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1 Introduction

Superconformal field theories (SCFT) often have continuous deformations preserving some

superconformal symmetry. The space of such deformations is a Riemannian manifold (the

‘superconformal manifold’) which coincides with the moduli space of supersymmetric Anti-

de Sitter (AdS) vacua when the SCFT has a holographic dual. Mapping out such moduli

spaces is of interest both for field theory and for the study of the string-theory landscape.

In this paper we will be interested in superconformal manifolds in the vicinity of the

‘good’ theories T ρ̂ρ [SU(N)] whose existence was conjectured by Gaiotto and Witten [1].

These are three-dimensional N = 4 SCFTs arising as infrared fixed points of a certain

class of quiver gauge theories introduced by Hanany and Witten [2]. Their holographic

duals are four-dimensional Anti-de Sitter (AdS4) solutions of type-IIB string theory [3–6].
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Our main motivation in this work was to extract features of these moduli spaces not readily

accessible from the gravity side. We build on the analysis of ref. [7] which we complete and

amend in significant ways.

Superconformal deformations of a d-dimensional theory T? are generated by the set of

marginal operators {Oi} that preserve some or all of its supersymmetries.1 The existence

of such operators is constrained by the analysis of representations of the superconformal

algebra [8]. In particular, unitary SCFTs have no moduli in d = 5 or 6 dimensions,

whereas in the case d = 3 of interest here moduli preserve at most N = 2 supersymmetries.

Those preserving only N = 1 belong to long (‘D-term’) multiplets whose dimension is not

protected against quantum corrections. The existence of such N = 1 moduli (and of non-

supersymmetric ones) is fine-tuned and thus accidental. For this reason we focus here on

the N = 2 moduli.

The general local structure of N = 2 superconformal manifolds in three dimensions

(and of the closely-related case N = 1 in d = 4) has been described in [9–13]. These

manifolds are Kähler quotients of the space {λi} of marginal supersymmetry-preserving

couplings modded out by the complexified global (flavor) symmetry group Gglobal,

MSC ' {λi}/GC
global ' {λi|Da = 0}/Gglobal . (1.1)

The meaning of this is as follows: marginal scalar operators Oi fail to be exactly marginal

if and only if they combine with conserved-current multiplets of Gglobal to form long (un-

protected) current multiplets. Requesting this not to happen imposes the moment-map

conditions

Da = λiT aij̄ λ̄
j̄ +O(λ3) = 0 , (1.2)

where T a are the generators of Gglobal in the representation of the couplings. The second

quotient by Gglobal in (1.1) identifies deformations that belong to the same orbit. The

complex dimension of the moduli space is therefore equal to the difference

dimCMSC = #{Oi} − dimGglobal . (1.3)

In the dual gauged supergravity (when one exists) the fields dual to single-trace operators

Oi are N = 2 hypermultiplets, and Da = 0 are D-term conditions [14].

The global flavour symmetry of the T ρ̂ρ [SU(N)] theories, viewed as N = 2 SCFTs, is

a product

Gglobal = G× Ĝ×U(1) , (1.4)

where G and Ĝ are the flavour groups of the electric and magnetic theories that are related

by mirror symmetry, and U(1) is the subgroup of the SO(4)R symmetry which commutes

with the unbroken N = 2. As for any 3d N = 2 theory, the local moduli space is the

Kähler quotient (1.1). To determine this moduli space we must thus list all marginal

supersymmetric operators and the Gglobal-representation(s) in which they transform. The

N = 4 supersymmetry helps to identify these unambiguously. Many of these marginal

1One exception to this general rule is the gauging of a global symmetry with vanishing β function in

four dimensions.
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deformations are standard superpotential deformations involving hypermultiplets of either

the electric theory or its magnetic mirror. Some marginal operators involve, however, both

kinds of hypermultiplets and do not admit a local Lagrangian description. We refer to such

deformations as ‘mixed’. They are specific to three dimensions, and will be the focus of

our paper.

Marginal N = 2 deformations of N = 4 theories belong to three kinds of superconfor-

mal multiplets [7]. The Higgs- and Coulomb-branch superpotentials belong, respectively,

to (2, 0) and (0, 2) representations of SO(3)H×SO(3)C , where SO(3)H×SO(3)C ' SO(4)R
is the N = 4 R-symmetry.2 The mixed marginal operators on the other hand transform in

the (JH , JC) = (1, 1) representation. In the holographic dual supergravity the (2, 0) and

(0, 2) multiplets describe massive N = 4 vector bosons, while the (1, 1) multiplets contain

also spin-3
2 fields. These latter are also special for another reason: they are Stueckelberg

fields capable of rendering the N = 4 graviton multiplet massive [15–17]. In represen-

tation theory they are the unique short multiplets that can combine with the conserved

energy-momentum tensor into a long multiplet. This monogamous relation will allow us

to identify them unambiguously in the superconformal index.

More generally, one cannot distinguish in the superconformal index the contribution

of the N = 2 chiral ring, which contains scalar operators with arbitrary (JH , JC), from

contributions of other short multiplets. Two exceptions to this rule are the pure Higgs-

and pure Coulomb-branch chiral rings whose R-symmetry quantum numbers are (JH , 0)

and (0, JC). The corresponding multiplets are absolutely protected, i.e. they can never

recombine to form long representations of the N = 4 superconformal algebra [18]. These

two subrings of the chiral ring can thus be unambiguously identified. Their generating

functions (known as the Higgs-branch and Coulomb-branch Hilbert series [19–23]) are

indeed simple limits of the superconformal index [24]. Arbitrary elements of the chiral

ring, on the other hand, are out of reach of presently-available techniques.3 Fortunately

this will not be an obstacle for the marginal (1, 1) operators of interest here.

The result of our calculation has no surprises. As we will show, the mixed marginal

operators transform in the (Adj,Adj, 0) representation of the global symmetry (1.4), up

to some overcounting when (and only when) the quivers of T ρ̂ρ [SU(N)] have abelian gauge

nodes.4 More generally, the set of all marginal N = 2 operators is of the form

S2(AdjG+ Adj Ĝ) + [length-4 strings] − redundant , (1.5)

where S2 is the symmetrized square of representations, and the ‘length-4 string’ operators

are quartic superpotentials made out of the hypermultiplets of the electric or the magnetic

theory only. All redundancies arise due to symmetrization and electric or magnetic F -term

conditions. Calculating them is the main technical result of our paper. On the way we will

find also some new checks of 3d mirror symmetry.

2SO(3)H and SO(3)C act on the chiral rings of the pure Higgs and pure Coulomb branches of the theory,

whence their names. They are exchanged by mirror symmetry.
3Though there do exist some interesting suggestions [25, 26] on which we will comment at the end of

this paper.
4However, mixed marginal operators of more general 3dN = 4 theories may transform in a representation

larger than (Adj,Adj, 0). We give an example in section 5.1.
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Our calculation settles one issue about the dual AdS moduli that was left open in

ref. [7]. As is standard in holography, the global symmetries G and Ĝ of the CFT are

realized as gauge symmetries on the gravity side. The corresponding N = 4 vector bosons

live on stacks of magnetized D5-branes and NS5-branes which wrap two different 2-spheres

(S2
H and S2

C) in the ten-dimensional spacetime [3]. The R-symmetry spins JH and JC

are the angular momenta on these spheres. As was explained in [7], the Higgs-branch

superconformal moduli correspond to open-string states on the D5-branes: either non-

excited single strings with JH = 2, or bound states of two JH = 1 strings. The Coulomb

branch superconformal moduli correspond likewise to open D-string states on NS5-branes.

For mixed moduli ref. [7] suggested two possibilities: either bound states of a JH = 1 open

string on the D5-branes with a JC = 1 D-string from the NS5 branes, or single closed-

string states that are scalar partners of massive gravitini. Our results rule out the second

possibility for the backgrounds that are dual to linear quivers.5

It was also noted in ref. [7] that although gauged N = 4 supergravity can in principle

account for the (2, 0) and (0, 2) moduli that are scalar partners of spontaneously-broken

gauge bosons, it has no massive spin- 3
2 multiplets to account for single-particle (1, 1) moduli.

But if all (1,1) moduli are 2-particle states, they can be in principle accounted for by

modifying the AdS4 boundary conditions [27, 28]. The dismissal in ref. [7] of gauged

supergravity, as not capturing the entire moduli space, was thus premature. We stress

however that changing the boundary conditions does not affect the classical AdS solution

but only the fluctuations around it. Put differently these moduli show up only upon

quantization. The analysis of N = 2 AdS4 moduli spaces in gauged supergravity [14] must

be revisited in order to incorporate such ‘quantization moduli.’

This paper is organized as follows: section 2 reviews some generalities about good

T ρ̂ρ [SU(N)] theories, and exhibits their superconformal index written as a multiple integral

and sum over Coulomb-branch moduli and monopole fluxes. Our aim is to recast this

expression into a sum of superconformal characters with fugacities restricted as pertaining

to the index. These restricted characters and the linear relations that they obey are

derived in section 3. We also explain in this section how the ambiguities inherent in the

decomposition of the index as a sum over representations can be resolved for the problem

at hand.

Section 4 contains our main calculation. We first expand the determinants so as to

only keep contributions from operators with scaling dimension ∆ ≤ 2, and then perform

explicitly the integrals and sums. The result is re-expressed as a sum of characters of

OSp(4|4)×G× Ĝ in section 5. We identify the superconformal moduli, comment on their

holographic interpretation (noting the role of a stringy exclusion principle) and conclude.

Some technical material is relegated to appendices. Appendix A sketches the derivation

of the superconformal index as a localized path integral over the Coulomb branch. This is

standard material included for the reader’s convenience. In section B we prove a combina-

torial lemma needed in the main calculation. Lastly a closed-form expression for the index

5In the interacting theory single- and multi-string states with the same charges mix and cannot be

distinguished. The above statement should be understood in the sense of cohomology: in linear-quiver

theories all (1, 1) elements of the ∆ = 2 chiral ring are accounted for by 2-string states.

– 4 –



J
H
E
P
1
0
(
2
0
1
9
)
2
5
3

N1 N2 · · · Nk

M1 M2 Mk

Figure 1. Linear quiver with gauge group U(N1)× · · · × U(Nk).

of T [SU(2)], which is sQED3 with two ‘selectrons’, is derived in appendix C. This renders

manifest a general property (which we do not use in this paper), namely the factorization

of the index in holomorphic blocks [29–31].

Note added: shortly before ours, the paper [32] was posted to the arXiv. It checks

mirror symmetry by comparing the index of mirror pairs, including many examples of

coupled 4d-3d systems. The papers only overlap marginally.

2 Superconformal index of T ρ̂
ρ [SU(N)]

2.1 Generalities

We consider the 3d N = 4 gauge theories [2] based on the linear quivers of figure 1. Circle

nodes in these quivers stand for unitary gauge groups U(Ni), squares designate fundamental

hypermultiplets and horizontal links stand for bifundamental hypermultiplets. One can

generalize to theories with orthogonal and symplectic gauge groups and to quivers with

non-trivial topology, but we will not consider such complications here. We are interested

in the infrared limit of ‘good theories’ [1] for which Nj−1 + Nj+1 + Mj ≥ 2Nj ∀j. These

conditions ensure that at a generic point of the Higgs branch the gauge symmetry is

completely broken.

The theories are defined in the ultraviolet (UV) by the standard N = 4 Yang-Mills

plus matter 3d action. All masses and Fayet-Iliopoulos terms are set to zero and there

are no Chern-Simons terms. We choose the vacuum at the origin of both the Coulomb

and Higgs branches, where all scalar expectation values vanish. Thus the only continuous

parameters are the dimensionful gauge couplings gi, which flow to infinity in the infrared.

Every good linear quiver has a mirror which is also a good linear quiver and whose

discrete data we denote by hats, {N̂̂, M̂̂, k̂}. A useful parametrization of both quivers is

in terms of an ordered pair of partitions, (ρ, ρ̂) with ρT > ρ̂, see section B. The SCFT has

global (electric and magnetic) flavour symmetries

G× Ĝ =

(∏
j

U(Mj)

)
/U(1) ×

(∏
̂

U(M̂̂)

)
/U(1) , (2.1)

with rankG = k̂ and rank Ĝ = k. In the string-theory embedding the flavour symmetries

are realized on (k̂+ 1) D5-branes and (k+ 1) NS5-branes [2]. The symmetry G is manifest

in the microscopic Lagragian of the electric theory, as is the Cartan subalgebra of Ĝ which

is the topological symmetry whose conserved currents are the dual field strengths Tr ?F(j).

The non-abelian extension of Ĝ is realized in the infrared by monopole operators [33–35].

