
HAL Id: hal-02393851
https://hal.sorbonne-universite.fr/hal-02393851v1

Submitted on 4 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Word-Length Allocation for the Fixed-Point
Implementation of Linear Filters and Controllers

Thibault Hilaire, Hacène Ouzia, Benoit Lopez

To cite this version:
Thibault Hilaire, Hacène Ouzia, Benoit Lopez. Optimal Word-Length Allocation for the Fixed-Point
Implementation of Linear Filters and Controllers. ARITH 2019 - IEEE 26th Symposium on Computer
Arithmetic, Jun 2019, Kyoto, Japan. pp.175-182, �10.1109/ARITH.2019.00040�. �hal-02393851�

https://hal.sorbonne-universite.fr/hal-02393851v1
https://hal.archives-ouvertes.fr

1

Optimal word-length allocation for the fixed-point
implementation of linear filters and controllers

Thibault Hilaire∗†, Hacène Ouzia∗ and Benoit Lopez
∗Sorbonne Université, LIP6 UMR 7606, F-75005 Paris, France
†INRIA, Université Paris-Saclay, F-91120 Palaiseau, France

Abstract—This article presents a word-length optimization
problem under accuracy constraints for the hardware imple-
mentation of linear signal processing systems with fixed-point
arithmetic. For State-Space systems (describing a linear filter or
a controller), a complete error analysis is exhibited, where the
final output error bound depends on the word-lengths and the
fixed-point formats chosen for each variable. The Most Significant
Bit of each one can be determined in order to guarantee that
no overflow occurs. Thus, it is possible to obtain a hardware
implementation minimizing resource use. This leads to a convex
nonlinear integer optimization problem where the resources to
minimize and the accuracy constraints depend on the internal
word-lengths. This problem can then be solved with appropriate
heuristics. Finally, a global approach is proposed and illustrated
by some examples.

I. INTRODUCTION

This article addresses the transformation of linear filters or
controllers into hardware operators using Fixed-Point arith-
metic. Digital filters are ubiquitous algorithms that transform
digital signals, and are mainly used in applications based
on Signal Processing or Control theories, such as robotics,
communications, aeronautic, automotive, etc. The algorithms
considered here are the Linear Time Invariant filters/controllers
expressed using the common State-Space representation.

The hardware implementation of these algorithms in FPGA
logic or ASIC is a difficult task when the accuracy of the output
signal is considered: due to the finite precision arithmetic used
for the computations (mainly Fixed-Point arithmetic) and the
recursive structure of these algorithms, the roundoff error due
to the internal computations may accumulate and make the
implemented output diverge from the exact result. The main
goal of the designer is then to provide an implementation
where the output error is guaranteed to be bounded by a
given bound, while using the least amount of logic resources
possible. Contrary to classical signal processing approach
where the errors are modeled as noise [1] (statistical approach),
we rather use worst-case bounds in order to provide the
guarantee required for some critical systems. Our error analysis
provides reliable error bound (bound on the worst-case error),
by opposition to the Signal to Quantization Noise Ratio, used
classically as an indicator of the output error (its variance) [2],
[3], [4]. It will allow to build linear filter/controller architecture
that behave as if the computation was performed with infinite
accuracy, and then converted to the low precision output format
with an error smaller than its least significant bit [5]. And since
we want to dedicate the smallest number of bits possible for

each operation, our approach leads to a classical optimal word-
length allocation problem.

We here consider the first parts of the filter-to-code flow
exhibited in Figure 1, that concern the determination of these
word-lengths under accuracy constraints. We first determine
the Most Significant Bit position in order to guarantee that no
overflow ever occurs. Then, using a last bit accurate operator
that computes the Sum of Products by real Constants (SoPC)
studied in [5], we perform the error analysis of the algorithm,
i.e., we bound the error on the output due to the propagation
of the roundoff errors into the recursive algorithm. This allows
us to define the optimization problem.

This optimization problem has already been studied in the
past, but most of the researches [6], [7], [8] consider the
roundoff errors as noise and study their propagation through
the algorithm with statistical means (mean and variance)
that do not give any guarantee on the range of the errors.
Some of them also use range analysis that do not recursive
algorithms [9] or provide pessimistic range estimations [10].

The main contributions of this work are a reliable error
analysis with respect to the internal word-lengths and the for-
mulation of the word-length optimization as a convex nonlinear
integer optimization problem with some simple heuristics
computing good feasible solutions.

The paper is organized as follows. In section II, the classical
State-Space representation and the Worst-Case Peak Gain
theorem are reminded. Fixed-Point arithmetic and the deter-
mination of the Most Significant Bit are given in section III,
based on previous work [11]. In Sections IV and V , the Sum of
Products by Constants and the error analysis are discussed. In
section VI, we give a formulation of the optimization problem
and its solution is discussed. Some real-life examples are given
in Section VII., before concluding remarks.

Notations

Throughout this paper, column vectors are in lowercase
boldface and matrices in uppercase boldface. The matrix In
denotes the n × n identity matrix. The matrix 111 and 0 are
vectors full of 1s and 0s, respectively (their size are given by
the context). Moreover, for the briefness of some equations,
some functions, like absolute value, expectation, logarithm, etc.
and some comparisons can be lifted to vectors and matrices,
i.e., they will be applied component-wise. For example, the
absolute value |A| of a matrix A is the matrix of the absolute
values of A (component-wise absolute value).

