended for all degrees. However, fast algorithms require
multiplications of two polynomials having different degrees. To multiply A,B ∈ F2n [X]
respectively of degree da, db such that da ≥ db, we just split A by block of size db + 1
in order to apply the multiplication of each block by B. The classical and Karatsuba
multiplications in F2n [X] are available in MQsoft.

D Fast Euclidean Division in F2n[X]
In this section, we define Reci(P ) the reciprocal polynomial of P ∈ F2n [X], such that
Reci(P ) = XiP ( 1

X ). The fast Euclidean division [46, Algorithm 9.5] of A by F consists to
write A = FQ+R with Q,R ∈ F2n [X], and to remark that:

Rec2D−2(A) = RecD(F )RecD−2(Q) +XD−1RecD−1(R). (12)

Because the degree of Q is at most D − 2, we can compute Equation (12) modulo XD−1.
So, we obtain the following formula for Q:

RecD−2(Q) = Rec2D−2(A)RecD(F )−1 mod XD−1. (13)

Once Q is known, R is easily obtained. This process can be summarized in three steps:

• Computation of RecD(F )−1 mod XD−1 with Newton iterations [46, Algorithm 9.3].

• Computation of the quotient with Equation (13).
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• Computation of the remainder: R = A−QF mod XD.

The fast Euclidean division can be used to compute the Frobenius map (Section 3.5). In the
case of HFE-, RecD(F )−1 mod XD−1 can be precomputed and stored with the secret-key,
because the computation does not have dependences with the constant of F (in Section
1.3, we are looking for a root of F (X,v)−D′). For the vinegar variant, the linear terms
of F depend on the choice of vinegars variables and so RecD(F )−1 mod XD−1 must be
computed for each of these choices. So, a precomputed table requires 2v(D − 1)n bits,
which huge.
However, whenD is odd, D−1 is a power of two and so the computation of RecD(F )−1 mod
XD−1 can be improved. Because F has a HFE structure, we have that:

RecD(F ) = 1 + coefD(F ) mod X
D−1

4 ,

and so:

RecD(F )−1 =
D−1

4 −1∑
i=0

coefD(F )iXi mod X
D−1

4 .

With this formula, only two iterations of Newton are required to compute RecD(F )−1 mod
XD−1 (by computing RecD(F )−1 modulo X D−1

2 then modulo XD−1). The two others
steps require only two multiplications in F2n [X] modulo a power of X. With a enough fast
multiplication, fast algorithm is better asymptotically than classical Euclidean division (Sec-
tion 3.3). However, a fast Euclidean division based on Karatsuba multiplication (Appendix
C) is inefficient compared to the classical Euclidean division which exploits the sparse
structure of F . This explains why NTL is slow to compute the Frobenius map in Section 3.5.

In the general case, the fast Euclidean division algorithm is interesting. It permits to
improve the fast GCD algorithm in Section 3.6. The fast Euclidean division is implemented
in MQsoft, as well as the fast Frobenius map, the fast GCD, and so the fast root finding
algorithm. This is slower for HFE polynomials, but is efficient in the general case.

E Performance of the NIST submissions

Table 26: Number of mega cycles for each cryptographic operation (best implementation
provided for the NIST submissions). We use a Haswell processor (ServerH). Turbo Boost
is not used.

scheme sec. level (n,D,∆, v,nb_ite) key gen. signature gen. signature verif.
GeMSS128 128 (174, 513, 12, 12, 4) 125 1510 0.161
GeMSS192 192 (265, 513, 22, 20, 4) 562 3870 0.439
GeMSS256 256 (354, 513, 30, 33, 4) 1620 7300 1.01
Gui-184 112 (184, 33, 16, 16, 2) 744 17.1 0.0869

126 (184, 33, 16, 16, 3) 744 26.1 0.131
128 (184, 33, 16, 16, 4) 744 34.1 0.177

Gui-312 192 (312, 129, 24, 20, 2) 5180 505 0.278
Gui-448 256 (448, 513, 32, 28, 2) 30500 17600 0.715