– 5 –
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In addition to G × Ĝ the infrared fixed-point theory has global superconformal sym-

metry. The N = 4 superconformal group in three dimensions is OSp(4|4). It has eight real

Poincaré supercharges transforming in the ( 1
2 ,

1
2 ,

1
2) representation of SO(1, 2)× SO(3)H ×

SO(3)C . The two-component 3d Lorentzian spinors can be chosen real. The marginal

deformations studied in this paper leave unbroken an N = 2 superconformal symmetry

OSp(2|4) ⊂ OSp(4|4). This is generated by two out of the four real SO(1, 2) spinors,

so modulo SO(4)R rotations the embedding is unique. Let Q(±±) be a complex basis for

the four Poincaré supercharges, where the superscripts are the eigenvalues of the diagonal

R-symmetry generators JH3 and JC3 . Without loss of generality we can choose the two

unbroken supercharges to be the complex pair Q(++) and Q(−−), so that the N = 2 R-

symmetry is generated by JH3 + JC3 and the extra commuting U(1) by JH3 − JC3 . We use

this same basis in the definition of the superconformal index.

2.2 Integral expression for the index

There is a large literature on the N = 2 superconformal index in three dimensions, for a

partial list of references see [36–42]. The index is defined in terms of the cohomology of the

supercharge Q
(++)
− . It is a weighted sum over local operators of the SCFT, or equivalently

over all quantum states on the two-sphere,

ZS2×S1 = TrHS2 (−1)F q
1
2

(∆+J3)tJ
H
3 −JC3 e−β(∆−J3−JH3 −JC3 ) . (2.2)

In this formula F is the fermion number of the state, J3 the third component of the spin, ∆

the energy, and q, t, e−β are fugacities. Only states for which ∆ = J3 +JH3 +JC3 contribute

to the index, which is therefore independent of the fugacity β.

The non-abelian R-symmetry guarantees (for good theories) that the U(1)R of the

N = 2 subalgebra is the same in the ultraviolet and the infrared. We can therefore

compute ZS2×S1 in the UV where the 3d gauge theory is free. The index can be further

refined by turning on fugacities for the flavour symmetries, and background fluxes on S2

for the flavour groups [40]. In our calculation we will include flavour fugacities but set the

flavour fluxes to zero.

The superconformal index eq. (2.2) is the appropriately twisted partition function of

the theory on S2×S1. It can be computed by supersymmetric localization of the functional

integral, for a review see ref. [42]. For each gauge-group factor U(Nj) there is a sum over

monopole charges {mj,α} ∈ ZNj and an integral over gauge fugacities (exponentials of

gauge holonomies) {zj,α} ∈ U(1)Nj . The calculation is standard and is summarized in

appendix A. The result is most conveniently expressed with the help of the plethystic

exponential (PE) symbol,

ZS2×S1 =

k∏
j=1

[
1

Nj !

∑
mj∈ZNj

∫ Nj∏
α=1

dzj,α
2πizj,α

]

×

{
(q

1
2 t−1)∆(m)

k∏
j=1

[ Nj∏
α=1

w
mj,α
j

Nj∏
α 6=β

(1− q
1
2
|mj,α−mj,β |zj,βz

−1
j,α)

]

– 6 –
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× PE

(
k∑
j=1

Nj∑
α,β=1

q
1
2 (t−1 − t)

1− q
q|mj,α−mj,β |zj,βz

−1
j,α

+
(q

1
2 t)

1
2 (1− q

1
2 t−1)

1− q

k∑
j=1

Mj∑
p=1

Nj∑
α=1

q
1
2
|mj,α|

∑
±
z∓1
j,αµ

±1
j,p

+
(q

1
2 t)

1
2 (1− q

1
2 t−1)

1− q

k−1∑
j=1

Nj∑
α=1

Nj+1∑
β=1

q
1
2
|mj,α−mj+1,β |

∑
±
z∓1
j,αz

±1
j+1,β

)}
.

(2.3)

Here zj,α is the S1 holonomy of the U(Nj) gauge field and mj,α its 2-sphere fluxes (viz. the

monopole charges of the corresponding local operator in R3) with α labeling the Cartan

generators; µj,p are flavour fugacities with p = 1, . . . ,Mj , and wj is a fugacity for the

topological U(1) whose conserved current is Tr ?F(j) . The plethystic exponential of a

function f(v1, v2, · · · ) is given by

PE(f) = exp

( ∞∑
n=1

1

n
f(vn1 , v

n
2 , · · · )

)
. (2.4)

Finally m denotes collectively all magnetic charges, and the crucial exponent ∆(m) reads

∆(m) = −1

2

k∑
j=1

Nj∑
α,β=1

|mj,α −mj,β |+
1

2

k∑
j=1

Mj

Nj∑
α=1

|mj,α|+
1

2

k−1∑
j=1

Nj∑
α=1

Nj+1∑
β=1

|mj,α −mj+1,β | .

(2.5)

Note that the smallest power of q in any given monopole sector is 1
2∆(m). Since the

contribution of any state to the index is proportional to q
1
2

(∆+J3), we see that ∆(m) is the

Casimir energy of the ground state in the sector m, or equivalently the scaling dimension

[and the SO(3)C spin] of the corresponding monopole operator [33–35]. As shown by

Gaiotto and Witten [1] this dimension is strictly positive (for m 6= 0) for all the good

theories that interest us here.

We would now like to extract from the index (2.3) the number, flavour representations

and U(1) charges of all marginal N = 2 operators. To this end we need to rewrite the

index as a sum over characters of the global OSp(4|4)×G× Ĝ symmetry,

ZS2×S1 =
∑

(R,r,̂r)

IR(q, t)χr(µ)χr̂(µ̂) (2.6)

where the sum runs over all triplets of representations (R, r, r̂), χr and χr̂ are characters

of G and Ĝ, and IR are characters of OSp(4|4) with fugacities restricted as pertaining for

the index.6 To proceed we must now make a detour to review the unitary representations

of the N = 4 superconformal algebra in three dimensions.

6The restriction on fugacities can also be understood as the fact that IR are characters of the commutant

of Q
(++)
− inside OSp(4|4).

– 7 –
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3 Characters of OSp(4|4) and Hilbert series

3.1 Representations and recombination rules

All unitary highest-weight representations of OSp(4|4) have been classified in refs. [18, 43].

As shown in these references, in addition to the generic long representations there exist

three series of short or BPS representations:

A1[j]
(jH , jC)

1+j+jH+jC
(j > 0) , A2[0]

(jH , jC)

1+jH+jC
, and B1[0]

(jH , jC)

jH+jC
. (3.1)

We follow the notation of [18] where [j]
(jH , jC)
δ denotes a superconformal primary with

energy δ, and SO(1, 2) × SO(3)H × SO(3)C spin quantum numbers j, jH , jC .7 We use

lower-case symbols for the quantum numbers of the superconformal primaries in order

to distinguish them from those of arbitrary states in the representation. The subscripts

labelling A and B indicate the level of the first null states in the representation.

The A-type representations lie at the unitarity threshold (δA = 1 + j + jH + jC) while

those of B-type are separated from this threshold by a gap, δB = δA − 1. Since for short

representations the primary dimension δ is fixed by the spins and the representation type,

we will from now on drop it in order to make the notation lighter.

The general character of OSp(4|4) is a function of four fugacities, corresponding to the

eigenvalues of the four commuting bosonic generators J3, J
H
3 , J

C
3 and ∆. For the index one

fixes the fugacity of J3 and then a second fugacity automatically drops out. More explicitly

IR(q, t) = χR(eiπ, q, t, eβ)

where χR(w, q, t, eβ) = TrR w2J3q
1
2

(∆+J3)tJ
H
3 −JC3 e−β(∆−J3−JH3 −JC3 ) .

(3.2)

Although general characters are linearly-independent functions, this is not the case for

indices. The index of long representations vanishes, and the indices of short representations

that can recombine into a long one sum up to zero. This is why, as is well known, ZS2×S1

does not determine (even) the BPS spectrum of the theory unambiguously. Fortunately,

we can avoid this difficulty for our purposes here, as we will now explain.

In any 3d N = 4 SCFT the ambiguity in extracting the BPS spectrum from the index

can be summarized by the following recombination rules [18]

L[0](j
H, jC) → A2[0](j

H, jC) ⊕ B1[0](j
H+1, jC+1) , (3.3a)

L
[

1
2

](jH, jC) → A1

[
1
2

](jH, jC) ⊕ A2[0](j
H+ 1

2
, jC+ 1

2
) , (3.3b)

L[j ≥ 1](j
H, jC) → A1[j](j

H, jC) ⊕ A1

[
j − 1

2

](jH+ 1
2
, jC+ 1

2
)
. (3.3c)

The long representations on the left-hand side are taken at the unitarity threshold δ → δA.

From these recombination rules one sees that the characters of the B-type multiplets form

a basis for contributions to the index. Simple induction indeed gives

(−)2j I
A1[j](j

H, jC ) = I
A2[0](j

H+j, jC+j) = −I
B1[0](j

H+j+1, jC+j+1) . (3.4)

7Factor of 2 differences from [18] are because we use spins rather than Dynkin labels.
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We need therefore to compute the index only for B-type multiplets. The decomposition of

these latter into highest-weight representations of the bosonic subgroup SO(2, 3) × SO(4)

can be found in ref. [18]. Using the known characters of SO(2, 3) and SO(4) and taking

carefully the limit w → eiπ leads to the following indices

IB1[0](0,0) = 1 , (3.5a)

I
B1[0](j

H>0,0) = (q
1
2 t)j

H (1− q
1
2 t−1)

(1− q)
, (3.5b)

I
B1[0](0,j

C>0) = (q
1
2 t−1)j

C (1− q
1
2 t)

(1− q)
, (3.5c)

I
B1[0](j

H>0,jC>0) = q
1
2

(jH+jC)tj
H−jC (1− q

1
2 (t+ t−1) + q)

(1− q)
. (3.5d)

Note that all superconformal primaries of type B are scalar fields with δ = jH + jC ,

so one of them saturates the BPS bound δ = j3 + jH3 + jC3 and contributes the leading

power q
1
2

(jH+jC) to the index. Things work differently for type-A multiplets whose primary

states have δ = 1 + j + jH + jC > j3 + jH3 + jC3 , so they cannot contribute to the index.

Their descendants can however saturate the BPS bound and contribute, because even

though a Poincaré supercharge raises the dimension by 1
2 , it can at the same time increase

J3 + JH3 + JC3 by as much as 3
2 .

3.2 Protected multiplets and Hilbert series

General contributions to the index can be attributed either to a B-type or to an A-type

multiplet. There exists, however, a special class of absolutely protected B-type representa-

tions which do not appear in the decomposition of any long multiplet. Their contribution to

the index can therefore be extracted unambiguously. Inspection of (3.3) gives the following

list of multiplets that are

absolutely protected : B1[0](j
H ,jC) with jH ≤ 1

2
or jC ≤ 1

2
. (3.6)

Consider in particular the B1[0](j
H ,0) series.8 The highest-weights of these multiplets are

chiral N = 2 scalar fields that do not transform under SO(3)C rotations. This is precisely

the Higgs-branch chiral ring consisting of operators made out of N = 4 hypermultiplets of

the electric quiver. It is defined entirely by the classical F -term conditions. Likewise the

highest-weights of the B1[0](0,j
C) series, which are singlets of SO(3)H , form the chiral ring

of the Coulomb branch whose building blocks are magnetic hypermultiplets. Redefine the

fugacities as follows

x± = q
1
4 t±

1
2 . (3.7)

It follows then immediately from (3.5) that in the limit x− = 0 the index only receives

contributions from the Higgs-branch chiral ring, while in the limit x+ = 0 it only receives

contributions from the chiral ring of the Coulomb branch.

8The representations B1[0](j
H , 1

2
) and B1[0](

1
2
, jC) only appear in theories with free (magnetic or electric)

hypermultiplets and play no role in good theories.
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The generating functions of these chiral rings, graded according to their dimension

and quantum numbers under global symmetries, are known as Hilbert series (HS). In the

context of 3d N = 4 theories elegant general formulae for the Higgs-branch and Coulomb-

branch Hilbert series were derived in refs. [19–22], see also [23] for a review. It follows from

our discussion that

ZS2×S1

∣∣∣
x−=0

= HSHiggs(x+) and ZS2×S1

∣∣∣
x+=0

= HSCoulomb(x−) . (3.8)

These relations between the superconformal index and the Hilbert series were established in

ref. [24] by matching the corresponding integral expressions. Here we derive them directly

from the N = 4 superconformal characters.

What about other operators of the chiral ring? The complete N = 2 chiral ring consists

of the highest weights in all B1[0](j
H ,jC) multiplets of the theory.9 As seen however from

eq. (3.4) the mixed-branch operators (those with both jH and jC ≥ 1) cannot be extracted

unambiguously from the index. This shows that there is no simple relation between the

Hilbert series of the full chiral ring and the superconformal index. The Hilbert series

is better adapted for studying supersymmetric deformations of a SCFT, but we lack a

general method to compute it (see however [25, 26] for interesting ideas in this direction).

Fortunately these complications will not be important for the problem at hand.