2

MSB
determination SoPC

Error
analysis Optimization Code

generationState-Space
m(w) ε(w) ∆y(w) wopt

VHDL
w̃

constraint ε

Fig. 1: From state-space to optimized word-lengths, and later VHDL code generation.

II. PREREQUISITES

A. State-Space

Let H be a stable, discrete-time Linear Time Invariant (LTI)
State-Space system (A,B,C,D), i.e., a system used as a filter
or controller such that the inputs and outputs are linked with
the following system of equations:

H

{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(1)

where k is the discrete time (k ∈ Z), u(k) is the vector of
q inputs (u(k) ∈ Rq), y(k) the vector of p outputs (y(k) ∈
Rp), x(k) the state vector that stores the internal states of the
system (x(k) ∈ Rn) and A, B, C and D are given matrices
that entirely define the system. These matrices are designed
accordingly to the desired behavior of the controller or filter.
The reader should refer to [12], [13] for filter design and [14],
[15] for controller design.

In the following, we will consider two kinds of State-
Space system: our main system H to be implemented in finite
precision, and some other State-Space systems that will be
used to study the effect of finite precision formats over H.

The impact of finite precision on our filter H is classically
divided in two separate effects: the effects of the coefficient
quantization (how the quantization of the coefficients impacts
the input-output relationship) and the effect of the round-off er-
rors (how these errors due to the finite precision computations
accumulate and propagate through the filter to the output). This
article is based on multipliers by real constants, in such a way
that the error due to the quantization of the coefficients is
embedded into the roundoff errors, as shown in Section IV.

B. Worst-Case Peak Gain

The following proposition is a classical result [16], [17] used
for the error analysis of linear systems. It bounds the outputs
of a stable filter with respect to the inputs. (when Interval
Arithmetic or Affine Arithmetic are used directly on eq. (1),
they lead to oversized intervals [10])

Proposition 1. Let E be a q-input p-output linear filter with
State-Space coefficients (K,L,M ,N). Let u(k) be a vector
signal (u(k) ∈ Rq) bounded by ū ∈ Rq (component-wise
bound, i.e., |ui(k)| 6 ūi,∀1 6 i 6 q,∀k > 0).
Then, for null initial conditions, the output y(k) will be
bounded over time iff the spectral radius of K (denoted ρ(K))
is strictly less than 1 (this property is called the Bounded
Input Bounded Output stability [12]). In that case, the output
is component-wise bounded by ȳ ∈ Rp with

ȳ = 〈〈E〉〉 ū, (2)

where 〈〈E〉〉 denotes the Worst-Case Peak-Gain (WCPG) ma-
trix of E. The term 〈〈E〉〉ij corresponds to the maximum
possible value on the ith output when only the jth input is
considered (the others are null).
The matrix 〈〈E〉〉 ∈ Rp×q can be computed by

〈〈E〉〉 = |N |+
∞∑
k=0

∣∣MKkL
∣∣ . (3)

Proof: Assuming x(0) = 0, from eq. (1), we have

y(k) =

k∑
l=0

J(l)u(k − l), (4)

where J(k) ∈ Rp×q is defined by:

J(k) =

{
N if k = 0

MKk−1L if k > 0.
(5)

J(k) is the impulse response matrix of the system, i.e., J ij(k)
is the response on the ith output to the Dirac impulse1 on the
jth input. So, the output y(k) is the result of the convolution
of J(k) by u(k).
Then the output is (component-wise) bounded by

|y(k)| 6

(
k∑
l=0

|J(l)|

)
ū, ∀k > 0. (6)

Finally

∀k > 0, |y(k)| <

(∞∑
l=0

|J(l)|

)
ū.

Remark 1. Suppose we fix i and k, and build an input signal
u(k) such that

uj(l) =

{
ūj · sign

(
J ij(k − l)

)
for 0 6 l 6 k

0 elsewhere
(7)

where sign(x) is the integer -1, 0 or 1 depending on the sign
of x. Then, the ith component of y(k) is equal to

yi(k) =

k∑
l=0

q∑
j=1

J ij(l)uj(k − l) (8)

=

k∑
l=0

q∑
j=1

ūj |J ij(l)| (9)

and the bound of eq. (6) is reached for the ith output.
Since ρ(K) < 1, then for any arbitrary small quantity ε > 0,

1A Dirac impulse signal is a signal δ(k) such that δ(0) = 1 and δ(k) =
0, ∀k 6= 0.

3

there exists K > 0 such that
∞∑

k=K+1

|J(k)| < ε. So the vector

ȳ is the supremum of any possible inputs (bounded by ū) and
it is possible to exhibit an input (the one given by (7)) to
approach it on any given output at any given distance (since
|yi(K)− ȳi| < ε).

Moreover, this WCPG matrix can be computed at any arbi-
trary precision, thanks to the multi-precision implementation2

proposed in [17]. Proposition 1 and the Remark 1 have also
been formally proved in the formal proof assistant Coq3 [18].