Inner.DualModeMS128 128 (266, 129, 10, 11, 1) 451 146 0.0925
DualModeMS128 128 (266, 129, 10, 11, 1) 1850000 9740 9.16
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Table 27: Number of mega cycles for each cryptographic operation (best implementation
provided for the NIST submissions). We use a Haswell processor (DesktopH).

scheme (n,D,∆, v,nb_ite) key gen. signature gen. signature verif.
GeMSS128 (174, 513, 12, 12, 4) 112 1360 0.145
GeMSS192 (265, 513, 22, 20, 4) 505 3480 0.394
GeMSS256 (354, 513, 30, 33, 4) 1460 6580 0.911
Gui-184 (184, 33, 16, 16, 4) 670 30.5 0.16
Gui-312 (312, 129, 24, 20, 2) 4660 452 0.25
Gui-448 (448, 513, 32, 28, 2) 27500 15800 0.653

Inner.DualModeMS128 (266, 129, 10, 11, 1) 406 131 0.0831
DualModeMS128 (266, 129, 10, 11, 1) 1670000 8780 8.23

Table 28: Number of mega cycles for each cryptographic operation (best implementation
provided for the NIST submissions). We use a Skylake processor (DesktopS).

scheme (n,D,∆, v,nb_ite) key gen. signature gen. signature verif.
GeMSS128 (174, 513, 12, 12, 4) 92.6 978 0.125
GeMSS192 (265, 513, 22, 20, 4) 424 2570 0.35
GeMSS256 (354, 513, 30, 33, 4) 1150 4040 0.883
Gui-184 (184, 33, 16, 16, 4) 612 22.1 0.141
Gui-312 (312, 129, 24, 20, 2) 4110 323 0.233
Gui-448 (448, 513, 32, 28, 2) 26600 10900 0.612

Inner.DualModeMS128 (266, 129, 10, 11, 1) 349 97.7 0.0756
DualModeMS128 (266, 129, 10, 11, 1) 1580000 6530 7.79

F Performance of MQsoft

Table 29: Number of mega cycles (Mc) for each cryptographic operation with our li-
brary for a Haswell processor (ServerH), followed by the speed-up between the best
implementation provided for the NIST submissions versus our implementation. For exam-
ple, 45 δ: +180% means a performance of 45 Mc with MQsoft, and a performance of
45× 2.8 = 130 Mc for the NIST implementations.

scheme (n,D,∆, v,nb_ite) key gen. signature gen. signature verif.
GeMSS128 (174, 513, 12, 12, 4) 45 δ: +180% 960 δ: +57% 0.081 δ: +98%
GeMSS192 (265, 513, 22, 20, 4) 230 δ: +140% 3100 δ: +25% 0.24 δ: +83%
GeMSS256 (354, 513, 30, 33, 4) 690 δ: +130% 5900 δ: +23% 0.58 δ: +75%
Gui-184 (184, 33, 16, 16, 4) 57 δ: +1200% 24 δ: +40% 0.11 δ: +67%
Gui-185 (185, 33, 16, 16, 4) 58 δ: +1200% 20 δ: +73% 0.1 δ: +74%
Gui-312 (312, 129, 24, 20, 2) 370 δ: +1300% 440 δ: +14% 0.17 δ: +61%
Gui-313 (313, 129, 24, 20, 2) 380 δ: +1300% 420 δ: +21% 0.17 δ: +59%
Gui-448 (448, 513, 32, 28, 2) 1600 δ: +1800% 7100 δ: +150% 0.45 δ: +59%

Inner.DualModeMS128 (266, 129, 10, 11, 1) 210 δ: +120% 110 δ: +30% 0.045 δ: +110%
DualModeMS128 (266, 129, 10, 11, 1) 1900000 δ: +0% 7400 δ: +32% 9.2 δ: +0%
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Table 30: Number of mega cycles for each cryptographic operation with MQsoft. We use
a Haswell processor (ServerH). Turbo Boost is not used.