The reason is that marginal deformations exist only in the restricted set of multiplets:

marginal : B1[0](j
H ,jC) with jH + jC = 2 . (3.9)

These are in the absolutely protected list (3.6) with the exception of B1[0](1,1), a very inter-

esting multiplet that contains also four spin-3/2 fields in its spectrum. This multiplet is not

absolutely protected, but it is part of a ‘monogamous relation’: its unique recombination

partner is A2[0](0,0) and vice versa. Furthermore A2[0](0,0) is the N = 4 multiplet of the

conserved energy-momentum tensor [18],10 which is unique in any irreducible SCFT. As a

result the contribution of B1[0](1,1) multiplets can be also unambiguously extracted from

the index.

A similar though weaker form of the argument actually applies to all N = 2 SCFT.

Marginal chiral operators belong to short OSp(2|4) multiplets whose only recombination

partners are the conserved N = 2 vector-currents. We already alluded to this fact when

explaining why the 3d N = 2 superconformal manifold has the structure of a moment-

map quotient [13]. If the global symmetries of the SCFT are known (they are not always

manifest), one can extract unambiguously its marginal deformations from the index (see

e.g., [45, 46] for applications).

9The A-type multiplets do not contribute to the chiral ring, since none has scalar states that saturate

the BPS bound (i.e. ∆ = JH3 + JC3 and J = 0).
10In the dual gravity theory, this recombination makes the N = 4 supergraviton massive. Thus B1[0](1,1)

is a Stueckelberg multiplet for the ‘Higgsing’ of N = 4 AdS supergravity [15–17]. We also note in passing

ref. [44] where the monogamous relation is used in order to extract the number of conserved energy-

momentum tensors from the superconformal index of d = 4 class-S theories.
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4 Calculation of the index

We turn now to the main calculation of this paper, namely the expansion of the expres-

sion (2.2) in terms of characters of the global symmetry OSp(4|4) × G × Ĝ. Since we are

only interested in the marginal multiplets (3.9) whose contribution starts at order q, it will

be sufficient to expand the index to this order. In terms of the fugacities x± we must keep

terms up to order x4. As we have just seen, each of the terms in the expansion to this

order can be unambiguously attributed to an OSp(4|4) representation.

We will organize the calculation in terms of the magnetic Casimir energy eq. (2.5). We

start with the zero-monopole sector, and then proceed to positive values of ∆(m).

4.1 The zero-monopole sector

In the m = 0 sector all magnetic fluxes vanish and the gauge symmetry is unbroken. The

expression in front of the plethystic exponential in (2.2) reduces to

k∏
j=1

[
1

Nj !

∫ Nj∏
α=1

dzj,α
2πizj,α

Nj∏
α 6=β

(1− zj,βz−1
j,α)

]
. (4.1)

This can be recognized as the invariant Haar measure for the gauge group
∏k
j=1 U(Nj).

The measure is normalized so that for any irreducible representation R of U(N)

1

N !

∫ N∏
α=1

dzα
2πizα

N∏
α 6=β

(1− zβz−1
α )χR(z) = δR,0 . (4.2)

Thus the integral projects to gauge-invariant states, as expected. We denote this operation

on any combination, X, of characters as X
∣∣
singlet

.

Since we work to order O(q) we may drop the denominators (1 − q) in the plethystic

exponential. The contribution of the m = 0 sector to the index can then be written as

Zm=0
S2×S1 = PE

(
x+(1− x2

−)X + (x2
− − x2

+)Y
)∣∣∣

singlet
+O(x5) (4.3)

with

X =
k∑
j=1

(
�j�

µ
j + �j�

µ
j

)
+

k−1∑
j=1

(
�j�j+1 + �j�j+1

)
and Y =

k∑
j=1

�j�j . (4.4)

The notation here is as follows: �j denotes the character of the fundamental representation

of the jth unitary group, and �j that of the anti-fundamental. To distinguish gauge from

global (electric) flavour groups we specify the latter with the symbol of the corresponding

fugacities µ, while for the gauge group the dependence on the fugacities z is implicit. The

entire plethystic exponent can be considered as a character of G×G×U(1)×R+, where G is

the gauge group and U(1)×R+ ⊂ OSp(4|4) are the superconformal symmetries generated

by JH3 − JC3 and by ∆ + J3. The “singlet” operation projects on singlets of the gauge

group only.
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The plethystic exponential is a sum of powers Skχ of characters, where Sk is a multi-

particle symmetrizer that takes into account fermion statistics. For instance

S2(a+ b− c− d) = S2a+ ab+ S2b− (a+ b)(c+ d) + Λ2c+ cd+ Λ2d (4.5)

where Sk and Λk denote standard symmetrization or antisymmetrization. Call Ω the

exponent in eq. (4.3) . To the quartic order that we care about we compute

S2Ω = x2
+S2X + x+(x2

− − x2
+)XY + x4

−S2Y + x4
+Λ2Y − x2

+x
2
−
(
X2 + Y 2

)
+O(x5) ,

S3Ω = x3
+S3X + x2

+(x2
− − x2

+)Y S2X +O(x5) ,

S4Ω = x4
+S4X +O(x5) .

(4.6)

Upon projection on the gauge-invariant sector one finds

X
∣∣
singlet

= XY
∣∣
singlet

= 0 and Y
∣∣
singlet

= k . (4.7)

Second powers of Y also give (µ-independent) pure numbers,

Y 2
∣∣∣
singlet

= S2Y
∣∣∣
singlet

+ Λ2Y
∣∣∣
singlet

with

S2Y
∣∣∣
singlet

=
1

2
k(k + 1) +

k∑
j=1

δNj 6=1 , Λ2Y
∣∣∣
singlet

=
1

2
k(k − 1) . (4.8)

The remaining terms in the expansion require a little more work with the result

X2
∣∣∣
singlet

= 2 S2X
∣∣∣
singlet

= 2

(
k − 1 +

k∑
j=1

�
µ
j�

µ
j

)
,

S3X
∣∣∣
singlet

=

k−1∑
j=1

(
�µ
j�

µ
j+1 + �

µ
j�

µ
j+1

)
,

Y S2X
∣∣∣
singlet

= k2 + k − 2 + δN1=1 + δNk=1 +

k∑
j=1

[
(k + δNj 6=1)�

µ
j�

µ
j − 2δNj=1

]
,

(4.9)

and finally (and most tediously)

S4X
∣∣∣
singlet

=

k−1∑
j=2

δNj 6=1 +

k−1∑
j=1

δNj 6=1δNj+1 6=1 +
(k − 1)k

2
+

k−2∑
j=1

(
�µ
j�

µ
j+2 + �

µ
j�

µ
j+2

)
+

k∑
j=1

δNj 6=1(2− δj=1 − δj=k)|�µ
j |

2 + (k − 1)

k∑
j=1

|�µ
j |

2

+

k∑
j<j′

|�µ
j |

2|�µ
j′ |

2 +

k∑
j=1

|��µ
j |

2 +

k∑
j=1

δNj 6=1

∣∣∣ µ

j

∣∣∣2
(4.10)

where in the last equation we used the shorthand |R|2 for the character of R ⊗ R, and

denoted the (anti)symmetric representations of U(Mj) by Young diagrams.
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Let us explain how to compute the singlets in Y S2X. One obtains gauge-invariant

contributions to that term in three different ways: the product of a gauge-invariant from Y

and one from S2X, or the product of an SU(Nj) adjoint in Y with either a fundamental and

an antifundamental, or a pair of bifundamentals, coming from S2X. This gives three terms:

Y S2X
∣∣∣
singlet

= k

(
k − 1 +

k∑
j=1

|�µ
j |

2

)
+

(
k∑
j=1

δNj 6=1|�µ
j |

2

)

+

(
−δN1 6=1 − δNk 6=1 +

k∑
j=1

2δNj 6=1

)
(4.11)

where we used that the SU(Nj) adjoint is absent when Nj = 1, and that the outermost

nodes have a single bifundamental hypermultiplet rather than two. After a small rear-

rangement, this is the same as the last line of (4.9).

For S4X|singlet we organized terms according to how many bifundamentals they involve.

First, four bifundamentals can be connected in self-explanatory notation as or or

S2( ). Next, two bifundamentals and two fundamentals of different gauge groups can be

connected as , while for the same group they can be either connected as or ,

or disconnected as a pair of bifundamentals and a flavour current (see below). When

the node is abelian the first two terms are already included in the third and should not

be counted separately. Finally, four fundamental hypermultiplets can form two pairs at

different nodes, or if they come from the same node they should be split in two conjugate

pairs, Qpj,αQ
r
j,β and Q̃p̄j,αQ̃

r̄
j,β , with each pair separately symmetrized or antisymmetrized.

When the gauge group is abelian the antisymmetric piece is absent.

4.2 Higgs-branch chiral ring

As a check, let us use the above results to calculate the Hilbert series of the Higgs branch.

We have explained in section 3.2 that this is equal to the index evaluated at x− = 0. Non-

trivial monopole sectors make a contribution proportional to x
2∆(m)
− and since ∆(m) > 0

they can be neglected. The Higgs-branch Hilbert series therefore reads

HSHiggs(x+) = Zm=0
S2×S1

∣∣∣
x−=0

. (4.12)

Setting x− = 0 in eqs. (4.3) and (4.6) we find

HSHiggs(x+) =1 + x2
+

(
S2X − Y

)∣∣∣
singlet

+x3
+S3X

∣∣∣
singlet

+ x4
+

(
S4X + Λ2Y − Y S2X

)∣∣∣
singlet

+ O(x5
+) .

(4.13)

Inserting now (4.7)–(4.10) gives, after some straightforward algebra in which we distinguish

k = 1 from k > 1 because simplifications are somewhat different,

HSHiggs(x+)
k=1
= 1 + x2

+

(
|�µ

1 |2 − 1︸ ︷︷ ︸
AdjG

)

+ x4
+

(
|��µ

1 |
2 + δN1 6=1

∣∣∣ µ

1

∣∣∣2 − (1 + δN1 6=1)|�µ
1 |2︸ ︷︷ ︸

double-string operators

)
+O(x5

+) , (4.14)
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HSHiggs(x+)
k>1
= 1 + x2

+

(∑k
j=1 |�

µ
j |2 − 1︸ ︷︷ ︸

AdjG

)
+ x3

+

∑k−1
j=1

(
�µ
j�

µ
j+1 + �

µ
j�

µ
j+1

)︸ ︷︷ ︸
χ`=3: length=3 strings

+ x4
+

(∑k
j<j′ |�

µ
j |

2|�µ
j′ |

2 +
∑k

j=1

(
|��µ

j |
2 + δNj 6=1

∣∣∣ µ

j

∣∣∣2 − |�µ
j |2
)

︸ ︷︷ ︸
double-string operators

+
∑k−1

j=2

(
�µ
j−1�

µ
j+1 + �

µ
j−1�

µ
j+1 + δNj 6=1|�µ

j |2
)
− ∆nH︸ ︷︷ ︸

χ`=4: length=4 strings

)
+ O(x5

+) .

(4.15)

where ∆nH in the last line is a pure number given by

∆nH = 1 +

k−1∑
j=2

δNj=1 −
k−1∑
j=1

δNj=1δNj+1=1 . (4.16)

This result agrees with expectations. Recall that the Higgs branch is classical and

its Hilbert series counts chiral operators made out of the scalar fields, Qpj and Q̃p̄j , of the

(anti)fundamental hypermultiplets, and the scalars of the bifundamental hypermultiplets

Qj,j+1 and Q̃j+1,j (the gauge indices are here suppressed). Gauge-invariant products of

these scalar fields can be drawn as strings on the quiver diagram [7], and they obey the

following F -term matrix relations derived from the N = 4 superpotential,

Qj,j+1Q̃j+1,j + Q̃j,j−1Qj−1,j +

Mj∑
p,p̄=1

Qpj Q̃
p̄
jδpp̄ = 0 ∀j = 1, · · · , k . (4.17)

The length of each string gives the SO(3)H spin and scaling dimension of the operator, and

hence the power of x+ in the index. Since good theories have no free hypermultiplets there

are no contributions at order x+. At order x2
+ one finds the scalar partners of the conserved

flavour currents that transform in the adjoint representation of G. Higher powers come

either from single longer strings or, starting at order x4
+, from multistring ‘bound states’.

One indeed recognizes the second line in (4.15) as the symmetrized product of strings of

length two,

S2χAdjG = S2

(
k∑
j=1

|�µ
j |

2 − 1

)
, (4.18)

modulo the fact that for abelian gauge nodes some of the states are absent. These and the

additional single-string operators of length 3 and 4 can be enumerated by diagrammatic

rules, we refer the reader to [7] for details.