III. DETERMINING THE FIXED-POINT FORMATS

A. Fixed-Point Arithmetic
The signed Fixed-Point (FxP) arithmetic with two’s comple-

ment representation is used in this paper to represent numbers
and perform the computations. Let x be a w-bit long fixed-
point number, with bits {xi}m6i6`:

x = −2mxm +

m−1∑
i=`

2ixi (10)

where m and ` are the positions of the most significant bit
(MSB) and the least significant bit (LSB) of x, respectively.
So the word-length w and the Most and Least Significant Bit
positions, m and ` are linked with

w = m− `+ 1. (11)
The couple (m, `) denotes the Fixed-Point Format of x.
Figure 2 exhibits the fixed-point numbers and their binary
representation.

m+ 1 −`
w

s

−2m 20 2−12m−1 2`

Fig. 2: Fixed-point number in format (m, `).

A variable with (m, `) as FxP format can take any values
in the interval [−2m; 2m − 2`] with a quantization step of 2`.
Internally, the Fixed-Point numbers are represented with an
integer X (denoted mantissa) formed by the w-bit {xj} and
an implicit scaling factor 2`, i.e.,

X = −2w−1xm +

w−2∑
i=0

2ixi+` ∈ Z (12)

or equivalently x = X2`. All the operations are then integer
operations on the mantissa X .

B. Most Significant Bit Determination
The first step to implement a State-Space system in Fixed-

Point arithmetic (or to perform the error analysis) is to de-
termine the Fixed-Point format of all the variables used, i.e.,
the states and the outputs (the input formats are given by the
user). Since our analysis depends on the word-lengths, we will

2https://github.com/fixif/WCPG
3https://coq.inria.fr

first determine all the Most Significant Bit positions, and then
deduce the Least Significant Bit position using (11).
It is necessary to determine the MSB position of each of these
variables to ensure that all the possible values, over time,
can be represented, i.e., that no overflow ever occurs. And
of course, we are interested in the minimum MSB position.

Suppose that all the inputs belong to an interval (component-
wise) bounded by u ∈ Rq (i.e., ∀k, |ui(k)| 6 ui for i =
1, . . . , q), then Proposition 1 can be used to bound the outputs.
However, to also get bounds on the state vector, we must build
a new State-Space system Hζ where the state vector is also
on the output (this system is of course only used for the MSB
analysis, not for the implementation).

Denote ζ(k) ,

(
x(k)
y(k)

)
∈ Rn+p the aggregation of the

state and output vectors, and Hζ the following state-space
representation:

Hζ

{
x(k + 1) = Ax(k) +Bu(k)

ζ(k) = M1x(k) +M2u(k),
(13)

with

M1 ,

(
In
C

)
∈ R(n+p)×n, M2 ,

(
0
D

)
∈ R(n+p)×q.

The bound ζ on the vector ζ(k) can be obtained with Propo-
sition 1 applied to Hζ , i.e.,

ζ = 〈〈Hζ〉〉u. (14)
We denote w the word-length vector of ζ (i.e., wi the word-

length of the ith element of ζ, a state or an output, according
to i), and m the Most Significant Bit position vector of ζ. The
MSB position mi of each element of ζi must be the lowest
integer such that

∀k, ζi(k) ∈ [−2mi , 2mi(1− 21−wi)]. (15)
Since the filter is linear and the input interval centered at
zero, the output and state intervals are also centered at zero.
Therefore, we seek to determine the least integer mi such that

∀k, |ζi(k)| 6 2mi(1− 21−wi). (16)
By applying the above bound on eq. (14), we obtained a simple
formula for the computation of the MSB position of the states
and the outputs (for i = 1, . . . , n+ p):

mi =
⌈

log2

(
ζi
)
− log2

(
1− 21−wi

)⌉
(17)

or in a vector form:
m =

⌈
log2 (〈〈Hζ〉〉u)− log2

(
111− 2111−w)⌉ . (18)

Remark 2. It is important to notice that the above reasoning
does not consider the roundoff errors that occur in the evalu-
ation of the Sum-of-Products and may make the states or the
outputs overpass the bounds in (14) and produce overflows.
This problem has been fully considered in [11], [19], as well
as the error analysis of the MSB computation formula (mainly
by controlling the accuracy of the WCPG evaluation [17]).

In the case where we want to minimize the word-length
wi, it is of interest to find an equivalent expression for (17)
where the dependency on wi is easier to handle. First, we
suppose that the word-lengths are at least 3 bits, so 0 <
− log2

(
1− 21−wi

)
6 1

2 . Secondly, if ζi is a power of 2,

4

then mi =
⌈

log2

(
ζi
)⌉

+ 1 for every word-length wi > 2.
And finally, we can remark that we have mi =

⌈
log2

(
ζi
)⌉

for a large enough value of wi and mi =
⌈

log2

(
ζi
)⌉

+ 1 if
wi is not great enough, or if ζi is a power of 2. This leads to
the following proposition:

Proposition 2. Equivalently to equation (17), the minimum
MSB position that guarantees that no overflow occurs can be
computed with

m =
⌈

log2

(
〈〈Hζ〉〉u

)⌉
+ δ (19)

where δ ∈ Rn+p depends on w and is such that

δi =

{
0 if wi > w̃i

1 if wi < w̃i
(20)

and
w̃ , 111 +

⌈
log2

(
ζ
)⌉
−
⌊
log2

(
2dlog2(ζ)e − ζ

)⌋
(21)

Note that w̃i is set to +∞ when ζi is a power of 2.