scheme (n,D,∆, v,nb_ite) key gen. signature gen. signature verif.
GeMSS128 (174, 513, 12, 12, 4) 44.9 962 0.0814
GeMSS192 (265, 513, 22, 20, 4) 235 3080 0.24
GeMSS256 (354, 513, 30, 33, 4) 694 5930 0.577
Gui-184 (184, 33, 16, 16, 4) 57.2 24.4 0.106
Gui-185 (185, 33, 16, 16, 4) 58.4 19.8 0.102
Gui-312 (312, 129, 24, 20, 2) 373 444 0.172
Gui-313 (313, 129, 24, 20, 2) 380 416 0.174
Gui-448 (448, 513, 32, 28, 2) 1570 7070 0.451

Inner.DualModeMS128 (266, 129, 10, 11, 1) 210 112 0.0446
Inner.DualModeMS192 (402, 129, 18, 18, 1) 1030 245 0.143
Inner.DualModeMS256 (544, 129, 32, 32, 1) 4000 487 0.263

DualModeMS128 (266, 129, 10, 11, 1) 1.85 M 7360 9.16
DualModeMS192 (402, 129, 18, 18, 1) 7.14 M 24700 17.1
DualModeMS256 (544, 129, 32, 32, 1) 18 M 131000 28.5

Table 31: Number of mega cycles for each cryptographic operation with MQsoft. We use
a Haswell processor (DesktopH).

scheme (n,D,∆, v,nb_ite) key gen. signature gen. signature verif.
GeMSS128 (174, 513, 12, 12, 4) 40.5 864 0.0722
GeMSS192 (265, 513, 22, 20, 4) 211 2770 0.215
GeMSS256 (354, 513, 30, 33, 4) 625 5330 0.518
Gui-184 (184, 33, 16, 16, 4) 51.4 21.9 0.088
Gui-185 (185, 33, 16, 16, 4) 52.4 17.8 0.0899
Gui-312 (312, 129, 24, 20, 2) 336 399 0.152
Gui-313 (313, 129, 24, 20, 2) 344 374 0.155
Gui-448 (448, 513, 32, 28, 2) 1430 6350 0.409

Inner.DualModeMS128 (266, 129, 10, 11, 1) 189 101 0.0396
Inner.DualModeMS192 (402, 129, 18, 18, 1) 928 221 0.129
Inner.DualModeMS256 (544, 129, 32, 32, 1) 3640 438 0.241

DualModeMS128 (266, 129, 10, 11, 1) 1.67 M 6610 8.23
DualModeMS192 (402, 129, 18, 18, 1) 6.42 M 22200 15.3
DualModeMS256 (544, 129, 32, 32, 1) 16.2 M 119000 25.7
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Table 32: Number of mega cycles for each cryptographic operation with MQsoft. We use
a Skylake processor (DesktopS).

scheme (n,D,∆, v,nb_ite) key gen. signature gen. signature verif.
GeMSS128 (174, 513, 12, 12, 4) 36.2 597 0.0666
GeMSS192 (265, 513, 22, 20, 4) 189 1880 0.197
GeMSS256 (354, 513, 30, 33, 4) 564 3100 0.451
Gui-184 (184, 33, 16, 16, 4) 48.6 16.7 0.0811
Gui-185 (185, 33, 16, 16, 4) 48.9 13.1 0.0811
Gui-312 (312, 129, 24, 20, 2) 307 285 0.126
Gui-313 (313, 129, 24, 20, 2) 310 260 0.128
Gui-448 (448, 513, 32, 28, 2) 1340 4390 0.327

Inner.DualModeMS128 (266, 129, 10, 11, 1) 171 68.5 0.0297
Inner.DualModeMS192 (402, 129, 18, 18, 1) 850 153 0.0982
Inner.DualModeMS256 (544, 129, 32, 32, 1) 3400 292 0.204

DualModeMS128 (266, 129, 10, 11, 1) 1.58 M 4570 7.79
DualModeMS192 (402, 129, 18, 18, 1) 5.72 M 15800 15.2
DualModeMS256 (544, 129, 32, 32, 1) 14.4 M 80600 24.9
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