Note that single- and double-string operators with the same flavour quantum num-

bers may mix. The convention adopted in eq. (4.15) is to count such operators as double

strings. In particular, length 4 single-string operators transforming in the adjoint of the

flavour symmetry group (at a non-abelian node) are related by the F -term constraint (4.17)

to products of currents, which explains the coefficient 1 of |�µ
j |

2 in contrast with its coeffi-

cient 2 in S4X|singlet eq. (4.10). In the special case k = 1, all length 4 strings are products
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of currents and some vanish by the F -term constraint (4.17). Note also that the correction

term ∆nH is the number of disjoint parts of the quiver when all abelian nodes are deleted.

For each such part (consecutive non-abelian nodes) one neutral length-4 operator turns out

to be redundant by the F -term conditions.11

The quartic term of the Hilbert series counts marginal Higgs-branch operators. When

the electric flavour-symmetry group G is large, the vast majority of these are double-string

operators. Their number far exceeds the number (dimG) of moment-map constraints,

eq. (1.2), so generic T ρ̂ρ theories have a large number of double-string N = 2 moduli.

4.3 Contribution of monopoles

Going back to the full superconformal index, we separate it in three parts as follows

ZS2×S1 = −1 + HSHiggs(x+, µ) + HSCoulomb(x−, µ̂) + Zmixed(x+, x−, µ, µ̂) (4.19)

where the remainder Zmixed vanishes if either x− = 0 or x+ = 0. The Higgs-branch

Hilbert series only depends on the electric-flavour fugacities µj,p, and the Hilbert series of

the Coulomb branch only depends on the magnetic-flavour fugacities wj . To render the

notation mirror-symmetric these latter should be redefined as follows

wj = µ̂jµ̂
−1
j+1 . (4.20)

Note that since the index (2.3) only depends on ratios of the µ̂j , the last fugacity µ̂k+1

is arbitrary and can be fixed at will. This reflects the fact that a phase rotation of all

fundamental magnetic quarks is a gauge rather than global symmetry.

Mirror symmetry predicts that HSCoulomb is given by the same expression (4.15) with

x+ replaced by x− and all other quantities replaced by their hatted mirrors. We will assume

that this is indeed the case12 and focus on the mixed piece Zmixed.

As opposed to the two Hilbert series, which only receive contributions from B-type

primaries, Zmixed has contributions from both A-type and B-type multiplets, and from

both superconformal primaries and descendants. Let us first collect for later reference the

terms of the m = 0 sector that were not included in the Higgs-branch Hilbert series. From

11Let j1, . . . , j2 be the non-abelian nodes in such a part, and focus on the case where the nodes j1 − 1

and j2 + 1 are abelian (the discussion is essentially identical if instead we have the edge of the quiver).

Because of the abelian node, the closed length 4 string passing through nodes j1 − 1 and j1 factorizes

as a product of currents. On the other hand the F -term constraint (4.17) at j1 expresses Qj1,j1−1Qj1−1,j1

as a sum of two terms and squaring it relates the string under consideration to a sum of three terms: a

string of the same shape passing through j1 and j1 + 1, a string of shape passing through these

two nodes and the flavour node Mj1 , and a string visiting the gauge and flavour nodes j1. The third is

a product of currents. The first can be rewritten using the F -term condition of node j1 + 1. Continuing

likewise until reaching a string of the same shape passing through j2 and j2 + 1, one finally obtains the

sought-after relation between many neutral length 4 operators and products of conserved currents.
12It is straightforward to verify the assertion at the quartic order computed here. Mirror symmetry of

the complete index can be proved by induction (I. Lavdas and B. Le Floch, work in progress).
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the results in section 4.1 one finds

Zm=0
S2×S1 −HSHiggs =

[
x2
−Y + x4

−S2Y + x2
+x

2
−
(
Y S2X −X2 − Y 2

)]
singlet

=x2
−k + x4

−

(
1

2
k(k + 1) +

k∑
j=1

δNj 6=1

)

+ x2
+x

2
−

(
k∑
j=1

(k − 1− δNj=1)|�µ
j |

2 − 2k

−
k∑
j=1

δNj=1 + δN1=1 + δNk=1

)
+O(x5) .

(4.21)

The two terms in the second line contribute to the Coulomb-branch Hilbert series, while

the third line is a contribution to the mixed piece.

We turn next to non-trivial monopole sectors whose contributions are proportional to

x
2∆(m)
− . At the order of interest we can restrict ourselves to sectors with 0 < ∆(m) ≤

2 . Finding which monopole charges contribute to a generic value of ∆(m) is a hard

combinatorial problem. For the lowest values ∆(m) = 1
2 , 1 and for good theories it was

solved in ref. [1].

Fortunately this will be sufficient for our purposes here since, to the order of interest,

the sectors ∆(m) = 2 and ∆(m) = 3
2 only contribute to the Coulomb-branch Hilbert series,

not to the mixed piece. This is obvious for ∆(m) = 2, while for ∆(m) = 3
2 subleading

terms in (2.3) with a single additional power of q1/4 have unmatched gauge fugacities zj,α,

and vanish after projection to the invariant sector (see below). In addition, good theories

have no monopole operators with ∆(m) = 1
2 . Such operators would have been free twisted

hypermultiplets, and there are none in the spectrum of good theories. This leaves us with

∆(m) = 1.

The key concept for describing monopole charges is that of balanced quiver nodes,

defined as the nodes that saturate the ‘good’ inequality Nj−1 + Nj+1 + Mj ≥ 2Nj . Let

Bξ denote the sets of consecutive balanced nodes, i.e. the disconnected parts of the quiver

diagram after non-balanced nodes have been deleted. As shown in [1] each such set corre-

sponds to a non-abelian flavor group SU(|Bξ|+1) in the mirror magnetic quiver.13 Monopole

charges in the sector ∆(m) = 1 are necessarily of the following form: all mj,α vanish except

mj1,α1 = mj1+1,α2 = · · · = mj1+`,α` = ±1 with [j1, j1 + `] ⊆ Bξ (4.22)

for one choice of color indices at each gauge node, and for one given set of balanced nodes,

Bξ. Up to permutations of the color indices we can choose α1 = α2 = · · · = α` = 1.

Define j1 + ` ≡ j2, and let Γ be the sequence of gauge nodes Γ = {j1, j1 + 1, · · · j1 + ` ≡
j2}. To determine the contribution of (4.22) to the index, we first note that the above

assignement of magnetic fluxes breaks the gauge symmetry down to

GΓ =
∏
j /∈Γ

U(Nj)×
∏
j∈Γ

[U(Nj − 1)×U(1)] . (4.23)

13As a result ξ ranges over the different components of the magnetic flavour group, i.e. the subset of

gauge nodes (̂ = 1, · · · k̂) in the mirror quiver of the magnetic theory for which M̂̂ > 1.
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Let us pull out of the integral expression (2.3) the fugacities
∏
j∈Γw

±
j and the overall

factor x2
−. Setting q = 0 everywhere else and summing over equivalent permutations of

color indices gives precisely the invariant measure of GΓ, normalized so that it integrates to

1. To calculate all terms systematically we must therefore expand the integrand in powers

of q1/4, and then project on the GΓ invariant sector. To the order of interest we find

Z∆(m)=1
S2×S1 =x2

−
∑
Bξ

∑
Γ⊆Bξ

(∏
j∈Γ

wj +
∏
j∈Γ

w−1
j

)

× PE
(
x+X

′ + (x2
− − x2

+)Y ′ − x+x−Z
′
)∣∣∣∣∣
GΓ singlet

+O(x5) (4.24)

where

X ′ =

k∑
j=1

(�
µ
j�
′
j + �µ

j�
′
j) +

k−1∑
j=1

(�
′
j�
′
j+1 + �′j�

′
j+1) +

∑
j,j+1∈Γ

(zj,1z
−1
j+1,1 + z−1

j,1 zj+1,1) ,

Y ′ =

k∑
j=1

�j�j =

k∑
j=1

�
′
j�
′
j + (j2 − j1 + 1) , Z ′ =

k∑
j=1

(
�
′
jzj,1 + z−1

j,1�
′
j

)
, (4.25)

and in these expressions �′j denotes the fundamental of U(N ′j) where N ′j = Nj −1 if j ∈ Γ,

and N ′j = Nj if j /∈ Γ. By convention �′j = 0 when N ′j = 0.

Performing the projection onto GΓ singlets gives

X ′|GΓ singlet = 0 , Y ′|GΓ singlet = (j2 − j1 + 1) +

k∑
j=1

δN ′j 6=0 , Z ′|GΓ singlet = 0 ,

and S2X ′|GΓ singlet =

k∑
j=1

δN ′j 6=0 �
µ
j�

µ
j +

k−1∑
j=1

δN ′j 6=0δN ′j+1 6=0 + (j2 − j1) .

(4.26)

Collecting and rearranging terms gives

Z∆(m)=1
S2×S1 =

∑
Bξ

∑
[j1,j2]⊆Bξ

(µ̂j1 µ̂
−1
j2+1 + µ̂−1

j1
µ̂j2+1)

[
x2
− + x4

−

(
k +

∑
j∈Γ

δNj 6=1

)

+ x2
−x

2
+

(
k∑
j=1

δN ′j 6=0 �
µ
j�

µ
j +

k−1∑
j=1

δN ′j 6=0δN ′j+1 6=0 −
k∑
j=1

δN ′j 6=0 − 1

)]
+ O(x5) .

(4.27)

The terms that do not vanish for x+ = 0 are contributions to the Hilbert series of the

Coulomb branch. For a check let us consider the leading term. Combining it with the one

from eq. (4.21) gives the adjoint representation of Ĝ, as predicted by mirror symmetry

HSCoulomb = 1 + x2
−

[
k +

∑
Bξ

∑
j1≤j2∈Bξ

(µ̂j1 µ̂
−1
j2+1 + µ̂−1

j1
µ̂j2+1)

︸ ︷︷ ︸
Adj Ĝ

]
+ O(x3

−) .
(4.28)

Note that the k Cartan generators of Ĝ (those corresponding to the topological sym-

metry) contribute to the index in the m = 0 sector. The monopole operators that en-

hance this symmetry in the infrared to the full non-abelian magnetic group enter in the

sector ∆(m) = 1.
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4.4 The mixed term

Let us now put together the mixed terms from eqs. (4.21) and (4.27). If the quiver has no

abelian nodes all Nj > 1 and all N ′j > 0, and our expressions simplify enormously. The

last line in eq. (4.21) collapses to (k−1)
∑

j |�
µ
j |2−2k, and the last line of (4.27) collapses

to
∑

j |�
µ
j |2 − 2. Combining the two gives the following result for quivers with

No abelian nodes :

Zmixed = x2
+x

2
−

[(∑
j

|�µ
j |

2 − 2

)(
k − 1 +

∑
Bξ

∑
ε=±

∑
[j1,j2]⊆Bξ

(µ̂j1 µ̂
−1
j2+1)ε

)
− 2

]
+O(x5)

= x2
+x

2
−

[
(χAdjG − 1)(χAdj Ĝ − 1)− 2

]
+ O(x5) . (4.29)

We will interpret this result in the following section. But first let us consider the corrections

coming from abelian nodes.

The µ-dependent correction in the m = 0 sector, eq. (4.21), is a sum of |�µ
j |2 over

all abelian gauge nodes, which should be subtracted from the above result. We expect,

by mirror symmetry, a similar subtraction for abelian gauge nodes of the magnetic quiver.

To see how this comes about note first that N ′j = 0 in (4.27) implies that j is an abelian

balanced node in Γ = [j1, j2] ⊆ Bξ. Now an abelian balanced node has exactly two

fundamental hypermultiplets, so it is necessarily one of the following four types:

· · · 1 1 1 · · ·

(a)

1 1 · · ·

1

(b)

1 2 · · ·

(c)

1

2

(d)

The balanced node is drawn in red, and the dots indicate that the [good] quiver extends

beyond the piece shown in the figure, with extra flavour and/or gauge nodes. The set Bξ
may contain several balanced nodes, as many as the rank of the corresponding non-abelian

factor of the magnetic-flavour symmetry. Notice however that abelian nodes of type (c)

cannot coexist in the same Bξ with abelian nodes of the other types. So we split the

calculation of the ∆(m) = 1 sector according to whether Bξ contains abelian nodes of type

(a) and/or (b), or nodes of type (c). The case (d) corresponds to a single theory called

T [SU(2)] and will be treated separately.

Replacing δN ′j 6=0 by 1 − δN ′j=0 in the last line of (4.27) and doing the straightforward

algebra leads to the following result for the x2
+x

2
− piece:

k∑
j=1

δN ′j 6=0�
µ
j�

µ
j +

k−1∑
j=1

δN ′j 6=0δN ′j+1 6=0 −
k∑
j=1

δN ′j 6=0 − 1

=

k∑
j=1

�
µ
j�

µ
j − 2−#

{
Bξ
∣∣ types (a)&(b)

} (4.30)
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The first two terms on the right-hand side were already accounted for in (4.29). The

extra subtraction vanishes for each Bξ of type (c), and equals −1 for each Bξ whose nodes

are of type (a) and/or (b). This is precisely what one expects from mirror symmetry.