Proof: Let us suppose that ζi is not a power of 2. We
compute the minimum value of wi (denoted w̃i) for which
we have

⌈
log2

(
ζi
)
− log2

(
1− 21−wi

)⌉
=
⌈

log2

(
ζi
)⌉

. This
holds iff

0 6
⌈
log2

(
ζi
)⌉
− log2

(
ζi
)

+ log2

(
1− 21−wi

)
< 1 (22)

The 2nd term of this inequality (< 1) is always true since⌈
log2

(
ζi
)⌉
− log2

(
ζi
)
< 1 and log2

(
1− 21−wi

)
< 0 for

wi > 2. The 1st inequality leads to

ζi · 2−dlog2(ζi)e 6 1− 21−wi (23)

21−wi 6 2−dlog2(ζi)e
(

2dlog2(ζi)e − ζi
)

(24)

Since ζi is not a power of 2, we have

1−wi 6 −
⌈
log2

(
ζi
)⌉

+ log2

(
2dlog2(ζi)e − ζi

)
(25)

and then wi > w̃i with (21).
The vector w̃ can be seen as a threshold below which the

word-length is too close the next binade.

IV. SUM OF PRODUCTS BY CONSTANTS

A. Problem Statement
For the State-Space algorithm (1), but also for all the

algorithms used to implement filters/controllers, the basic
operation is the Sum of Products by Constants (SoPC), i.e., the
accumulation of multiplications of variables by real constants

r =

N∑
i=1

ci · vi =

N∑
i=1

pi, (26)

where the {pi}16i6N denotes the products ci · vi of the real
non-zero constant ci by the variable vi. In our context, the real
constants are known, and they come from the coefficients of
the matrices A, B, C and D where the null coefficients are
removed. The fixed-point format of the variables vi and the
result r are also known (since they are states or outputs of
the State-Space system to implement, their MSB position are
determined with Section III-B, and their LSB deduced from
the associated word-lengths). We denote (m, `) the FxP format
of the result r.

B. Bit Guards to Provide Last Bit Accuracy

As done in [5] by Volkova et al., it is possible to compute
the Sum of Products by Constants r with last bit accuracy
(also called faithful rounding), i.e., with an error smaller than
the value of the last bit (LSB) of the result, here 2`.
To achieve this, the main idea is to use a slightly extended pre-
cision for the internal computation of the accumulation, using g
extra bits, called guards bits. We first compute approximations
of the products pi on the format (m, `−g), accumulate them on
this same format)m, `−g) (this addition is then error-free) and
then round the partial result r̃ext to the desired format (m, `).
The final approximated result is denoted r̃, and this process is
illustrated in Figure 3.

We assume that we are able to build hardware constant
multipliers that compute some approximation

p̃i ≈ civi (27)

of the mathematical product civi on the format (m, `−g), and
we assume that the rounding error of each of these multipliers
is bounded by some εi(g):

|p̃i − pi| < εi(g), ∀vi. (28)

The value of εi(g) depends on the constant: multiplication
by zero will be exact, as will be, under some conditions,
multiplications by powers of two and by other constants that
can be written in binary on few bits. In the general case where
ci is real, the multiplier will entail a rounding error which
depends on the multiplier technique used (a detailed example
will be shown in the next subsection). However, whatever the
technique, this error bound can be made as small as needed by
increasing g (in other words, by computing more accurately).

We then compute the sum r̃ext of the p̃i. This summation,
as long as it is performed with adders of the proper size (here
m − ` + 1 + g bits), will entail no error. Indeed, fixed-point
addition of numbers of the same format may entail overflows
(these have been taken care of by choosing appropriate MSB
for r), but no rounding error. This enables us to write

r̃ext =

N∑
i=1

p̃i, (29)

therefore the total rounding error of the sum is bounded by
N∑
i=1

εi(g). (30)

As each εi(g) can be made arbitrarily small by increasing
g, there exists some g such that

N∑
i=1

εi(g) < 2`−1. (31)

The intermediate result r̃ext now has g more bits at its
LSB than required (see Figure 3b). It therefore alse needs to
be rounded to the target format. Rounding to precision ` is
obtained by first adding 2`−1 then discarding bits lower than
2`. In the worst case, this will entail an error of at most 2`−1.

5

sp1

sp2

sp3

sp4

sp5

sp6

sr

m `

`− g

(a) Exact SoPC

sp̃1

s s sp̃2

s sp̃3

sp̃4

s s s s s s s sp̃5

sp̃6

g
sr̃ext

sr

m ` `− g

(b) Last bit accurate SoPC

Fig. 3: The Sum of Products by Constants is computed with the accumulation of approximated products with g extra bits (so
with format (m, `− g)), and then rounded to the format (m, `). The number of extra bits g is such that |r − r̃| < 2`.

To sum up, the overall error of a last-bit accurate SOPC
architecture is:∣∣∣∣∣r̃ −

N∑
i=1

ci · vi

∣∣∣∣∣ < 2`−1 + 2`−1 = 2`. (32)

The previous discussion is independent of the target technol-
ogy. However, the actual computation of the optimal g out of
constraint (31) will depend on the multiplier technique chosen.

Remark 3. It may happen that some products pi have a MSB
strictly greater than the result’s MSB m. But, since the MSB
of r has been computed to guarantee that no overflow ever
occurs, we can drop out all the extra MSB bits They do not
contribute to the final result, thanks to the modular properties
of the two’s complement arithmetic [20], [21].