Indeed, as shown in section B, the two cases in eq. (4.30) correspond to the M̂ξ = |Bξ|+ 1

magnetic flavours being charged under a non-abelian, respectively abelian gauge group

in the magnetic quiver (N̂ξ > 1, respectively N̂ξ = 1). In the first case there is no

correction to (4.29), while in the second summing over all monopole-charge assignements in

Bξ reconstructs, up to a fugacity-independent term equal to the rank, the adjoint character

of the non-abelian magnetic-flavour symmetry.

Putting everything together we finally get the following for all linear quivers ex-

cept T [SU(2)].

Arbitrary quivers except T [SU(2)]:

Zmixed = x2
+x

2
−

[(
χAdjG(µ)− 1

)(
χAdj Ĝ(µ̂)− 1

)
− 2

−
∑

j|Nj=1

|�µ
j |

2 −
∑
̂|N̂̂=1

|�µ̂
̂ |

2 + ∆nmixed

]
+ O(x5) ,

(4.31)

where the fugacity-independent correction reads

∆nmixed =
∑
̂|N̂̂=1

M̂̂ + δN1=1 + δNk=1 −
k∑
j=1

δNj=1 . (4.32)

We show in lemma B.2 that ∆nmixed is (like the rest of the expression) mirror symmetric,

albeit not manifestly so.

For completeness we give finally the result for T [SU(2)], the theory described by the

quiver (d). This is a self-dual abelian theory with global symmetry SU(2) × SÛ(2). In

self-explanatory notation the result for this case reads:

T [SU(2)]:

Zmixed = x2
+x

2
− (−3− µ− µ−1 − µ̂− µ̂−1) + O(x5) . (4.33)

It turns out that for this theory the full superconformal index can be expressed in closed

form, in terms of the q-hypergeometric function. This renders manifest a general property

of the index, its factorization in holomorphic blocks [29–31]. Since we are not using this

feature in our paper, the calculation is relegated to appendix C.

This completes our calculation of the mixed quartic terms of the superconformal index.

We will next rewrite the index as a sum of characters of OSp(4|4) and interpret the result.

5 Counting the N = 2 moduli

The full superconformal index up to order O(q) ∼ O(x4) is given by (4.19) together with

expressions (4.15)–(4.16) for the Higgs branch Hilbert series, their mirrors for the Coulomb
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branch Hilbert series, and expressions (4.31)–(4.32) for the mixed term. Collecting every-

thing and using also (3.5) for the indices of individual representations of the superconformal

algebra OSp(4|4) leads to the main result of this paper

ZS2×S1 = 1 + x2
+(1− x2

−)︸ ︷︷ ︸
I
B1[0](1,0)

χAdjG + x2
−(1− x2

+)︸ ︷︷ ︸
I
B1[0](0,1)

χAdj Ĝ + x3
+︸︷︷︸

I
B1[0](3/2,0)

χ`=3 + x3
−︸︷︷︸

I
B1[0](0,3/2)

χ̂`=3

+ x4
+︸︷︷︸

I
B1[0](2,0)

(
S2χAdjG + χ`=4 −∆χ(2,0)

)
+ x4

−︸︷︷︸
I
B1[0](0,2)

(
S2χAdj Ĝ + χ̂`=4 −∆χ(0,2)

)

+ x2
+x

2
−︸ ︷︷ ︸

I
B1[0](1,1)

(
χAdjG χAdj Ĝ −∆χ(1,1)

)
+ (−x2

+x
2
−)︸ ︷︷ ︸

I
A2[0](0,0)

+ O(x5) . (5.1)

where χ`=n counts independent single strings of length n = 3, 4 on the electric quiver, as

in (4.15),14

χ`=3 =
k−1∑
j=1

(
�µ
j�

µ
j+1 + �

µ
j�

µ
j+1

)
,

χ`=4 =


0 for k = 1, and otherwise

k−1∑
j=2

(
�µ
j−1�

µ
j+1 + �

µ
j−1�

µ
j+1 + δNj 6=1|�µ

j |
2
)
− 1−

k−1∑
j=2

δNj=1 +
k−1∑
j=1

δNj=Nj+1=1,

(5.2)

and χ̂`=n counts likewise single strings on the magnetic quiver, while the correction terms

coming from abelian (electric and magnetic) gauge nodes are given by

∆χ(2,0) = δk=1δN1 6=1|�µ
1 |

2 +

k∑
j=1

δNj=1

∣∣ µ

j

∣∣2 ,
∆χ(0,2) = δk̂=1δN̂1 6=1|�

µ̂
1 |

2 +
k̂∑
̂=1

δN̂̂=1

∣∣ µ̂

̂

∣∣2 ,

and ∆χ(1,1) =


χAdjG χAdj Ĝ for T [SU(2)], and otherwise

∑
j|Nj=1

|�µ
j |

2 +
∑
̂|N̂̂=1

|�µ̂
̂ |

2 −∆nmixed

(5.3)

with ∆nmixed defined in (4.32). Notice that we have used in eq. (5.1) the fact that the

SCFT has a unique energy-momentum tensor which is part of the A2[0](0,0) multiplet, and

that all the other OSp(4|4) multiplets can be unambiguously identified at this order.

Finally we calculate the dimension (1.3) of the conformal manifold as the number

of marginal scalar operators minus the number of conserved currents with which they

14Some quivers such as T [SU(N)] have χ`=4 < 0: double-string operators then obey extra F -term

relations.
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recombine:

dimCMSC =
[(

S2χAdjG + χ`=4 −∆χ(2,0)
)

+
(
S2χAdj Ĝ + χ̂`=4 −∆χ(0,2)

)
+
(
χAdjG χAdj Ĝ −∆χ(1,1)

)
− χAdjG − χAdj Ĝ − 1

]
µ=µ̂=1

,
(5.4)

where the three parenthesized expressions count electric, magnetic, and mixed marginal

scalars while the subtracted terms correspond to the flavour symmetry G × Ĝ × U(1) of

the theory.

5.1 Examples and interpretation

The marginal N = 2 deformations (exactly marginal or not) are the terms enclosed in

boxes in (5.1). Those in the second line are standard quartic superpotentials involving

only the N = 4 hypermultiplets of the electric quiver, or only their twisted cousins of

the magnetic quiver. The electric superpotentials (counted in the Higgs-branch Hilberts

series) are of two kinds: (i) single strings of length 4 that transform in the adjoint of each

gauge-group factor U(Mj), or in the bifundamental of next-to-nearest neighbour flavour

groups U(Mj)×U(Mj+2); and (ii) double-string operators in the S2(AdjG) representation.

If there are abelian gauge nodes or k = 1 some of these operators are absent. The same

statements of course hold for magnetic superpotentials and the mirror quiver.

The more interesting deformations, the ones made out of both types of hypermultiplets,

are in the third line of (5.1). For quivers with no abelian nodes, these mixed operators are

all possible |AdjG|× |Adj Ĝ| gauge-invariant products of two fundamental hypermultiplets

and two fundamental twisted hypermultiplets15

O(p̄,r; ¯̂p,r̂)
j;̂ = (Q̃p̄jQ

r
j)
( ˜̂
Q

¯̂p

̂ Q̂
r̂
̂

)
, (5.5)

where hats denote the scalars of the (twisted) hypermultiplets.

Some of the above operators can be identified with superpotential deformations in-

volving both hypermultiplets and vector multiplets. Consider, in particular, the following

gauge-invariant chiral operators of the electric theory

O(p̄,r)
j,j′ = (Q̃p̄jQ

r
j) Tr(Φj′) , (5.6)

where Φj is the N = 2 chiral field in the N = 4 vector multiplet at the jth gauge-group

node. It can be easily shown that Tr(Φj) is the scalar superpartner of the jth topological

U(1) current, so that the operators (5.6) are the same as the operators (5.5) when these

latter are restricted to the Cartan subalgebra of Ĝ. Similarly, projecting (5.5) onto the Car-

tan subalgebra of G gives mixed superpotential deformations of the magnetic Lagrangian.

The remaining (|AdjG| − rankG) × (|Adj Ĝ| − rankĜ) deformations involve both charged

hypermultiplets and monopole operators and have a priori no Lagrangian description.

15More precisely, all but those involving the overall combination
∑
j

∑
p,p̄Q

p
j Q̃

p̄
j δpp̄ or its mirror. These

are the scalar partners of the two missing U(1) flavour symmetries that are gauged.
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We can also understand why some mixed operators are absent when the quiver has

abelian nodes. Recall that the N = 4 superpotential reads

W =

k∑
j=1

(
Qj,j−1ΦjQ̃j,j−1 + Q̃j,j+1 ΦjQj,j+1 +

Mj∑
p,p̄=1

Q̃p̄j ΦjQ
p
jδpp̄

)
, (5.7)

from which one derives the following F -term conditions: Q̃p̄j Φj = ΦjQ
p
j = 0 for all j, p and

p̄. Note that Φj is an Nj×Nj matrix, while Q̃p̄j and Qpj = 0 are bra and ket vectors. If (and

only if) j is an abelian node, these conditions imply O(p̄,r)
j,j = 0 so that these operators should

be subtracted. This explains the first of the three terms in the subtraction ∆χ(1,1), eq. (5.3).

The second is likewise explained by the F -term conditions at abelian nodes of the magnetic

quiver. Finally ∆nmixed corrects some overcounting in these abelian-node subtractions.

We should stress that the factorization of mixed marginal deformations B1[0](1,1) in

terms of electric and magnetic chiral multiplets need not be a general property of all 3d N =

4 theories. As a counterexample [that does not come from a brane construction] consider

the SU(3) gauge theory with M1 hypermultiplets in the fundamental representation and

M2 in its symmetric square. This is a good theory for M1 + 3M2 ≥ 5 (in particular

∆(m) ≥ 1 for m 6= 0). For M1 + 3M2 ≥ 6 it has no magnetic flavour symmetry, yet

there are mixed marginal deformations in the M1M2 +M1M2 representation of the electric

flavour symmetry U(M1) × U(M2). Even in 3d N = 4 theories that do arise from brane

constructions, complicated (p, q)-string webs with both F-string and D-string open ends,

corresponding to B1[0](j
H ,jC) multiplets, need not factorize into F-string and D-string parts.

However, we expect this failure to appear if at all at large jH , jC .

We may summarize the discussion as follows:

Marginal chiral operators of T ρ̂ρ [SU(N)] transform in the S2(AdjG +

Adj Ĝ) representation of the electric and magnetic flavour symmetry,

plus strings of length 4 (in either adjoints or bifundamentals of individual

factors), modulo redundancies for quivers with abelian nodes and in the

special cases k = 1 or k̂ = 1.

Note that the above logic could be extended to chiral operators of arbitrary dimension

∆ = n. Operator overcounting arises, however, in this case at electric or magnetic gauge

nodes of rank ≤ n− 1, making the combinatorial problem considerably harder.

We now illustrate these results with selected examples:

sQCD3: the electric theory has gauge group U(Nc) with Nc ≥ 2, and Nf ≥ 2Nc funda-

mental flavours. Its electric and magnetic quivers are drawn below. The magnetic quiver

with Nf = 2Nc (upper right figure) differs from the one for Nf > 2Nc (lower right figure).

Both have Nf − 1 balanced nodes, corresponding to the electric SU(Nf ) flavour symmetry,
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but their magnetic symmetry is, respectively, SU(2) and U(1):

Nc

Nf

1 2 · · · Nc · · · 2 1

2

1 2 · · · Nc · · · Nc · · · 2 1

1 1

Nf − 2Nc + 1

The Nf > 2Nc theories have 1
2N

2
f (N2

f − 3) electric, one magnetic, and (N2
f − 1) mixed

marginal operators from 2-string states. For Nf = 2Nc + 2 there are three extra marginal

operators from length 4 magnetic strings, while for other Nf there is only one. There are

none from length 4 electric strings, and no abelian-node redundancies. The number of D-

term conditions is N2
f + 1, so that the complex dimension of the superconformal manifold

is dimMSC = 1
2N

2
f (N2

f − 3) if Nf 6= 2Nc + 2, and dimMSC = 1
2N

2
f (N2

f − 3) + 2 otherwise.

When Nf = 2Nc the number of electric operators is the same, but there are now six 2-

string magnetic operators, 3(N2
f −1) mixed ones, three length-4 strings, and N2

f +3 D-term

conditions, hence dimMSC = 1
2N

2
f (N2

f + 1) + 3.

sQED3: this is a U(1) theory with Nf > 2 charged hypermultiplets. The magnetic quiver

has Nf−1 abelian balanced nodes and one charged hypermultiplet at each end of the chain:

1

Nf 1

1 1 · · · 1 · · · 1 1

1

This theory has 1
4N

2
f (Nf +1)2−N2

f marginal electric operators (because the antisymmetric

combination Q[pQr] vanishes), one magnetic operator, and no mixed ones. To prove this

latter assertion one computes ∆nmixed = 3 from eq. (4.32) [checking in passing that the

expression is mirror symmetric]. In the special case Nf = 4 there is in addition two length-4

magnetic strings. Note that for Nf � 1 the dimension of the superconformal manifold of

sQED3 is reduced by a factor two compared to the superconformal manifold of sQCD3.

T [SU(N)]: this theory is defined by the self-dual fully-balanced quiver shown below.

1 2 · · · N−1 N

For N ≥ 3 there are 1
2N

2(N2 − 1) − 1 electric operators, as many magnetic operators,

and (N2 − 1)2 mixed ones. The dimension of the superconformal manifold is dimMSC =

N2(2N2 − 5). The case T [SU(2)] was discussed already separately.
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5.2 The holographic perspective

In this last part we discuss the relation to string theory and sketch some directions for

future work.

Recall that the T ρ̂ρ [SU(N)] theories are holographically dual to type IIB string theory

in the supersymmetric backgrounds of refs. [3, 4]. The geometry has a AdS4×S2
H×S2

C fiber

over a basis which is the infinite strip Σ. The SO(2, 3) × SO(3)H × SO(3)C symmetry

of the SCFT is realized as isometries of the fiber. The solution features singularities on

the upper (lower) boundary of the strip which correspond to D5-brane sources wrapping

S2
H (NS5-brane sources wrapping S2

C). These two-spheres are trivial in homology, yet the

branes are stabilized by non-zero worldvolume fluxes that counterbalance the negative

tensile stress [47].

There is a total of k + 1 NS5-branes and k̂ + 1 D5-branes. Their position along the

boundary of the strip is a function of their linking number, which increases from left to

right for D5-branes and decrease for NS5-branes [3]. Branes with the same linking number

overlap giving non-abelian flavour symmetries. The linking number of a fivebrane can be

equivalently defined as

• the D3-brane charge dissolved in the fivebrane;

• the worldvolume flux on the wrapped two-sphere;

• the node of the corresponding quiver, for instance the ı̂th D5-brane provides a fun-

damental hypermultiplet at the l̂ı̂ = i node of the electric quiver (see section B).

The R-symmetry spins JH , JC are the angular momenta of a state on the two spheres.

Given the above dictionary, can we understand the results of this paper from the string-

theory side?

Consider first the Higgs-branch chiral ring which consists of the highest weights of all

B1[0](j
H ,0) multiplets. When decomposed in terms of conformal primaries these multiplets

read [18]

B1[0]
(jH ,0)

jH
= [0]

(jH ,0)

jH
⊕ [0]

(jH−1,1)

jH+1
⊕ [1]

(jH−1,0)

jH+1
⊕ fermionsjH+ 1

2
. (5.8)

Note that the top component includes a vector boson with scaling dimension ∆ = jH + 1.

This is a massless gauge boson in AdS4 for jH = 1 (‘conserved current’ multiplet) and a

massive gauge boson for jH > 1. As explained in ref. [7], both massless and massive vector

bosons are states of fundamental open strings on the D5-branes. Their vertex operators

include a scalar wavefunction on S2
H with angular momentum JH = jH − 1. Consider such

an open string stretching between two D5-branes with linking numbers ` and `′. Since these

latter are magnetic-monopole fields on S2
H , the open string couples to a net field (` − `′).

Its wavefunction is therefore given by the well-known monopole spherical harmonics with16

jH − 1 =
1

2
|`− `′|+ N (5.9)

16This celebrated result goes back to the early days of quantum mechanics [48, 49]. We have used it

implicitly when expressing determinants as q-Pochammer symbols. For an amusing real-time manifestation

of the effect see [50].
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where N are the natural numbers. Recalling that the linking numbers also designate the

nodes of the electric quiver, we understand why the Higgs-branch chiral ring includes strings

of minimal length |` − `′| + 2 transforming in the bi-fundamental of U(M`) × U(M`′) for

all k ≥ `′ > ` > 0 [7]. The bifundamental strings of length 3 and 4 in eq. (4.15) are of this

kind.

The ∆ = 2 chiral ring also includes strings of length 4 in the adjoint of U(Mj) for all

k > j > 1, see (4.15). The corresponding open-string vector bosons on the ith stack of

D5-branes do not feel a monopole field (` = `′ = i) but have angular momentum jH−1 = 1.

Notice however that these length-4 operators are missing at the two ends of the quiver, i.e.

for i = 1 and for i = k. How can one understand this from the string theory side?

A plausible explanation comes from a well-known effect dubbed ‘stringy exclusion

principle’ in ref. [51]. The relevant setup features K NS5-branes and a set of probe D-

branes ending on them. The worldsheet theory in this background has an affine algebra

su(2)K ,17 and D-branes (Cardy states) labelled by the set of dominant affine weights λ =

0, 1, · · · ,K − 1. The ground states of open strings stretched between two such D-branes

have weights ν in the interval[
|λ− λ′|,min(λ+ λ′, 2K − λ− λ′)

]
and in steps of two [52]. Translating λ = ` − 1 (see [50]), µ = 2(jH − 1) and K = k + 1

(the total number of NS5-branes) gives in replacement of (5.9)

jH − 1 =
1

2
|`− `′| , 1

2
|`− `′|+ 1 , · · · ,min

(
`+ `′

2
− 1 , k − `+ `′

2

)
. (5.10)

The intuitive understanding of the upper cutoff is that a string cannot remain in its ground

state if its angular momentum exceeds the size of the sphere. It follows that for ` = `′ = 1

or k, only the jH = 1 states survive, in agreement with our findings for the single-string

part of the Higgs-branch chiral ring.

To be sure this is just an argument, not a proof, because in the solutions dual to

T ρ̂ρ [SU(N)] the 3-sphere threaded by the NS5-brane flux is highly deformed by the strong

back reaction of the D-branes. The perfect match with the field theory side suggests, how-

ever, that the detailed geometry does not matter when it comes to the above stringy effect.18

The superconformal index brings to light other exclusion effects associated to abelian

gauge nodes of the electric and magnetic quivers, as summarized in eqs. (5.1) and (5.3).

For higher elements of the chiral ring, these effects are more generally related to the finite

ranks of the gauge groups. This is a ubiquitous phenomenon in holography – McGreevy et

al. coined the name ‘giant graviton’ for it in the prototypical AdS5×S5 example [53]. We

did not manage to find a simple explanation for giant-graviton exclusions in the problem

at hand. Part of the difficulty is that, as opposed to the 5-brane linking numbers, the

17The bosonic subalgebra has level K − 2 and an extra factor 2 is added by fermions.
18The match between field theory and (multi-string) symmetric products of single-string states counted

using the stringy exclusion principle seems to continue holding to higher orders until the occurrence of low

gauge-group rank exclusion effects discussed below.
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gauge group ranks have a less direct meaning on the gravitational side of the AdS/CFT

correspondence.19

We conclude our discussion of the AdS side with a remark about gauged N = 4

supergravity. In addition to the graviton, this has n vector multiplets and global SL(2) ×
SO(6, n) symmetry, part of which may be gauged. Insisting that the gauged theory have a

supersymmetric AdS4 vacuum restricts the form of the gauge group to be GH×GC×G0 ⊂
SO(6, n), where the (generally) non-compact GH andGC contain the R-symmetries SO(3)H
and SO(3)C [54].

The vector bosons of spontaneously-broken gauge symmetries belong to B-type mul-

tiplets with (jH , jC) = (2, 0) or (0, 2). These can describe the length-4 marginal operators

in the Higgs-branch or Coulomb-branch chiral rings. As noted on the other hand in ref. [7],

there is no room for elementary (1, 1) multiplets in N = 4 supergravity, because such mul-

tiplets have extra spin- 3
2 fields. But we have just seen that linear-quiver theories have no

single-string (1, 1) operators, so the above limitation does not apply. All mixed marginal

deformations correspond to double-string operators that can be described effectively by

modifying the boundary conditions of their single-string constituents [27, 28]. Note that

boundary conditions change the quantization, not the solution. So

Gauged N = 4 supergravity has the necessary ingredients to describe the

complete moduli space of the T ρ̂ρ [SU(N)] theories, provided one considers

both classical and quantization moduli.

This quells, at least for linear quivers, the concern raised in [7] that reduction of string

theory to gauged 4d supergravity may truncate away part of the moduli space. As pointed

out, however, recently by one of us [17] such quantization moduli of gauged supergravity

can be singular in the full-fledged ten-dimensional string theory.

5.3 One last comment

We end with a remark about the Hilbert series of T ρ̂ρ [SU(N)] theories. As we explained

in section 3, the full chiral ring consists of the highest-weights of all B-type multiplets in

the theory with arbitrary (jH , jC). The relevant and marginal operators can be identified

unambiguously in the index, as can the entire Higgs-branch and Coulomb-branch subrings.

But general mixed elements (with jH , jC ≥ 1 not both 1) cannot be extracted unambigu-

ously. A calculation that does not rely on the superconformal index would therefore be of

great interest.

A natural conjecture for the full Hilbert series [26] is that it is the coordinate ring of

the union of all branches Bσ (for the T ρ̂ρ theory, σ ranges over partitions between ρ and ρ̂T ),

HS

(⋃
σ

Bσ

∣∣∣∣ x+, x−

)
=
∑

Λ

(−1)|Λ|−1 HS

(⋂
σ∈Λ

Bσ

∣∣∣∣ x+, x−

)
(5.11)

19Note that two theories with the same flavour symmetry, i.e. the same disposition of five-branes, can

have very different gauge-group ranks. This feature (called ‘fine print’ in ref. [7]) is best illustrated by

sQCD3 with a fixed number of flavours, Nf , but an arbitrary number of colors Nc ∈ (2, [Nf/2] − 1), see

section 5.1.
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where Λ runs over all non-empty subsets of the branches of the theory. In words, the full

Hilbert series would be the sum of Hilbert series of every branch, minus corrections due to

pairwise intersections and so on. It can be checked that this conjecture is consistent with

the Higgs branch and Coulomb branch limits (q1/4t∓1/2 → 0 with q1/4t±1/2 fixed). One

can also compare the number of B1[0](1,1) multiplets suggested by this conjecture to the

number extracted from the index. In the limited set of examples that we checked (with

zero or one mixed branch) we found an exact match. Finding a better way to confirm or

falsify this conjecture is an interesting problem.
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A Index and plethystic exponentials

The twisted partition function on S2×S1 of the T ρ̂ρ theory is given by a multiple sum over

monopole charges and a multiple integral over gauge fugacities, see e.g. [42]

ZS2×S1 =

k∏
j=1

[
1

Nj !

∑
mj∈ZNj

∫ Nj∏
α=1

dzj,α
2πizj,α

]{
k∏
j=1

Nj∏
α=1

w
mj,α
j Zvec,diag

j,α

×
k∏
j=1

Nj∏
α 6=β

Zvec,off-diag
j,α,β

k∏
j=1

Mj∏
p=1

Nj∏
α=1

Z fund,hyp
j,p,α

k−1∏
j=1

Nj∏
α=1

Nj+1∏
β=1

Zbifund,hyp
j,α,j+1,β

} (A.1)

where

Zvec,diag
j,α =

(q
1
2 t; q)∞

(q
1
2 t−1; q)∞

(A.2a)

Zvec,off-diag
j,α,β = (q

1
2 t−1)−

1
2
|mj,α−mj,β |(1− q

1
2
|mj,α−mj,β |zj,βz

−1
j,α)

×
(tq

1
2

+|mj,α−mj,β |zj,βz
−1
j,α ; q)∞

(t−1q
1
2

+|mj,α−mj,β |zj,βz
−1
j,α ; q)∞

(A.2b)

Z fund,hyp
j,p,α = (q

1
2 t−1)

1
2
|mj,α|

(t−
1
2 q

3
4

+ 1
2
|mj,α|z±1

j,αµ
∓1
j,p ; q)∞

(t
1
2 q

1
4

+ 1
2
|mj,α|z∓1

j,αµ
±1
j,p ; q)∞

(A.2c)

Zbifund,hyp
j,α,j+1,β = (q

1
2 t−1)

1
2
|mj,α−mj+1,β |

(t−
1
2 q

3
4

+ 1
2
|mj,α−mj+1,β |z±1

j,αz
∓1
j+1,β ; q)∞

(t
1
2 q

1
4

+ 1
2
|mj,α−mj+1,β |z∓1

j,αz
±1
j+1,β ; q)∞

. (A.2d)

The expressions (A.2) are the one-loop determinants of the N = 4 multiplets of T ρ̂ρ , namely

the Cartan and charged vector multiplets, and the fundamental and bifundamental hyper-

multiplets. The variables q, t are the fugacities defined in eq. (2.2), zj,α (where α labels the
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Cartan generators) are the S1 holonomies of the U(Nj) gauge field and mj,α its 2-sphere

fluxes, viz. the monopole charges of the corresponding local operator in R3 . Further-

more µj,p are flavor fugacities, wj is a fugacity for the topological U(1) symmetry whose

conserved current is Tr ?F(j), while the q-Pochhammer symbols (a; q)∞ are defined by

(a; q)∞ =

∞∏
n=0

(1− aqn) and (. . . a±1b∓1; q)∞ = (. . . ab−1; q)∞(. . . a−1b; q)∞ . (A.3)

Compared to the expressions in ref. [42] we have here replaced the background flux coupling

to any given multiplet by its absolute value. This is allowed because of some cancellation

between factors in the numerator and denominator Pochhammer symbols, as explicited for

instance around (C.4). The theory is also free from parity anomalies, so that the overall

signs are unambiguous.20

At leading order in the q expansion, the contribution of each monopole sector m =

{mj,α} to the superconformal index is (q
1
2 t−1)∆(m), where

2∆(m) =

k∑
j=1

Nj∑
α,β=1

−|mj,α−mj,β |+
k∑
j=1

Mj

Nj∑
α=1

|mj,α|+
k−1∑
j=1

Nj∑
α=1

Nj+1∑
β=1

|mj,α−mj+1,β |. (A.4)

The sphere Casimir energy ∆(m) is the scaling dimension [and the SO(3)C spin] of the

corresponding monopole operator [33–35]. It is known that in N = 4 theories monopole-

operator dimensions are one-loop exact, and that they are strictly positive for good linear

quivers [1]. The index (A.1) admits therefore an expansion in positive powers of q.