C. Table-based Constant Multiplier for FPGAs

A table-based constant multiplier for FPGAs can be used to
efficiently perform a multiplication by a real constant. This has
been implemented in the tool FloPoCo4 and detailed in [5]. It
is based on a variation of the KCM technique [22], [23]. The
idea is to break down the binary representation of the input vi
to multiply into di chunks of α bits (or equivalently to use a
radix-2α basis to represent vi). When α is the LUT input size,
we can build the constant multiplier using one look-up table
per output bit (see [5] for the details).

The error of such a multiplier is bounded by di2`−g , and this
bound can be reduced accordingly to the coefficient (power of
2, constant that can be written with few bits, etc.). This error
is proportional to 2−g , so can made as small as needed by
increasing g.

It can be shown that using g extra bits such that g 6⌈
log2

(∑N
i=1 di

)⌉
is enough to achieve (31), so we will never

use more that
⌈
log2

(
W
α +N)

)⌉
extra guard bits for the SoPC,

where W is the total number of bits of the variables in the
SoPC (since we have di =

⌈
wi

α

⌉
where wi is the word-length

of the ith variable vi).

4http://flopoco.gforge.inria.fr/

Moreover, the main summation that includes the terms
required for the bit sign extension and the final rounding can
be implemented efficiently using compression techniques [5].

V. ERROR ANALYSIS

In this Section, we now study how the roundoff errors due to
the n+ p approximated Sum of Products by Constants impact
the outputs of the implemented State-Space.

At each step k, the computation of the state and output
vectors (using eq. (1)) rely on sum-of-products, one per state
and output. As seen in Section IV each SoPC may include an
error. State-Space (1) is then changed into

H∗
{
x∗(k + 1) = Ax∗(k) +Bu(k) + εx(k)

y∗(k) = Cx∗(k) +Du(k) + εy(k),
(33)

where εx(k) and εy(k) are the vectors of roundoff errors due
to the sum-of-products evaluation. Denote ε(k) the column
vector that aggregates those error vectors:

ε(k) ,

(
εx(k)
εy(k)

)
∈ Rn+p. (34)

Denoting ∆x(k) , x∗(k)−x(k) the computation error on
state x(k), and ∆y(k) , y∗(k)− y(k) the output error (i.e.,
the errors on the output y(k)), it follows from (1) and (33)
that ∆y(k) and ε(k) are linked with:

Hε

{
∆x(k + 1) = A∆x(k) +M3ε(k)

∆y(k) = C∆x(k) +M4ε(k).
(35)

and M3 = (In 0) ∈ Rn×(n+p), M4 = (0 In) ∈
Rp×(n+p).

These equations describe a State-Space system Hε with ma-
trices (A,M3,C,M4). It computes the output error ∆y(k)
from the computational errors ε(k).

The error analysis can be summarized with Figure 4, where
the implemented filter H∗ can be seen as the exact filter H
perturbed by the error filter Hε that amplifies the error ε.

The system Hε expresses how the errors ∆x(k) propagate
through the filter H and modify the outputs y(k).

Using the WCPG theorem (Proposition 1), we can compute
the bound of the output error, denoted ∆y by:

∆y = 〈〈Hε〉〉 ε (36)

6

H∗
u(k)

ε(k)

y∗(k) ⇐⇒
H

Hε

u(k)

ε(k)

+

y(k)

∆y(k)

y∗(k)

Fig. 4: The internal roundoff errors are equivalent to extern
perturabations on the ouput, with the error filter Hε.

where ε is the bound on the roundoff error. This bound can
be determined using the SoPC error analysis of Section IV,
where we have shown how to achieve last bit accurate Sum of
Products by Constants, leading to

ε = 2m−w+111. (37)
Finally, with m determined by Proposition 2, we have:

∆y = 〈〈Hε〉〉 2
⌈
log2

(
〈〈Hζ〉〉u

)⌉
+111−w+δ

. (38)

The bound ∆y depends on w (δ only depends whether w is
greater or not than w̃).

As an element of comparison, notice that, when the errors
are modeled as uniformly distributed random variables, their
variance are σ2

εi = 22εi

12 , and the output error variance is σy =
1
12

∑
i ‖Hεi‖

2
2 22εi , where ‖·‖2 is the filter `2 norm.

VI. WORD-LENGTH OPTIMIZATION

A. The Optimization Problem
Since we want to find hardware implementations that mini-

mize hardware resource use or impact (area, number of lookup
tables (LUTs), power consumption, etc.) but still guarantee a
given accuracy of the outputs, we can formulate this as an
optimization problem with respect to the word-lengths.
The optimization problem to be solved has objective function
f(w) =

∑n+p
j=1 wj (see Section VI-D for a discussion about

the objective function to minimize) and the following accuracy
constraints on the output error:

∆yi 6 εi, for i = 1, . . . , p (39)
where εi is the bound allowed on each component of the output
error. From (38), these constraints can be rewritten as

n+p∑
j=1

Eij2
−wj+δj 6 εi, for i = 1, . . . , p, (40)

where E ∈ Rp×(n+p) is a constant matrix defined by

Eij , 〈〈Hε〉〉ij 2

⌈
log2

(
〈〈Hζ〉〉u

)
j

⌉
. (41)

Thus, the optimization variables are the integer values
{wj}16j6n+p and {δj}16j6n+p.