It is useful to rewrite the superconformal index in terms of the plethystic exponential

(PE) which is defined, for any function f(v1, v2, · · · ) of arbitrarily many variables that

vanishes at 0, by the following expression

PE(f) = exp

( ∞∑
n=1

1

n
f(vn1 , v

n
2 , · · · )

)
. (A.5)

The reader can verify the following simple identities:

PE(f + g) = PE(f) PE(g) , PE(−v) = (1− v) , PE
(
(a, q)∞

)
= PE

(
− a

1− q

)
. (A.6)

Using these identities one can bring the index to the following form

ZS2×S1 =
k∏
j=1

[
1

Nj !

∑
mj∈ZNj

∫ Nj∏
α=1

dzj,α
2πizj,α

]

×

{
(q

1
2 t−1)∆(m)

k∏
j=1

[Nj∏
α

w
mj,α
j

Nj∏
α 6=β

(1− q
1
2
|mj,α−mj,β |zj,βz

−1
j,α)

]
20There exists a subtle sign (−)e·m related to the change of spin of dyonic states with charges (e,m). The

T ρ̂ρ theory has no Chern-Simons terms, so the flux ground states have no electric charge, e, and contribute

with plus signs to the index. For excited states in the flux background this sign can be absorbed in the

fugacities zj,α; it is in the end irrelevant since the zj,α integrations project to gauge-invariant states.
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× PE

(
k∑
j=1

Nj∑
α,β=1

q
1
2 (t−1 − t)

1− q
q|mj,α−mj,β |zj,βz

−1
j,α

+
(q

1
2 t)

1
2 (1− q

1
2 t−1)

1− q

k∑
j=1

Mj∑
p=1

Nj∑
α=1

q
1
2
|mj,α|

∑
±
z∓1
j,αµ

±1
j,p

+
(q

1
2 t)

1
2 (1− q

1
2 t−1)

1− q

k−1∑
j=1

Nj∑
α=1

Nj+1∑
β=1

q
1
2
|mj,α−mj+1,β |

∑
±
z∓1
j,αz

±1
j+1,β

)}
.

(A.7)

This is equation (2.3) in the main text. Notice that after extracting some factors, the

contributions of vector, fundamental and bifundamental multiplets add up in the argument

of the plethystic exponential, as they would in the standard exponential function.

The usefulness of the above rewriting can be illustrated with a simple example, that

of a free hypermultiplet whose superconformal index is

Z free hyp
S2×S1 =

(t−
1
2 q

3
4µ∓1 ; q)∞

(t
1
2 q

1
4µ±1 ; q)∞

= PE

(
(q

1
4 t

1
2 − q

3
4 t−

1
2 )

1− q
(µ+ µ−1)

)
. (A.8)

One recognizes in the PE exponent the contributions of the charge-conjugate N = 2 chiral

multiplets, each contributing to the index with one scalar (∆ = JH3 = 1
2 and J3 = JC3 = 0)

and one fermionic state (with ∆ = 1, JH3 = 0 and J3 = JC3 = 1
2). As for the factor of (1−q),

this sums up descendant states obtained by the action of the derivative that raises both ∆

and J3 by one unit. Multiparticle states (created by products of fields) are taken care of

by the plethystic exponential, the information in them is in this simple case redundant.

Of course in interacting theories supersymmetric multiparticle states may be null, due

for example to F -term conditions. The plethystic exponent must in this case be interpreted

appropriately, as we discuss in the main text.

B Combinatorics of linear quivers

We collect here formulae for the different parametrizations of the discrete data of the good

linear quivers, and we establish two lemmas used in section 4.4 of the main text.

The mirror-symmetric parametrization of the quiver is in terms of two partitions (ρ, ρ̂)

with an equal total number N of boxes, if these partitions are viewed as Young diagrams.

We label entries of these partitions and of their transposes as

ρ = (l1, l2, . . . , lk+1) with l1 ≥ l2 ≥ · · · ≥ lk+1 ≥ 1,

ρT = (lT1 , l
T
2 , . . . , l

T
l1) with lT1 ≥ lT2 ≥ · · · ≥ lTl1 ≥ 1,

ρ̂ = (l̂1, l̂2, . . . , l̂k̂+1) with l̂1 ≥ l̂2 ≥ · · · ≥ l̂k̂+1 ≥ 1,

ρ̂T = (l̂T1 , l̂
T
2 , . . . , l̂

T
l̂1

) with l̂T1 ≥ l̂T2 ≥ · · · ≥ l̂Tl̂1 ≥ 1,

(B.1)

where we used the fact that the number of rows of ρT is given by the longest row l1 of ρ, we

denoted the number of rows of ρ as lT1 = k + 1 ≥ 2, and likewise for hatted quantities. To
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simplify formulae, the sequences (lj), (lT̂ ), (l̂̂), (l̂Tj ) are extended with zeros when j or ̂ goes

beyond the last entry. The total number of boxes is
∑

j lj =
∑

̂ l
T
̂ =

∑
̂ l̂̂ =

∑
j l̂
T
j = N .

In the string-theory embedding ρ and ρ̂ describe how N D3-branes end on two sets of

fivebranes: on k + 1 NS5-branes to the left and on k̂ + 1 D5-branes to the right.21 The

number of D3-branes ending on the jth NS5-brane (or its linking number which is invariant

under brane moves) is lj , and likewise for the hatted quantities. A useful alternative

parametrization of these partitions is in terms of the numbers of their same-length rows

ρ = (k̂ + · · ·+ k̂︸ ︷︷ ︸
M̂k̂

+ · · ·+ `+ · · ·+ `︸ ︷︷ ︸
M̂`

+ · · ·+ 1 + · · ·+ 1︸ ︷︷ ︸
M̂1

) ,

ρ̂ = (k + · · ·+ k︸ ︷︷ ︸
Mk

+ · · ·+ `+ · · ·+ `︸ ︷︷ ︸
M`

+ · · ·+ 1 + · · ·+ 1︸ ︷︷ ︸
M1

) ,
(B.2)

where we used the good property ρ̂T > ρ which implies that l1 ≤ k̂ and l̂1 ≤ k. Note that

here some of the M` and M̂` may vanish, when there are no fundamental hypermultiplets

at the corresponding gauge-group nodes. Note also that the label ξ for groups of balanced

nodes in section 4.4 runs over stacks of NS5-branes with M̂` > 1, i.e. over nodes in the

magnetic quiver with non-abelian flavour groups.

The electric and magnetic gauge groups are
∏k
j=1 U(Nj) and

∏k̂
̂=1 U(N̂̂):

N1 N2 · · · Nk

M1 M2 Mk

Nj = Nj−1 + l̂Tj − lj with N0 = 0,

Mj = l̂Tj − l̂Tj+1,

N̂1 N̂2 · · · N̂k̂

M̂1 M̂2 M̂k̂

N̂̂ = N̂̂−1 + lT̂ − l̂̂ with N̂0 = 0,

M̂̂ = lT̂ − lT̂+1.

(B.3)

The 3d N = 4 flavour group is G × Ĝ with G =
(∏k

j=1 U(Mj)
)
/U(1) and Ĝ =(∏k

̂=1 U(M̂̂)
)
/U(1). By definition of transposition, l̂Tj counts rows of ρ̂ with at least

j boxes, so the following difference counts rows of ρ̂ with exactly j boxes:

Mj = l̂Tj − l̂Tj+1 = #{ı̂ | l̂ı̂ = j},
and likewise M̂̂ = lT̂ − lT̂+1 = #{i | li = ̂}.

(B.4)

We restrict our attention to good theories : those with all Nj ≥ 1 and N̂̂ ≥ 1. In particular,

1 ≤ N̂1 = lT1 − l̂1 = k + 1− l̂1, namely l̂1 ≤ k. Likewise, l1 ≤ k̂.

21In some of the earlier literature, especially ref. [3], ρ designated the partition of D3-branes among D5-

branes and ρ̂ the partition among NS5-branes. Our flipped convention here is chosen so as to remove all

hats from the data of the electric quiver, defined as the theory whose manifest flavour symmetry is realized

on D5-branes. Note in particular that in the parametrization (B.2) the number of same-length rows of ρ̂

runs over j = 1, · · · , k.
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An important quantity is the balance of a node. It takes a very simple form in terms

of the partitions:

Nj+1 +Nj−1 +Mj − 2Nj = (Nj+1 −Nj)− (Nj −Nj−1) +Mj

= l̂Tj+1 − lj+1 − l̂Tj + lj + l̂Tj − l̂Tj+1 = lj − lj+1.
(B.5)

The node j is balanced if this vanishes. An interval B ⊆ [1, k] of balanced nodes of the

electric quiver thus corresponds to |B|+1 consecutive lj equal to the same value ̂. In terms

of the transposed partition, this means M̂̂ = lT̂ − lT̂+1 = |B| + 1. This is the well-known

SU(|B|+ 1) flavour symmetry enhancement.

Lemma B.1. If the electric quiver has a balanced abelian node Nj = 1 then one of the

following possibilities holds:

1. 1 < j < k and Mj = 0 and Nj−1 = Nj+1 = 1;

2. j = k = 1 and M1 = 2 (this is the T [SU(2)] theory);

3. j = 1 and M1 = 1 and N2 = 1;

4. j = k and Mk = 1 and Nk−1 = 1;

5. j = 1 and M1 = 0 and N2 = 2;

6. j = k and Mk = 0 and Nk−1 = 2.

The corresponding magnetic gauge group (at position ̂ := lj) is abelian in the first four

cases and non-abelian in the last two.

Proof. The balance condition reads Nj−1 + Nj+1 + Mj = 2Nj = 2. This implies that

(Nj−1,Mj , Nj−1) are (1, 0, 1), (0, 2, 0), (0, 1, 1), (1, 1, 0), (0, 0, 2) or (2, 0, 0). For each case

where Nj−1 = 0 we deduce j = 1 because all nodes in [1, k] have non-zero rank. Similarly,

Nj+1 = 0 means j = k. We then work out the rank of the magnetic gauge group in

each case.

Case 1. From Nj −Nj−1 = 0 and Mj = 0 and Nj+1 −Nj = 0 we see that lj = l̂Tj =

l̂Tj+1 = lj+1 (we denote this ̂). Thus the intersection of ρ (drawn in blue below) and ρ̂T

(drawn in red and dashed) includes a (j+ 1)× ̂ rectangle (drawn as thick black lines), and

the two partitions share a boundary.

ρ

ρ̂T1

j

j + 1

row length lj = l̂Tj = ̂

row length lj+1 = l̂Tj+1 = ̂
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By definition, N̂̂ counts boxes in rows 1 through ̂ of ρT , minus those in the same rows

of ρ̂. Removing the common rectangle, this compares the numbers of boxes of the two

partitions below the rectangle. Since the total numbers of boxes in both partitions are

the same, it is equivalent to comparing boxes above the lower edge of the rectangle, hence

N̂̂ = Nj+1 = 1.

Case 2. T [SU(2)] is self-mirror and abelian.

Cases 3. and 5. N1 = 1 gives l̂T1 = l1 + 1. Thus, N̂l1 counts boxes of ρT (this partition

has l1 rows) minus all boxes of ρ̂ except its last (l̂T1 -th) row. Since |ρT | = |ρ̂|, we conclude

that the rank we care about is N̂l1 = l̂l̂T1
. This in turn is equal to the number of entries of

ρ̂T equal to l̂T1 . Note now that l̂T1 = l̂T2 +M1. If M1 > 0 (case 3) then l̂T2 < l̂T1 so N̂l1 = 1.