In order to solve this optimization problem, the dependency
between δ and w should be converted into linear constraints.

Proposition 3. Let w and w̃ be two integers belonging to the
the interval [2, u], such that the value of w̃ is fixed. Let δ a
binary variable such that

δ =

{
0 if w > w̃

1 if w < w̃
(42)

Then, this last condition is equivalent to the following linear
constraints:

(2− w̃) δ + 1 ≤ w − w̃ + 1 ≤ (1− δ) (u− w̃ + 1) . (43)

Proof: Let w, w̃ and δ as stated in the proposition above.
On one hand, if δ equals 1 then the right constraint in (43)
implies that w < w̃ and the left constraint, w ≥ 2, remains
valid. On the other hand, if δ equals 0 then the left constraint
if (43) implies that w ≥ w̃ and the right constrain, w ≤ u,
remains also valid. Thus δ = 1 iff w < w̃.

Remark 4. Notice that linearizing equations (40) is not as
simple as linearizing (20) since it will complicate the objective
function that will become non-linear.

Finally, our optimization problem reads

wopt = arg min

n+p∑
j=1

wj (44)

subject to
n+p∑
j=1

Eij2
−wj+δj 6 εi, 1 6 j 6 p,

(2− w̃j) δj + 1 6 wj − w̃j + 1, 1 6 j 6 n+ p,
wj − w̃j + 1 6 (1− δj) (uj − w̃j + 1) , 1 6 j 6 n+ p,
2 6 wj 6 uj , 1 6 j 6 n+ p,
wj ∈ Z, δj ∈ {0, 1} , 1 6 j 6 n+ p,

The optimization problem (44) is a separable convex nonlin-
ear integer optimization problem. It is an NP-hard optimization
problem [24] meaning that the best known exact algorithm
to solve it has exponential time complexity. The two main
approaches used to solve exactly (44) are the branch-and-
bound approach and the outer approximation approaches [24].
Regarding software, one can use the IBM-open-source soft-
ware Bonmin5 or the commercial solver Artylis-Knitro6.

In the following, we also propose two other heuristics.

B. Uniform Word-lengths
In the case, where a uniform word-length is used, i.e., when

the same word-length is used for all the states and the outputs
(w = 111w), we can directly find the minimal word-length wuni
that satisfies the constraints (40).
Suppose that w is such that δj = 0 for all j = 1, . . . , n+p (it is
the case when w > max(w̃), where max(x) is the maximum
element of the vector x). Then looking for the lowest integer
wuni such that the constraints

n+p∑
j=1

Eij2
−w2δj 6 εi, for i = 1, . . . , p, (45)

hold, leads to
wuni = max

(⌈
log2 (E111)− log2(ε)

⌉)
. (46)

In the other hand, if we suppose that δj = 1 for all
j = 1, . . . , n + p (it is the case when w < min(w̃)), then
equation (45) leads to

wuni = 1 + max
(⌈

log2 (E111)− log2(ε)
⌉)
. (47)

5https://www.coin-or.org/Bonmin/
6https://www.artelys.com/

7

The value of wuni differs in the two cases by only one bit.
So, in the general case, we use the following algorithm:

1) Compute wguess , max
(⌈

log2 (E111)− log2(ε)
⌉)

a first
guess for the minimum word-length ;

2) Then check if wguess satisfies the constraints (45). If so,
wuni = wguess, otherwise wuni = wguess + 1.

In practice, the uniform word-length is used for software-
based implementation (the word-lengths are often set to 8, 16,
32 or 64 bits) and also for comparison with the result of the
general problem in the multiple word-length setting.

C. Equitably Distributed Budget Error
As a different heuristic for computing a feasible solution

of the problem (44), one can split the ith total budget error
constraint

∑n+p
j=1 Eij2

−wj+δj 6 εi in n + p terms, each of
them concerning the budget error of the jth parameter. Since in
the cost function all the parameters wj have the same weight,
it is natural to split the budget error constraints (40) into n+p
equal terms in order to provide stricter and simpler constraints:

i = 1, . . . , p, j = 1, . . . , n+p : Eij2
−wj+δj 6

εi
n+ p

. (48)

Providing wj such that (48) holds implies that the con-
straints (40) hold too. They lead to wj − δj > wguess,j with

wguess,j , max
i

⌈
log2(Eij(n+ p))− log2(εi)

⌉
. (49)

Then, as done in Section VI-B, we check ifwguess,j satisfies the
constraints (48) (or equivalently if wguess,j is greater than w̃j).
If so, the chosen value weq,j is equal to wguess,j , otherwise
weq,j = wguess,j + 1.

As shown in the examples, this heuristic gives a good
approximation of wopt when p = 1.

D. Discussion About the Cost Function
In the word-length optimization problem previously defined

in Section VI-A, the cost function to be minimized was the
sum of the word-lengths of the states and the outputs. This cost
function has been chosen as a first order approximation of a
real cost function which can reflect, for instance, the power
consumption, the area or the number of LUTs.

Another cost function could be to sum the number of
bits used in all the additions. For a N -term addition over
M bits, we can consider that N.M bits are involved (see
Figure 3b). Applied to the Sum of Products by Constants
detailed in Section IV, the computation of the term ζj involves
(n+p)(wj+gj) bits where gj is the number of guard bits. This
number cannot be given a priori, because it is highly dependent
on the coefficients involved. But we have seen that is bounded
by
⌈

log2

(
1
α

∑n+p
k=1(wk + n+ p)

)⌉
. So the bound on the total

number of bits is roughly proportional to g(w) with :

g(w) , (n+p) log2

 1

α

n+p∑
j=1

(wj + n+ p)

+

n+p∑
j=1

wj . (50)

With h(x) = x + (n + p) log2(x+(n+p)2

α), we have g(w) =
h(f(w)) and g is a strictly increasing function and continuous,

minimizing g(w) is equivalent to minimizing f(w). The
simpler objective function f(w) is then not so simplistic.

Finally, using a much more realistic cost function such as
a more accurate approximation of the number of LUTs used
in the FPGAs or the power consumption or one that measures
directly on the hardware generated (like real number of LUTs
used) could give better results but also increase the complexity
of the optimization problem. As future work, we will consider
using such realistic cost functions.

VII. REAL-LIFE EXAMPLES

In the following, we consider the three real-life examples7

from the Signal Processing and the Control contexts. For all
of them, the input bound u is set arbitrary to 10, and ε to 2−6.
These values of course depend on the context and needs of the
designer, and will not be discussed here.

The first example is an active control of longitudinal os-
cillations studied in [25]. It has been designed to remove the
unpleasant oscillations of the vehicle by means of a controller
active on the engine torque. It results in a 10th order single-
input single-output state-space (n = 10, p = q = 1).

The second example is a multiple-input multiple-output
controller from the automotive context (n = 4, p = 5, q = 7).
It is not published, so it can be considered as a random stable
state-space controller.

The last example comes from Signal Processing. It is a
5th order single-input single-output low pass filter (n = 5,
p = q = 1) designed to keep low frequency signals (0 to 50Hz)
and reject with at least -40dB of gain the signals above 90Hz.
This elliptic filter [26] has been designed with a sampling
frequency of 50kHz and its coefficients were found using the
Filter Designer tool from Matlab8. These parameters make the
pass band very narrow and close to the stop band; the filter
is difficult to implement because it may require high internal
precision to achieve reasonably accurate results.

For each example, the results of the word-length allocation
problem are shown in Table I. Due to a small number of
parameters (up to 22, only), the optimal solution has been
computed using Artelys-Knitro solver. For the single-
output examples (p = 1), the sub-optimal word-lengths weq
are good approximations close to the optimal. It is not the case
when p > 1, since we need to take the maximum word-length
satisfying the constraints for each output. We can also remark
that w̃ is very often low (except for x9 of the first example,
where ζ9 ≈ 63.412 that is relatively close to a power of 2).
The δ parameters are always equal to 0 in our setup, except
for y7 and y3 (second example) where wopt < w̃.

Even if the size (number of variables and constraints) of the
instances we considered is relatively small, the word-length
optimization problem still difficult to solve. Solving instances
featuring more than 50 variables and 10 constraints is a very
challenging task.

Notice that a comparison with classical statistic ap-
proach [6], [7], [8] is not really possible since they do not
provide error bound, thus their constraints are less restrictive.

7The real coefficients of these examples can be found in our code:
https://github.com/fixif/examples/blob/master/ARITH26/ARITH26.py.

8https://www.mathworks.com

8

oscillation controller random controller low-pass filter
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 y f(w) x1 x2 x3 x4 y1 y2 y3 y4 y5 y6 y7 f(w) x1 x2 x3 x4 x4 y f(w)

m 9 8 9 9 8 8 8 6 6 2 4 6 6 5 6 16 15 16 16 16 15 16 43 43 43 43 43 5
w̃ 3 3 3 3 3 3 3 4 8 3 3 3 4 3 6 4 3 6 3 4 3 6 3 3 3 3 3 3

wopt 17 15 17 17 15 15 15 11 11 3 13 149 13 11 14 12 4 3 5 4 4 3 5 78 52 55 55 55 53 14 284

wuni 16 16 16 16 16 16 16 16 16 16 16 176 31 31 31 31 31 31 31 31 31 31 31 341 54 54 54 54 54 54 324

weq 17 15 18 17 15 15 15 12 12 4 14 154 33 32 34 32 26 25 26 26 26 25 26 311 53 55 56 55 53 14 286

TABLE I: Optimal word-length allocation for the three examples: wopt is the result of the general optimization problem, wuni
the result of the uniform word-length problem and weq of the uniformly distributed budget error problem.

VIII. CONCLUSION

In this article, we have shown how to reliably implement
State-Space filters or controllers with Fixed-Point arithmetic.
The Most Significant Bit position of each variable has been
computed with respect to the word-lengths used in order to
prevent any overflow. Then, using a Sum of Products by
constants that provides last bit accurate, we have performed a
full error analysis of the implementation. Finally, the optimal
word-length allocation problem has been defined, and solved
using appropriate heuristics.

This work did not yet consider the last part of the filter-
to-code flow described in see Figure 1. But thanks to code
generators like FloPoCo, this can be done in order to provide
last bit accuracy FPGA implementations. From them, it will be
possible to measure interesting values, such as the number of
LUTs or the power consumption, and then use them as black-
box objective function values for the optimization process (the
current result will then be used as initial value for the solver).