If M1 = 0 (case 5) then l̂T2 = l̂T1 so N̂l1 ≥ 2.

Cases 4. and 6. Nk = 1 (and Nk+1 = 0) gives lk+1 = l̂Tk+1 + 1, while balance gives

lk = lk+1. On general grounds, 1 ≤ N̂1 = lT1 − l̂1 = k + 1− l̂1 so the number of rows l̂1 of

ρ̂T is ≤ k, hence in particular l̂Tk+1 = 0. From all this we deduce that lk = lk+1 = 1 and

that we want to know N̂1. Now use l̂Tk = l̂Tk+1 + Mk. If Mk = 0 then this vanishes so ρ̂T

has at most k − 1 rows, so N̂1 = k + 1 − l̂1 ≥ 2. If Mk > 0 then ρ̂T has k rows, namely

N̂1 = k + 1− l̂1 = 1.

In the main text we introduce the number ∆nmixed, given in (4.32), that counts re-

dundancies between F -term relations in the mixed term x2
+x

2
−.

Lemma B.2. The quantity ∆nmixed = δN1=1 + δNk=1 −
∑k

j=1 δNj=1 +
∑

̂|N̂̂=1 M̂̂ is

invariant under mirror symmetry. Furthermore, ∆nmixed = 3 for abelian theories and

∆nmixed ≤ 2 otherwise.

Proof. An important ingredient in the previous proof was an intersection point between

the boundaries ∂ρ of ρ and ∂ρ̂T of ρ̂T (we do not include the two coordinate axes in these

boundaries). Denote by (j, ̂) the position of such an intersection point, where (0, 0) is the

upper left corner, so that the partitions share a j × ̂ rectangle but neither contains the

box at positions (j + 1, ̂ + 1). Then Nj , which counts boxes of ρ̂T above the intersection

minus those of ρ, is equal to N̂̂, which counts the same difference for boxes to the left of

the intersection.

Let us define the label (an integer ≥ 1) of each connected component of the ∂ρ ∩ ∂ρ̂T

intersection of boundaries as this difference in the number of boxes above this connected

component. Let us now understand ∆nmixed in terms of the components with label 1.

Consider first the (non-zero) terms in
∑

̂|N̂̂=1 M̂̂, namely consider ̂ with N̂ = 1 and

M̂̂ ≥ 1. There are a few cases.

• 1 < ̂ < k̂: then N̂̂±1 ≥ 1 = N̂ so l̂̂+1 ≤ lT̂+1 ≤ lT̂ ≤ l̂̂, where the middle inequality

comes from M̂̂ = lT̂ − lT̂+1 ≥ 0. This corresponds to a vertical edge of length M̂̂

from (lT̂+1, ̂) to (lT̂ , ̂), shared by ρ and ρ̂T , and with label N̂ = 1.

• 1 = ̂ < k̂: now l̂̂ = lT̂ −1 so the shared vertical edge has length M̂̂−1 from (lT̂+1, ̂)

to (l̂̂, ̂).

• 1 < ̂ = k̂: now l̂̂+1 = lT̂+1 + 1 so the shared edge has length M̂̂ − 1 from (l̂ĵ+1, ̂)

to (lT
ĵ
, ̂).
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• 1 = ̂ = k̂: one checks the shared vertical edge has length M̂̂ − 2 (non-negative

because of the balance condition).

Conversely, every shared vertical edge from (i1, ̂) to (i2, ̂) with label 1 shows up in this

list: indeed, the label means N̂ = 1 and the edge implies that lT̂+1 ≤ i1 < i2 ≤ lT̂ are

separated by at least M̂̂ ≥ i2 − i1 ≥ 1. Altogether, the total length of all vertical edges

with label 1 shared by ρ and ρ̂T is

∑
̂|N̂̂=1

(M̂̂ − δ̂=1 − δ̂=k̂) =

 ∑
̂|N̂̂=1

M̂̂

− δN̂1=1 − δN̂k̂=1. (B.6)

Next consider the other sum in ∆nmixed, namely
∑k

j=1 δNj=1. Separating four cases as

above we find that this sum counts the number (rather than length) of shared horizontal

“edges” with label 1. To be more precise, we include among these “edges” one zero-length

edge (intersection point) for each integer point along the shared vertical edges, as we depict

in the following figure (shared horizontal edges are in black bold, and circled numbers are

the labels).

ρ

ρ̂T2

2
1

1

1

4

We are ready to put together these observations. In each connected component of the

shared boundary of ρ and ρ̂T with label 1, the total length of vertical edges is one less than

the number of horizontal edges (including zero-length, as discussed above). Thus,

∆nmixed = δN1=1 + δNk=1 + δN̂1=1 + δN̂k̂=1 −#{shared components with label 1}, (B.7)

which is manifestly self-mirror.

The end of the proof is straightforward: ∆nmixed is at most 4 − 1, with equality if

and only if N1 = Nk = N̂1 = N̂k̂ = 1 and the shared boundary has a single connected

component with label 1. In particular the horizontal edges corresponding to N1 = 1 and

to Nk = 1 must belong to the same component so all Nj = 1: the theory is abelian.

C T [SU(2)] index as holomorphic blocks

As is well-known from the study of 3d N = 2 theories [29–31] (see also [24] for the N = 4

case), superconformal indices (and various other partition functions) are bilinear combina-

tions of basic building blocks, refered to as (anti)holomorphic blocks, which are partition

functions on D2 × S1. We work out here this factorization for T [SU(2)], and then verify
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that the resulting closed-form expression (C.8) reproduces our expansion of the super-

conformal index at order O(q). The structure generalizes but we did not find it useful

in concrete calculations, because for generic theories this factorized form contains a large

number of terms.

The expression for the full superconformal index of T [SU(2)] reads:

ZT [SU(2)]
S2×S1 =

(q
1
2 t; q)∞

(q
1
2 t−1; q)∞

∑
m∈Z

(q
1
2 t−1)|m|wm

∮
S1

dz

2πiz

2∏
p=1

∏
±

(t−
1
2 q

3
4

+
|m|
2 z±µ∓p ; q)∞

(t
1
2 q

1
4

+
|m|
2 z∓µ±p ; q)∞

, (C.1)

where m is the unique monopole charge, and z runs over the unit circle in the classical

Coulomb branch C. The integrand has poles at22

z = zs,j := µst
1
2 q

1
4

+
|m|
2

+j and z = µs
(
t

1
2 q

1
4

+
|m|
2

+j
)−1

for s = 1, 2 and integer j ≥ 0.
(C.2)

We calculate the index as an expansion in powers of q, hence |q| < 1, with |t| = |µs| = 1.

The poles that we named zs,j thus lie inside the |z| = 1 contour and the other poles outside.

To warm up, compute the contribution to ZT [SU(2)]
S2×S1 from the pole at zs,0 for m = 0:

Cs :=
∏
p 6=s

(qµsµ
−1
p ; q)∞

(µ−1
s µp; q)∞

(q
1
2 t−1µ−1

s µp; q)∞

(q
1
2 tµsµ

−1
p ; q)∞

. (C.3)

Before moving on to other residues, we note that the identity

(
iq

1
8a

1
2
)|m| (q

3
4

+
|m|
2 a; q)∞

(q
1
4

+
|m|
2 a−1; q)∞

=
(
iq

1
8a

1
2
)m (q

3
4

+m
2 a; q)∞

(q
1
4

+m
2 a−1; q)∞

(C.4)

allows us to replace |m| → m throughout (C.1). The resulting expression involves both

positive and negative powers of q, which would make our lives harder if we wanted to

expand in powers of q, but leads to nicer residues. We compute the contribution from the

zs,j pole for any m:

(q
1
2 t; q)∞

(q
1
2 t−1; q)∞

(q
1
2 t−1w)m

2∏
p=1

(q1+j+
|m|+m

2 µsµ
−1
p ; q)∞(q

1
2
−j− |m|−m

2 t−1µ−1
s µp; q)∞(

(q−j−
|m|−m

2 µ−1
s µp; q)∞

)′
(q

1
2

+j+
|m|+m

2 tµsµ
−1
p ; q)∞

= Cs (q
1
2 t−1w)k+−k−

2∏
p=1

(q
1
2 tµsµ

−1
p ; q)k+(q

1
2
−k−t−1µ−1

s µp; q)k−

(qµsµ
−1
p ; q)k+(q−k−µ−1

s µp; q)k−

(C.5)

where the prime in the first line denotes the removal of the vanishing factor in the

q-Pochhammer symbol for p = s, and we then used finite q-Pochhammer (a; q)k =

(a; q)∞/(aq
k; q)∞ and changed variables to k± := j + |m|±m

2 ≥ 0. Altogether

ZT [SU(2)]
S2×S1 =

2∑
s=1

Cs
∏
±

(∑
k±≥0

(q
1
2 t−1w±1)k±

2∏
p=1

(q
1
2 tµsµ

−1
p ; q)k±

(qµsµ
−1
p ; q)k±

)
. (C.6)

22At first sight there is also a pole at z = 0, but in fact the q-Pochhammer factors tend to zero there.
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We recognize here the q-hypergeometric series

2φ1

[
a, b

c

∣∣∣∣ q, z] :=
∑
k≥0

(a; q)k(b; q)k
(q; q)k(c; q)k

zk. (C.7)

In terms of µ := µ1µ
−1
2 and µ̂ := w

ZT [SU(2)]
S2×S1 =

(qµ; q)∞
(µ−1; q)∞

(q
1
2 t−1µ−1; q)∞

(q
1
2 tµ; q)∞

∏
±

(
2φ1

[
q

1
2 t, q

1
2 tµ

qµ

∣∣∣∣ q, q 1
2 t−1µ̂±1

])
+
(
µ↔ µ−1

)
.

(C.8)

This is the factorized form of the index. It is possible to show, using complicated identities

obeyed by q-hypergeometric series, that this result is mirror-symmetric

To compare with the main text we expand in powers of q and organize the series in

terms of supercharacters so as to extract the representation content:

ZT [SU(2)]
S2×S1 = 1 + q

1
2 tχ3(µ) + q

1
2 t−1χ3(µ̂) + qt2χ5(µ) + qt−2χ5(µ̂)

− q
(
1 + χ3(µ) + χ3(µ̂)

)
+O(q

3
2 )

= 1 + χ3(µ) I(1,0) + χ3(µ̂) I(0,1) + χ5(µ) I(2,0)

− I(1,1) + χ5(µ̂) I(0,2) +O(q
3
2 )

where χ3(µ) := µ+1+µ−1 and χ5(µ) := µ2+µ+1+µ−1+µ−2 are characters of SU(2), and we

used the short-hand notation for the superconformal indices I(JH ,JC) := I
B1[0](J

H,JC )(q, t).

This agrees with eq. (4.33) of section 4.

As explained in the paper the following BPS multiplets can be unambiguously

identified:

• 1: the identity;

• χ3(µ)I(1,0): the SU(2) electric-flavour currents;

• χ3(µ̂)I(0,1): the SÛ(2) magnetic-flavour currents;

• χ5(µ)I(2,0): products of two electric currents;

• χ5(µ̂)I(0,2): products of two magnetic currents;

• −I(1,1): the energy-momentum tensor multiplet A2[0](0,0).

The bottom component Q̃p̄Qr of an electric-current multiplet is the product of an antifunda-

mental and a fundamental chiral scalar (the F -term condition imposes Q̃1Q1 + Q̃2Q2 = 0).

Since the gauge group is abelian, Q̃p̄Qr has rank 1 hence zero determinant. This removes

one of the six products of two electric currents, thus explaining why there are only five

such products in (C.9).

Altogether we see that the T [SU(2)] theory has no mixed marginal (or relevant) chi-

ral operators. All exactly-marginal deformations are purely electric or purely magnetic

superpotentials. After imposing the D-term conditions the supeconformal manifold has

dimension 10− 7 = 3.

– 35 –



J
H
E
P
1
0
(
2
0
1
9
)
2
5
3

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 super Yang-Mills

theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].

[2] A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional

gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

[3] B. Assel, C. Bachas, J. Estes and J. Gomis, Holographic duals of D = 3 N = 4

superconformal field theories, JHEP 08 (2011) 087 [arXiv:1106.4253] [INSPIRE].

[4] B. Assel, C. Bachas, J. Estes and J. Gomis, IIB duals of D = 3 N = 4 circular quivers,

JHEP 12 (2012) 044 [arXiv:1210.2590] [INSPIRE].

[5] W. Cottrell and A. Hashimoto, Resolved gravity duals of N = 4 quiver field theories in 2 + 1

dimensions, JHEP 10 (2016) 057 [arXiv:1602.04765] [INSPIRE].

[6] Y. Lozano, N.T. Macpherson, J. Montero and C. Núñez, Three-dimensional N = 4 linear
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