Moreover, we also plan to extend this work to the full
class of linear time invariant algorithms, using the unifying
framework proposed in [27] and then finally be able to com-
pare all the possible implementations under the same accuracy
constraint.

REFERENCES

[1] B. Widrow, I. Kollár, and M. Liu, “Statistical analysis of amplitude
quantized sampled-data systems,” in IEEE Trans. on Instrumentation
and Measurement, vol. 45, no. 6, 1995, pp. 353–361.

[2] L. Jackson, “On the interaction of roundoff noise and dynamic range
in digital filters,” Bell System Technical Journal, vol. 49, 01 1970.

[3] A. Fettweis, “Roundoff noise and attenuation sensitivity in digital filters
with fixed-point arithmetic,” Circuit Theory, IEEE Transactions on,
vol. 20, pp. 174 – 175, 04 1973.

[4] C. Mullis and R. Roberts, “Synthesis of minimum roundoff noise fixed
point digital filters,” in IEEE Transactions on Circuits and Systems, vol.
CAS-23, no. 9, September 1976.

[5] A. Volkova, M. Istoan, F. De Dinechin, and T. Hilaire, “Towards
hardware iir filters computing just right: Direct form i case study,” IEEE
Transactions on Computers, vol. 68, no. 4, pp. 597–608, April 2019.

[6] O. Sarbishei, K. Radecka, and Z. Zilic, “Analytical optimization of bit-
widths in fixed-point LTI systems,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 31, no. 3, 2012.

[7] D. Boland and G. Constantinides, “Word-length optimization beyond
straight line code,” in ACM Field Programmable Gate Arrays, 2013.

[8] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, “Wordlength
optimization for linear digital signal processing,” IEEE Trans. on CAD
of Integrated Circuits and Systems, vol. 22, pp. 1432–1442, 2003.

[9] S. Vakili, J. M. P. Langlois, and G. Bois, “Enhanced precision analysis
for accuracy-aware bit-width optimization using affine arithmetic,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 32, no. 12, pp. 1853–1865, 2013.

[10] J. Lopez, C. Carreras, and O. Nieto-Taladriz, “Improved interval-
based characterization of fixed-point LTI systems with feedback loops,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 26, no. 11, pp. 1923–1933, November 2007.

[11] A. Volkova, T. Hilaire, and C. Lauter, “Determining fixed-point formats
for a digital filter implementation using the worst-case peak-gain
measure,” in Asilomar Conf. Signals, Systems and Computers, 2015.

[12] T. Kailath, Linear Systems. Prentice-Hall, 1980.
[13] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time Signal

Processing (2Nd Ed.). Prentice-Hall, Inc., 1999.
[14] K. Ogata, Discrete-time Control Systems, 3rd ed. Prentice Hall

International, 2006.
[15] P. J. Antsaklis and A. N. Michel, Linear systems. Birkhauser,, 2006.
[16] V. Balakrishnan and S. Boyd, “On computing the worst-case peak gain

of linear systems,” Systems & Control Letters, vol. 19, 1992.
[17] A. Volkova, T. Hilaire, and C. Q. Lauter, “Reliable evaluation of the

Worst-Case Peak Gain matrix in multiple precision,” in 22nd IEEE
Symposium on Computer Arithmetic, Lyon, France., 2015.

[18] D. Gallois-Wong, S. Boldo, and T. Hilaire, “A coq formalization of
digital filters,” in 11th Conference on Intelligent Computer Mathematics
(CICM), Aug. 2018, pp. 87–103.

[19] A. Volkova, T. Hilaire, and C. Lauter, “Arithmetic approaches for
rigorous design of reliable Fixed-Point LTI filters,” Nov. 2018, working
paper or preprint. [Online]. Available: https://hal.archives-ouvertes.fr/
hal-01918650

[20] L. Jackson, J. Kaiser, and H. McDonald, “An approach to the imple-
mentation of digital filters,” IEEE Transactions on Audio and Electroa-
coustics, vol. 16, no. 3, pp. 413–421, Sep. 1968.

[21] B. Lopez, T. Hilaire, and L.-S. Didier, “Formatting bits to better
implement signal processing algorithms,” in 4th int. Conf. on Pervasive
and Embedded Computing and Communication Systems, 2014.

[22] K. Chapman, “Fast integer multipliers fit in FPGAs,” EDN magazine,
no. 10, p. 80, 1993.

[23] M. Wirthlin, “Constant coefficient multiplication using look-up tables,”
Journal of VLSI Signal Processing, vol. 36, no. 1, 2004.

[24] C. A. Floudas, Nonlinear and Mixed-Integer Optimization. Oxford
University Press,, 1995.

[25] D. Lefebvre, P. Chevrel, and S. Richard, “An H∞ based control
design methodology dedicated to the active control of longitudinal
oscillations,” IEEE Trans. on Control Systems Technology, vol. 11, no. 6,
pp. 948–956, November 2003.

[26] D. Schlichthärle, Digital Filters: Basics and Design, 2nd edition.
Springer, 2011.

[27] T. Hilaire, P. Chevrel, and J. Whidborne, “A unifying framework for
finite wordlength realizations,” IEEE Trans. on Circuits and Systems,
vol. 8, no. 54, pp. 1765–1774, August 2007.

